Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Curcuminoids as Cell Signaling Pathway Modulators: A Potential Strategy for Cancer Prevention

Author(s): Aneeza Noor, Saimeena Shafi, Nouroz Sehar, Insha Qadir, Bilquees, Summya Rashid, Azher Arafah, Saiema Rasool, Nawab John Dar, Mubashir Hussain Masoodi and Muneeb U. Rehman*

Volume 31, Issue 21, 2024

Published on: 26 September, 2023

Page: [3093 - 3117] Pages: 25

DOI: 10.2174/0929867331666230809100335

Price: $65

conference banner
Abstract

Despite substantial advancements in curative modern medicine in the last few decades, cancer risk and casualty rates have continued to mount globally. The exact reason for cancer's onset and progression is still unknown. However, skeletal and functional abnormalities in the genetic code are assumed to be the primary cause of cancer. Many lines of evidence reported that some medicinal plants can be utilized to curb cancer cell proliferation with a safe, fruitful, and cost-efficient perspective. Curcuminoid, isolated from Curcuma longa, have gotten a lot of focus due to their anticancer potential as they reduce tumor progression, invasion, and dissemination. Further, they modulated signal transduction routes like MAPK, PI3K/Akt/mTOR, JAK/STAT, and Wnt/β-catenin, etc., and triggered apoptosis as well as actuated autophagy in malignant cells without altering the normal cells, thus preventing cancer progression. Besides, Curcuminoid also regulate the function and expression of anti-tumor and carcinogenic miRNAs. Clinical studies also reported the therapeutic effect of Curcuminoid against various cancer through decreasing specific biomarkers like TNF-α, Bcl-2, COX-2, PGE2, VEGF, IκKβ, and various cytokines like IL-12p70, IL-10, IL-2, IFN-γ levels and increasing in p53 and Bax levels. Thus, in the present review, we abridged the modulation of several signal transduction routes by Curcuminoids in various malignancies, and its modulatory role in the initiation of tumor-suppressive miRNAs and suppression of the oncogenic miRNAs are explored. Additionally, various pharmacokinetic approaches have been projected to address the Curcuminoids bioavailability like the use of piperine as an adjuvant; nanotechnology- based Curcuminoids preparations utilizing Curcuminoids analogues are also discussed.

Keywords: Curcuminoids, signaling pathways, chemotherapeutic agent, JAK/STAT pathway, PI3K/Akt/mTOR, miRNAs.

[1]
Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: an updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138.
[http://dx.doi.org/10.2174/1875533XMTExtNDA8x] [PMID: 33176632]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[3]
Srivastava, N.S.; Srivastava, R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine, 2019, 52, 117-128.
[http://dx.doi.org/10.1016/j.phymed.2018.09.224] [PMID: 30599890]
[4]
Wei, M.M.; Zhao, S.J.; Dong, X.M.; Wang, Y.J.; Fang, C.; Wu, P.; Song, G.Q.; Gao, J.N.; Huang, Z.H.; Xie, T.; Zhou, J.L. A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. J. Ethnopharmacol., 2021, 267, 113467.
[http://dx.doi.org/10.1016/j.jep.2020.113467] [PMID: 33058923]
[5]
Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Pat. Anticancer Drug Discov., 2016, 11(1), 67-97.
[http://dx.doi.org/10.2174/1574892810666151020101706] [PMID: 26537958]
[6]
Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 2014, 546(2), 226-232.
[http://dx.doi.org/10.1016/j.gene.2014.06.006] [PMID: 24910117]
[7]
Tuyaerts, S.; Rombauts, K.; Everaert, T.; Van Nuffel, A.M.T.; Amant, F. A phase 2 study to assess the immunomodulatory capacity of a lecithin-based delivery system of curcumin in endometrial cancer. Front. Nutr., 2019, 5, 138.
[http://dx.doi.org/10.3389/fnut.2018.00138] [PMID: 30687714]
[8]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[9]
Almatroodi, S.A.; Alrumaihi, F.; Alsahli, M.A.; Alhommrani, M.F.; Khan, A.; Rahmani, A.H. Curcumin, an active constituent of turmeric spice: implication in the prevention of lung injury induced by benzo (a) pyrene (BaP) in rats. Molecules, 2020, 25(3), 724.
[http://dx.doi.org/10.3390/molecules25030724] [PMID: 32046055]
[10]
Ma, C.; Zhuang, Z.; Su, Q.; He, J.; Li, H. Curcumin has anti-proliferative and pro-apoptotic effects on tongue cancer in vitro: A study with bioinformatics analysis and in vitro experiments. Drug Des. Devel. Ther., 2020, 14, 509-518.
[http://dx.doi.org/10.2147/DDDT.S237830] [PMID: 32099333]
[11]
Fu, Y.S.; Chen, T.H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. Pharmacother., 2021, 141, 111888.
[http://dx.doi.org/10.1016/j.biopha.2021.111888] [PMID: 34237598]
[12]
Chen, L.; Zhan, C.Z.; Wang, T.; You, H.; Yao, R. Curcumin inhibits the proliferation, migration, invasion, and apoptosis of diffuse large B-cell lymphoma cell line by regulating MiR-21/VHL axis. Yonsei Med. J., 2020, 61(1), 20-29.
[http://dx.doi.org/10.3349/ymj.2020.61.1.20] [PMID: 31887796]
[13]
Dimri, M.; Satyanarayana, A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers, 2020, 12(2), 491.
[http://dx.doi.org/10.3390/cancers12020491] [PMID: 32093152]
[14]
Sultana, S.; Munir, N.; Mahmood, Z.; Riaz, M.; Akram, M.; Rebezov, M.; Kuderinova, N.; Moldabayeva, Z.; Shariati, M.A.; Rauf, A.; Rengasamy, K.R.R. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A review. Biomed. Pharmacother., 2021, 135, 111078.
[http://dx.doi.org/10.1016/j.biopha.2020.111078] [PMID: 33433356]
[15]
Lee, S.Y.; Cho, S.S.; Li, Y.; Bae, C.S.; Park, K.M.; Park, D.H. Anti-inflammatory effect of curcuma longa and allium hookeri co-treatment via NF-κB and COX-2 pathways. Sci. Rep., 2020, 10(1), 5718.
[http://dx.doi.org/10.1038/s41598-020-62749-7] [PMID: 31913322]
[16]
Bhatia, M.; Bhalerao, M.; Cruz-Martins, N.; Kumar, D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother Res, 2021, 35(9), 4913-4929.
[http://dx.doi.org/10.1002/ptr.7121]
[17]
KM, M.; Palaniswamy, D.S.; NP, D.; Jyothi, D.P. Therapeutic importance of curcumin with a special emphasis on mdr cancer cells and the factors influencing pharmacodynamics. Indones. J. Pharm., 2021, 429-441.
[http://dx.doi.org/10.22146/ijp.2280]
[18]
Jamialahmadi, T.; Guest, P.C.; Tasbandi, A.; Majeed, M.; Sahebkar, A. Testing the anti-inflammatory effects of curcuminoids in patients with colorectal cancer. Physical Exercise and Natural and Synthetic Products in Health and Disease; Springer, 2022, pp. 319-330.
[http://dx.doi.org/10.1007/978-1-0716-1558-4_23]
[19]
Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128.
[http://dx.doi.org/10.1016/j.gene.2019.02.076]
[20]
Cheng, J.; Huang, Y.; Zhang, X.; Yu, Y.; Wu, S.; Jiao, J.; Tran, L.; Zhang, W.; Liu, R.; Zhang, L.; Wang, M.; Wang, M.; Yan, W.; Wu, Y.; Chi, F.; Jiang, P.; Zhang, X.; Wu, H. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism. Nat. Commun., 2020, 11(1), 1880.
[http://dx.doi.org/10.1038/s41467-020-15819-3] [PMID: 32312982]
[21]
Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272.
[http://dx.doi.org/10.3892/etm.2018.6345] [PMID: 30116377]
[22]
Farghadani, R.; Naidu, R. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers, 2021, 13(14), 3427.
[http://dx.doi.org/10.3390/cancers13143427] [PMID: 34298639]
[23]
Badr, G.; Gul, H.I.; Yamali, C.; Mohamed, A.A.M.; Badr, B.M.; Gul, M.; Abo Markeb, A.; Abo El-Maali, N. Curcumin analogue 1,5-bis(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)phenyl)penta-1,4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signaling pathways in human breast carcinoma cells. Bioorg. Chem., 2018, 78, 46-57.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.006] [PMID: 29533214]
[24]
Ashrafizadeh, M.; Najafi, M.; Makvandi, P.; Zarrabi, A.; Farkhondeh, T.; Samarghandian, S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell. Physiol., 2020, 235(12), 241-9268.
[http://dx.doi.org/10.1002/jcp.29819]
[25]
Zhang, Q.; Qiao, H.; Wu, D.; Lu, H.; Liu, L.; Sang, X.; Li, D.; Zhou, Y. Curcumin potentiates the galbanic acid-induced anti-tumor effect in non-small cell lung cancer cells through inhibiting Akt/mTOR signaling pathway. Life Sci., 2019, 239, 117044.
[http://dx.doi.org/10.1016/j.lfs.2019.117044] [PMID: 31715187]
[26]
Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non-small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969.
[http://dx.doi.org/10.3892/mmr.2018.8600] [PMID: 29436654]
[27]
Wang, H.J.; Yang, Z.X.; Dai, X.T.; Chen, Y.F.; Yang, H.P.; Zhou, X.D. Bisdemethoxycurcumin sensitizes cisplatin-resistant lung cancer cells to chemotherapy by inhibition of CA916798 and PI3K/AKT signaling. Apoptosis, 2017, 22(9), 1157-1168.
[http://dx.doi.org/10.1007/s10495-017-1395-x] [PMID: 28677094]
[28]
Chen, Y.; Wu, M. Demethoxycurcumin inhibits the growth of human lung cancer cells by targeting of PI3K/AKT/m- TOR signalling pathway, induction of apoptosis and inhibition of cell migration and invasion. Trop. J. Pharm. Res., 2022, 20(4), 687-693.
[http://dx.doi.org/10.4314/tjpr.v20i4.4]
[29]
Lee, H.Y.J.; Meng, M.; Liu, Y.; Su, T.; Kwan, H. Y. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer (Review). Oncol Lett., 2021, 22(3), 646.
[http://dx.doi.org/10.3892/ol.2021.12907]
[30]
Wang, J.; Wang, C.; Bu, G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp. Ther. Med., 2018, 15(4), 3650-3658.
[http://dx.doi.org/10.3892/etm.2018.5805] [PMID: 29545895]
[31]
Zhu, X.; Zhu, R. Curcumin suppresses the progression of laryngeal squamous cell carcinoma through the upregulation of miR-145 and inhibition of the PI3K/Akt/mTOR pathway. OncoTargets Ther., 2018, 11, 3521-3531.
[http://dx.doi.org/10.2147/OTT.S159236] [PMID: 29950857]
[32]
Wang, Y.; Lu, J.; Jiang, B.; Guo, J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment (Review). Oncol Lett, 2020, 19(4), 3059-3070.
[http://dx.doi.org/10.3892/ol.2020.11437]
[33]
Li, W.; Jiang, Z.; Xiao, X.; Wang, Z.; Wu, Z.; Ma, Q.; Cao, L. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. Int. J. Oncol., 2018, 52(5), 1593-1602.
[http://dx.doi.org/10.3892/ijo.2018.4295] [PMID: 29512729]
[34]
Hamzehzadeh, L.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Sahebkar, A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J. Cell. Physiol., 2018, 233(10), 6530-6537.
[http://dx.doi.org/10.1002/jcp.26620]
[35]
Wahab, N.A.A.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients, 2020, 12(3), 679.
[http://dx.doi.org/10.3390/nu12030679]
[36]
Gong, X.; Jiang, L.; Li, W.; Liang, Q.; Li, Z. Curcumin induces apoptosis and autophagy inhuman renal cell carcinoma cells via Akt/mTOR suppression. Bioengineered, 2021, 12(1), 5017-5027.
[http://dx.doi.org/10.1080/21655979.2021.1960765] [PMID: 34402718]
[37]
Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients, 2021, 13(3), 950.
[http://dx.doi.org/10.3390/nu13030950] [PMID: 33809462]
[38]
Wang, R.; Li, J.; Zhao, Y.; Li, Y.; Yin, L. Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis. Breast Cancer, 2018, 25(2), 206-212.
[http://dx.doi.org/10.1007/s12282-017-0816-6] [PMID: 29139094]
[39]
Adewumi, H.; Carter, G.; Bhuiyan, S.; College, J. C. Bioresearch communications curcumin downregulates the expression of p44 / 42 MAPK and causes caspase-mediated cell inhibition in MCF-7 breast cancer cells. Cancer Cells, 2020, 06(01), 2020-2021.
[40]
Mao, M.; Dengdi, H.; Jingjing, Y. Regulation of tamoxifen sensitivity by the PLAC8/MAPK pathway axis is antagonized by curcumin-induced protein stability change. J. Mol. Med., 2021, 99(6), 845-858.
[http://dx.doi.org/10.1007/s00109-021-02047-5]
[41]
Sun, M.; Zhang, Y.; He, Y.; Xiong, M.; Huang, H.; Pei, S.; Liao, J.; Wang, Y.; Shao, D. Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy. Colloids Surf. B Biointerfaces, 2019, 180(March), 313-318.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.061] [PMID: 31071571]
[42]
Hsieh, M.; Lu, C.; Kuo, S. Next-generation sequencing analysis reveals that MTH-3, a novel curcuminoid derivative,suppresses the invasion of MDA-MB-231 triple-negative breast adenocarcinoma cells. Oncol. Rep., 2021, 1-17.
[http://dx.doi.org/10.3892/or.2021.8084]
[43]
Shen, X.; Sun, X.; Chen, H.; Lu, B.; Qin, Y.; Zhang, C.; Liang, G.; Wang, J.; Yu, P.; Su, L.; Ma, Q.; Li, Y. Demethoxycucumin protects MDA-MB-231 cells induced bone destruction through JNK and ERK pathways inhibition. Cancer Chemother. Pharmacol., 2021, 87(4), 487-499.
[http://dx.doi.org/10.1007/s00280-020-04198-7] [PMID: 33403398]
[44]
Liang, Z.; Rui, Z.; Wei, X. Curcumin reverses tobacco smoke-induced epithelial-mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Mol. Med. Rep., 2017, 17(1), 2019-2025.
[http://dx.doi.org/10.3892/mmr.2017.8028] [PMID: 29138815]
[45]
Chien, M.H.; Yang, W.E.; Yang, Y.C.; Ku, C.C.; Lee, W.J.; Tsai, M.Y.; Lin, C.W.; Yang, S.F. Dual targeting of the p38 MAPK-HO-1 axis and cIAP1/XIAP by demethoxycurcumin triggers caspase-mediated apoptotic cell death in oral squamous cell carcinoma cells. Cancers, 2020, 12(3), 703.
[http://dx.doi.org/10.3390/cancers12030703] [PMID: 32188144]
[46]
Shi, L.; Sun, G.; Zhu, H. Demethoxycurcumin analogue DMC-BH inhibits orthotopic growth of glioma stem cells by targeting JNK/ERK signaling. Aging, 2020, 12(14), 14718-14735.
[http://dx.doi.org/10.18632/aging.103531] [PMID: 32710727]
[47]
Hsiao, P.C.; Chang, J.H.; Lee, W.J.; Ku, C.C.; Tsai, M.Y.; Yang, S.F.; Chien, M.H. The curcumin analogue, ef-24, triggers p38 mapkmediated apoptotic cell death via inducing pp2amodulated erk deactivation in human acute myeloid leukemia cells. Cancers, 2020, 12(8), 2163.
[http://dx.doi.org/10.3390/cancers12082163] [PMID: 32759757]
[48]
Agarwal, A.; Kasinathan, A.; Ganesan, R.; Balasubramanian, A.; Bhaskaran, J.; Suresh, S.; Srinivasan, R.; Aravind, K.B.; Sivalingam, N. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species–independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr. Res., 2018, 51, 67-81.
[http://dx.doi.org/10.1016/j.nutres.2017.12.011] [PMID: 29673545]
[49]
Huang, C.; Lu, H.F.; Chen, Y.H.; Chen, J.C.; Chou, W.H.; Huang, H.C. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and –independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement. Med. Ther., 2020, 20(1), 68.
[http://dx.doi.org/10.1186/s12906-020-2857-1] [PMID: 32126993]
[50]
Chen, Y.Y.; Lin, Y.J.; Huang, W.T.; Hung, C.C.; Lin, H.Y.; Tu, Y.C.; Liu, D.M.; Lan, S.J.; Sheu, M.J. Demethoxycurcumin-loaded chitosan nanoparticle downregulates DNA repair pathway to improve cisplatin-induced apoptosis in non-small cell lung cancer. Molecules, 2018, 23(12), 3217.
[http://dx.doi.org/10.3390/molecules23123217] [PMID: 30563166]
[51]
Xiang, M.; Jiang, H.G.; Shu, Y.; Chen, Y.J.; Jin, J.; Zhu, Y.M.; Li, M.Y.; Wu, J.N.; Li, J. Bisdemethoxycurcumin enhances the sensitivity of non-small cell lung cancer cells to icotinib via dual induction of autophagy and apoptosis. Int. J. Biol. Sci., 2020, 16(9), 1536-1550.
[http://dx.doi.org/10.7150/ijbs.40042] [PMID: 32226300]
[52]
Hsiao, Y.T.; Kuo, C.L.; Chueh, F.S.; Liu, K.C.; Bau, D.T.; Chung, J.G. Curcuminoids induce reactive oxygen species and autophagy to enhance apoptosis in human oral cancer cells. Am. J. Chin. Med., 2018, 46(5), 1145-1168.
[http://dx.doi.org/10.1142/S0192415X1850060X] [PMID: 29976081]
[53]
Kao, C.C.; Cheng, Y.C.; Yang, M.H.; Cha, T.L.; Sun, G.H.; Ho, C.T.; Lin, Y.C.; Wang, H.K.; Wu, S.T.; Way, T.D. Demethoxycurcumin induces apoptosis in HER2 overexpressing bladder cancer cells through degradation of HER2 and inhibiting the PI3K /Akt pathway. Environ. Toxicol., 2021, 36(11), 2186-2195.
[http://dx.doi.org/10.1002/tox.23332] [PMID: 34291863]
[54]
Qiang, Z.; Meng, L.; Yi, C.; Yu, L.; Chen, W.; Sha, W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. J. Int. Med. Res., 2019, 47(3), 1288-1297.
[http://dx.doi.org/10.1177/0300060518822213] [PMID: 30727807]
[55]
Hsia, T.C.; Peng, S.F.; Chueh, F.S.; Lu, K.W.; Yang, J.L.; Huang, A.C.; Hsu, F.T.; Wu, R.S.C. Bisdemethoxycurcumin induces cell apoptosis and inhibits human brain glioblastoma GBM 8401/Luc2 cell xenograft tumor in subcutaneous nude mice in vivo. Int. J. Mol. Sci., 2022, 23(1), 538.
[http://dx.doi.org/10.3390/ijms23010538] [PMID: 35008959]
[56]
Verzella, D.; Alessandra, P.; Daria, C. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis, 2020, 11(3), 210.
[http://dx.doi.org/10.1038/s41419-020-2399-y]
[57]
Xu, J.H.; Yang, H.P.; Zhou, X.D.; Wang, H.J.; Gong, L.; Tang, C.L. Autophagy accompanied with bisdemethoxycurcumin-induced apoptosis in non-small cell lung cancer cells. Biomed. Environ. Sci., 2015, 28(2), 105-115.
[http://dx.doi.org/10.3967/bes2015.013] [PMID: 25716561]
[58]
Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549. Oncol. Lett., 2017, 14(3), 2775-2782.
[http://dx.doi.org/10.3892/ol.2017.6565] [PMID: 28928819]
[59]
Mao, X.; Zhang, X.; Zheng, X.; Chen, Y.; Xuan, Z.; Huang, P. Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. J. Nat. Med., 2021, 75(3), 590-601.
[http://dx.doi.org/10.1007/s11418-021-01505-1] [PMID: 33713277]
[60]
Liu, L.D. Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch. Gynecol. Obstet., 2019, 299(6), 1627-1639.
[http://dx.doi.org/10.1007/s00404-019-05058-3]
[61]
Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol., 2018, 233(6), 4634-4642.
[http://dx.doi.org/10.1002/jcp.26190] [PMID: 28926094]
[62]
Diederich; Gaascht, F.; Cronauer, M.; Henry, E.; Dicato, M.; Diederich, M. Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int. J. Oncol., 2011, 38(3), 603-611.
[http://dx.doi.org/10.3892/ijo.2011.905] [PMID: 21240460]
[63]
Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther., 2017, 11, 431-439.
[http://dx.doi.org/10.2147/DDDT.S126964] [PMID: 28243065]
[64]
Lin, H.Y.; Lin, J-N.; Ma, J-W.; Yang, N-S.; Ho, C-T.; Kuo, S-C.; Way, T-D. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J. Funct. Foods, 2015, 12, 439-449.
[http://dx.doi.org/10.1016/j.jff.2014.12.014]
[65]
Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064.
[http://dx.doi.org/10.1038/srep26064] [PMID: 27263652]
[66]
Qureshy, Z.; Johnson, D.E.; Grandis, J.R. Targeting the JAK/STAT pathway in solid tumors. J. Cancer Metastasis Treat., 2020, 2020, 1-29.
[http://dx.doi.org/10.20517/2394-4722.2020.58] [PMID: 33521321]
[67]
Wang, J.; Zhang, Y.; Song, H.; Yin, H.; Jiang, T.; Xu, Y.; Liu, L.; Wang, H.; Gao, H.; Wang, R.; Song, J. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol. Cancer, 2021, 20(1), 81.
[http://dx.doi.org/10.1186/s12943-021-01375-x] [PMID: 34074294]
[68]
Wang, H.; Zhang, K.; Liu, J.; Yang, J.; Tian, Y.; Yang, C.; Li, Y.; Shao, M.; Su, W.; Song, N. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways. Front. Oncol., 2021, 11, 660712.
[http://dx.doi.org/10.3389/fonc.2021.660712] [PMID: 33912467]
[69]
Li, Y.; Sun, W.; Han, N.; Zou, Y.; Yin, D. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer, 2018, 18(1), 1230.
[http://dx.doi.org/10.1186/s12885-018-5130-y] [PMID: 30526546]
[70]
Weissenberger, J.; Priester, M.; Bernreuther, C.; Rakel, S.; Glatzel, M.; Seifert, V.; Kögel, D. Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway. Clin. Cancer Res., 2010, 16(23), 5781-5795.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0446] [PMID: 21138870]
[71]
Leng, L.; Zhong, X.; Sun, G.; Qiu, W.; Shi, L. Demethoxycurcumin was superior to temozolomide in the inhibition of the growth of glioblastoma stem cells in vivo. Tumour Biol., 2016, 37(12), 15847-15857.
[http://dx.doi.org/10.1007/s13277-016-5399-x] [PMID: 27757851]
[72]
Bharti, A.C.; Donato, N.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol., 2003, 171(7), 3863-3871.
[http://dx.doi.org/10.4049/jimmunol.171.7.3863] [PMID: 14500688]
[73]
Chen, J.; Wang, F.L.; Chen, W.D. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol. Biol. Rep., 2014, 41(7), 4583-4594.
[http://dx.doi.org/10.1007/s11033-014-3329-9] [PMID: 24604727]
[74]
Tang, L.; Liu, J.; Zhu, L.; Chen, Q.; Meng, Z.; Sun, L.; Hu, J.; Ni, Z.; Wang, X. Curcumin inhibits growth of human NCI-H292 lung squamous cell carcinoma cells by increasing FOXA2 expression. Front. Pharmacol., 2018, 9(FEB), 60.
[http://dx.doi.org/10.3389/fphar.2018.00060] [PMID: 29456509]
[75]
Alexandrow, M.G.; Song, L.J.; Altiok, S.; Gray, J.; Haura, E.B.; Kumar, N.B. Curcumin. Eur. J. Cancer Prev., 2012, 21(5), 407-412.
[http://dx.doi.org/10.1097/CEJ.0b013e32834ef194] [PMID: 22156994]
[76]
Hu, A.; Huang, J.J.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Xu, W.H.; Sun, G.B. Curcumin suppresses invasiveness and vasculogenic mimicry of squamous cell carcinoma of the larynx through the inhibition of JAK-2/STAT-3 signaling pathway. Am. J. Cancer Res., 2014, 5(1), 278-288.
[PMID: 25628937]
[77]
Selvendiran, K.; Tong, L.; Bratasz, A.; Kuppusamy, M.L.; Ahmed, S.; Ravi, Y.; Trigg, N.J.; Rivera, B.K.; Kálai, T.; Hideg, K.; Kuppusamy, P. Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts. Mol. Cancer Ther., 2010, 9(5), 1169-1179.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1207] [PMID: 20442315]
[78]
Pan, Y.; Sun, Y.; Liu, Z.; Zhang, C. miR-192-5p upregulation mediates the suppression of curcumin in human NSCLC cell proliferation, migration and invasion by targeting c-Myc and inactivating the Wnt/β-catenin signaling pathway. Mol. Med. Rep., 2020, 22(2), 1594-1604.
[http://dx.doi.org/10.3892/mmr.2020.11213] [PMID: 32626956]
[79]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[80]
Li, B.; Shi, C.; Li, B.; Zhao, J.M.; Wang, L. The effects of curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J. Cell. Biochem., 2018, 119(4), 3091-3098.
[http://dx.doi.org/10.1002/jcb.26449] [PMID: 29058812]
[81]
Ryu, M.J.; Cho, M.; Song, J.Y.; Yun, Y.S.; Choi, I.W.; Kim, D.E.; Park, B.S.; Oh, S. Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem. Biophys. Res. Commun., 2008, 377(4), 1304-1308.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.171] [PMID: 19000900]
[82]
Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[83]
Prasad, C.P.; Rath, G.; Mathur, S.; Bhatnagar, D.; Ralhan, R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chem. Biol. Interact., 2009, 181(2), 263-271.
[http://dx.doi.org/10.1016/j.cbi.2009.06.012] [PMID: 19573523]
[84]
Leow, P.C.; Tian, Q.; Ong, Z.Y.; Yang, Z.; Ee, P.L.R. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest. New Drugs, 2010, 28(6), 766-782.
[http://dx.doi.org/10.1007/s10637-009-9311-z] [PMID: 19730790]
[85]
He, M.; Li, Y.U.; Zhang, L.I.; Li, L.; Shen, Y.I.; Lin, L.; Zheng, W.; Chen, L.I.; Bian, X.; Ng, H.K.; Tang, L.I. Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol. Rep., 2014, 32(1), 173-180.
[http://dx.doi.org/10.3892/or.2014.3206] [PMID: 24858998]
[86]
Yan, C.; Jamaluddin, M.S.; Aggarwal, B.; Myers, J.; Boyd, D.D. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol. Cancer Ther., 2005, 4(2), 233-241.
[http://dx.doi.org/10.1158/1535-7163.233.4.2] [PMID: 15713895]
[87]
Qian, C.; Wang, B.; Zou, Y.; Zhang, Y.; Hu, X.; Sun, W.; Xiao, H.; Liu, H.; Shi, L. MicroRNA 145 enhances chemosensitivity of glioblastoma stem cells to demethoxycurcumin. Cancer Manag. Res., 2019, 11, 6829-6840.
[http://dx.doi.org/10.2147/CMAR.S210076] [PMID: 31440081]
[88]
Zheng, R.; Deng, Q.; Liu, Y.; Zhao, P. Curcumin inhibits gastric carcinoma cell growth and induces apoptosis by suppressing the Wnt/β-Catenin signaling pathway. Med. Sci. Monit., 2017, 23, 163-171.
[http://dx.doi.org/10.12659/MSM.902711] [PMID: 28077837]
[89]
Kim, H.J.; Park, S.Y.; Park, O.J.; Kim, Y.M. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol. Med. Rep., 2013, 8(1), 282-286.
[http://dx.doi.org/10.3892/mmr.2013.1497] [PMID: 23723038]
[90]
Leichter, A.L.; Sullivan, M.J.; Eccles, M.R.; Chatterjee, A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol. Cancer, 2017, 16(1), 15.
[http://dx.doi.org/10.1186/s12943-017-0584-0] [PMID: 28103887]
[91]
Zang, H.; Peng, J.; Wang, W.; Fan, S. Roles of microRNAs in the resistance to platinum based chemotherapy in the non-small cell lung cancer. J. Cancer, 2017, 8(18), 3856-3861.
[http://dx.doi.org/10.7150/jca.21267] [PMID: 29151973]
[92]
Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a microRNA regulator in cancer: A review. Rev. Physiol. Biochem. Pharmacol., 2016, 171, 1-38.
[http://dx.doi.org/10.1007/112_2016_3] [PMID: 27457236]
[93]
Du, Z.; Sha, X. Demethoxycurcumin inhibited human epithelia ovarian cancer cells’ growth via up-regulating miR-551a. Tumour Biol., 2017, 39(3), 1010428317694302.
[http://dx.doi.org/10.1177/1010428317694302] [PMID: 28345465]
[94]
Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K.R.; Harris, D.H.; Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther., 2008, 7(3), 464-473.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2272] [PMID: 18347134]
[95]
Ali, S.; Ahmad, A.; Banerjee, S.; Padhye, S.; Dominiak, K.; Schaffert, J.M.; Wang, Z.; Philip, P.A.; Sarkar, F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res., 2010, 70(9), 3606-3617.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4598] [PMID: 20388782]
[96]
Wang, H.; Cai, X.; Ma, L. Curcumin modifies epithelial–mesenchymal transition in colorectal cancer through regulation of mir-200c/epm5. Cancer Manag. Res., 2020, 12, 9405-9415.
[http://dx.doi.org/10.2147/CMAR.S260129] [PMID: 33061628]
[97]
Pan, L.; Sha, J.; Lin, W.; Wang, Y.; Bian, T.; Guo, J. Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis. Exp. Ther. Med., 2021, 22(3), 969.
[http://dx.doi.org/10.3892/etm.2021.10401] [PMID: 34335911]
[98]
Yang, C.H.; Yue, J.; Sims, M.; Pfeffer, L.M. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One, 2013, 8(8), e71130.
[http://dx.doi.org/10.1371/journal.pone.0071130] [PMID: 23940701]
[99]
Dahmke, I.N.; Backes, C.; Rudzitis-Auth, J.; Laschke, M.W.; Leidinger, P.; Menger, M.D.; Meese, E.; Mahlknecht, U. Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS One, 2013, 8(12), e81122.
[http://dx.doi.org/10.1371/journal.pone.0081122] [PMID: 24349037]
[100]
Zhang, J.; Zhang, T.; Ti, X.; Shi, J.; Wu, C.; Ren, X.; Yin, H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem. Biophys. Res. Commun., 2010, 399(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.013] [PMID: 20627087]
[101]
Saini, S.; Arora, S.; Majid, S.; Shahryari, V.; Chen, Y.; Deng, G.; Yamamura, S.; Ueno, K.; Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila.), 2011, 4(10), 1698-1709.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0267] [PMID: 21836020]
[102]
Yu, D.; An, F.; He, X.; Cao, X. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14946-14952.
[PMID: 26823826]
[103]
Zamani, M.; Sadeghizadeh, M.; Behmanesh, M.; Najafi, F. Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine, 2015, 22(10), 961-967.
[http://dx.doi.org/10.1016/j.phymed.2015.05.071] [PMID: 26321746]
[104]
Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmohamed, M.; Gescher, A.J.; Steward, W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[105]
Garcea, G.; Berry, D.P.; Jones, D.J.L.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 120-125.
[http://dx.doi.org/10.1158/1055-9965.120.14.1] [PMID: 15668484]
[106]
He, Z.Y.; Shi, C.B.; Wen, H.; Li, F.L.; Wang, B.L.; Wang, J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest., 2011, 29(3), 208-213.
[http://dx.doi.org/10.3109/07357907.2010.550592] [PMID: 21314329]
[107]
Plummer, S.M.; Hill, K.A.; Festing, M.F.; Steward, W.P.; Gescher, A.J.; Sharma, R.A. Clinical development of leukocyte cyclooxygenase 2 activity as a systemic biomarker for cancer chemopreventive agents. Cancer Epidemiol. Biomarkers Prev., 2001, 10(12), 1295-1299.
[PMID: 11751448]
[108]
Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L., Jr; Brenner, D.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila.), 2011, 4(3), 354-364.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0098] [PMID: 21372035]
[109]
Irving, G.R.B.; Howells, L.M.; Sale, S.; Kralj-Hans, I.; Atkin, W.S.; Clark, S.K.; Britton, R.G.; Jones, D.J.L.; Scott, E.N.; Berry, D.P.; Hemingway, D.; Miller, A.S.; Brown, K.; Gescher, A.J.; Steward, W.P. Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration-a clinical pilot study including assessment of patient acceptability. Cancer Prev. Res. (Phila.), 2013, 6(2), 119-128.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0281] [PMID: 23233733]
[110]
Cruz-Correa, M.; Shoskes, D.A.; Sanchez, P.; Zhao, R.; Hylind, L.M.; Wexner, S.D.; Giardiello, F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol., 2006, 4(8), 1035-1038.
[http://dx.doi.org/10.1016/j.cgh.2006.03.020] [PMID: 16757216]
[111]
Cruz-Correa, M.; Hylind, L.M.; Marrero, J.H.; Zahurak, M.L.; Murray-Stewart, T.; Casero, R.A., Jr; Montgomery, E.A.; Iacobuzio-Donahue, C.; Brosens, L.A.; Offerhaus, G.J.; Umar, A.; Rodriguez, L.M.; Giardiello, F.M. Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology, 2018, 155(3), 668-673.
[http://dx.doi.org/10.1053/j.gastro.2018.05.031] [PMID: 29802852]
[112]
Bayet-Robert, M.; Kwiatowski, F.; Leheurteur, M.; Gachon, F.; Planchat, E.; Abrial, C.; Mouret-Reynier, M.A.; Durando, X.; Barthomeuf, C.; Chollet, P. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther., 2010, 9(1), 8-14.
[http://dx.doi.org/10.4161/cbt.9.1.10392] [PMID: 19901561]
[113]
Hejazi, J.; Rastmanesh, R.; Taleban, F.A.; Molana, S.H.; Hejazi, E.; Ehtejab, G.; Hara, N. Effect of curcumin supplementation during radiotherapy on oxidative status of patients with prostate cancer: a double blinded, randomized, placebo-controlled study. Nutr. Cancer, 2016, 68(1), 77-85.
[http://dx.doi.org/10.1080/01635581.2016.1115527] [PMID: 26771294]
[114]
Ide, H.; Tokiwa, S.; Sakamaki, K.; Nishio, K.; Isotani, S.; Muto, S.; Hama, T.; Masuda, H.; Horie, S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate, 2010, 70(10), 1127-1133.
[http://dx.doi.org/10.1002/pros.21147] [PMID: 20503397]
[115]
Ledda, A.; Belcaro, G.; Dugall, M.; Luzzi, R.; Scoccianti, M.; Togni, S.; Appendino, G.; Ciammaichella, G. Meriva®, a lecithinized curcumin delivery system, in the control of benign prostatic hyperplasia: a pilot, product evaluation registry study. Panminerva Med., 2012, 54(1)(Suppl. 4), 17-22.
[PMID: 23241931]
[116]
Elad, S.; Meidan, I.; Sellam, G.; Simaan, S.; Zeevi, I.; Waldman, E.; Weintraub, M.; Revel-Vilk, S. Topical curcumin for the prevention of oral mucositis in pediatric patients: case series. Altern. Ther. Health Med., 2013, 19(3), 21-24.
[PMID: 23709456]
[117]
Kim, S.G.; Veena, M.S.; Basak, S.K.; Han, E.; Tajima, T.; Gjertson, D.W.; Starr, J.; Eidelman, O.; Pollard, H.B.; Srivastava, M.; Srivatsan, E.S.; Wang, M.B. Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: a pilot study. Clin. Cancer Res., 2011, 17(18), 5953-5961.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1272] [PMID: 21821700]
[118]
Santos Filho, E.X.; Arantes, D.A.C.; Oton Leite, A.F.; Batista, A.C.; Mendonça, E.F.; Marreto, R.N.; Naves, L.N.; Lima, E.M.; Valadares, M.C. Randomized clinical trial of a mucoadhesive formulation containing curcuminoids (Zingiberaceae) and Bidens pilosa Linn (Asteraceae) extract (FITOPROT) for prevention and treatment of oral mucositis - phase I study. Chem. Biol. Interact., 2018, 291, 228-236.
[http://dx.doi.org/10.1016/j.cbi.2018.06.010] [PMID: 29906455]
[119]
Arantes, D.A.C.; Silva, A.C.G.; Freitas, N.M.A.; Lima, E.M.; Oliveira, A.C.; Marreto, R.N.; Mendonça, E.F.; Valadares, M.C. Safety and efficacy of a mucoadhesive phytomedication containing curcuminoids and Bidens pilosa L. extract in the prevention and treatment of radiochemotherapy-induced oral mucositis: Triple-blind, randomized, placebo-controlled, clinical trial. Head Neck, 2021, 43(12), 3922-3934.
[http://dx.doi.org/10.1002/hed.26892] [PMID: 34655135]
[120]
Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14(14), 4491-4499.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[121]
Epelbaum, R.; Schaffer, M.; Vizel, B.; Badmaev, V.; Bar-Sela, G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr. Cancer, 2010, 62(8), 1137-1141.
[http://dx.doi.org/10.1080/01635581.2010.513802] [PMID: 21058202]
[122]
Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; Rainato, G.; Gion, M.; Ursini, F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res., 2018, 132, 72-79.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[123]
Purpura, M.; Lowery, R.P.; Wilson, J.M.; Mannan, H.; Münch, G.; Razmovski-Naumovski, V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur. J. Nutr., 2018, 57(3), 929-938.
[http://dx.doi.org/10.1007/s00394-016-1376-9] [PMID: 28204880]
[124]
Sri Ramya, P.V.; Angapelly, S.; Guntuku, L.; Singh Digwal, C.; Nagendra Babu, B.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2017, 127, 100-114.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.043] [PMID: 28038323]
[125]
Rahimi, H.R.; Nedaeinia, R.; Sepehri Shamloo, A.; Nikdoust, S.; Kazemi Oskuee, R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed., 2016, 6(4), 383-398.
[PMID: 27516979]
[126]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[127]
Puneeth, H.R.; Ananda, H.; Kumar, K.S.S.; Rangappa, K.S.; Sharada, A.C. Synthesis and antiproliferative studies of curcumin pyrazole derivatives. Med. Chem. Res., 2016, 25(9), 1842-1851.
[http://dx.doi.org/10.1007/s00044-016-1628-5]
[128]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Gupta, R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J., 2017, 19(6), 1691-1702.
[http://dx.doi.org/10.1208/s12248-017-0154-9] [PMID: 29047044]
[129]
Djurfeldt, M.; Hjorth, J.; Eppler, J.M.; Dudani, N.; Helias, M.; Potjans, T.C.; Bhalla, U.S.; Diesmann, M.; Hellgren Kotaleski, J.; Ekeberg, Ö. Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics, 2010, 8(1), 43-60.
[http://dx.doi.org/10.1007/s12021-010-9064-z] [PMID: 20195795]
[130]
Bachmeier, B.E.; Mohrenz, I.V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Höhneke, C.; Jochum, M.; Nerlich, A.G.; Pfeffer, U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis, 2008, 29(4), 779-789.
[http://dx.doi.org/10.1093/carcin/bgm248] [PMID: 17999991]
[131]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[132]
Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; Hasegawa, K.; Morimoto, T. Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull., 2011, 34(5), 660-665.
[http://dx.doi.org/10.1248/bpb.34.660] [PMID: 21532153]
[133]
Kanai, M.; Imaizumi, A.; Otsuka, Y.; Sasaki, H.; Hashiguchi, M.; Tsujiko, K.; Matsumoto, S.; Ishiguro, H.; Chiba, T. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol., 2012, 69(1), 65-70.
[http://dx.doi.org/10.1007/s00280-011-1673-1] [PMID: 21603867]
[134]
Sunagawa, Y.; Hirano, S.; Katanasaka, Y.; Miyazaki, Y.; Funamoto, M.; Okamura, N.; Hojo, Y.; Suzuki, H.; Doi, O.; Yokoji, T.; Morimoto, E.; Takahashi, T.; Ozawa, H.; Imaizumi, A.; Ueno, M.; Kakeya, H.; Shimatsu, A.; Wada, H.; Hasegawa, K.; Morimoto, T. Colloidal submicron-particle curcumin exhibits high absorption efficiency-a double-blind, 3-way crossover study. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61(1), 37-44.
[http://dx.doi.org/10.3177/jnsv.61.37] [PMID: 25994138]
[135]
Morimoto, T.; Sunagawa, Y.; Katanasaka, Y.; Hirano, S.; Namiki, M.; Watanabe, Y.; Suzuki, H.; Doi, O.; Suzuki, K.; Yamauchi, M.; Yokoji, T.; Miyoshi-Morimoto, E.; Otsuka, Y.; Hamada, T.; Imaizumi, A.; Nonaka, Y.; Fuwa, T.; Teramoto, T.; Kakeya, H.; Wada, H.; Hasegawa, K. Drinkable preparation of Theracurmin exhibits high absorption efficiency-a single-dose, double-blind, 4-way crossover study. Biol. Pharm. Bull., 2013, 36(11), 1708-1714.
[http://dx.doi.org/10.1248/bpb.b13-00150] [PMID: 24189415]
[136]
Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1411-1417.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[137]
Volak, L.P.; Hanley, M.J.; Masse, G.; Hazarika, S.; Harmatz, J.S.; Badmaev, V.; Majeed, M.; Greenblatt, D.J.; Court, M.H. Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br. J. Clin. Pharmacol., 2013, 75(2), 450-462.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04364.x] [PMID: 22725836]
[138]
Jäger, R.; Lowery, R.P.; Calvanese, A.V.; Joy, J.M.; Purpura, M.; Wilson, J.M. Comparative absorption of curcumin formulations. Nutr. J., 2014, 13(1), 11.
[http://dx.doi.org/10.1186/1475-2891-13-11] [PMID: 24461029]
[139]
Gopi, S.; Jacob, J.; Varma, K.; Jude, S.; Amalraj, A.; Arundhathy, C.A.; George, R.; Sreeraj, T.R.; Divya, C.; Kunnumakkara, A.B.; Stohs, S.J. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Phytother. Res., 2017, 31(12), 1883-1891.
[http://dx.doi.org/10.1002/ptr.5931] [PMID: 29027274]
[140]
Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res., 2014, 58(3), 516-527.
[http://dx.doi.org/10.1002/mnfr.201300724] [PMID: 24402825]
[141]
Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci., 2006, 92(1), 5-22.
[http://dx.doi.org/10.1093/toxsci/kfj130] [PMID: 16484287]
[142]
Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49.
[http://dx.doi.org/10.1002/smll.200700595]
[143]
Medina, C.; Santos-Martinez, M.J.; Radomski, A.; Corrigan, O.I.; Radomski, M.W. Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol., 2007, 150(5), 552-558.
[http://dx.doi.org/10.1038/sj.bjp.0707130] [PMID: 17245366]
[144]
Bansal, S.S.; Kausar, H.; Aqil, F.; Jeyabalan, J.; Vadhanam, M.V.; Gupta, R.C.; Ravoori, S. Curcumin implants for continuous systemic delivery: safety and biocompatibility. Drug Deliv. Transl. Res., 2011, 1(4), 332-341.
[http://dx.doi.org/10.1007/s13346-011-0028-0] [PMID: 25788367]
[145]
Kocher, A.; Bohnert, L.; Schiborr, C.; Frank, J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Mol. Nutr. Food Res., 2016, 60(7), 1555-1563.
[http://dx.doi.org/10.1002/mnfr.201501034] [PMID: 26909743]
[146]
Wang, K.; Qiu, F. Curcuminoid metabolism and its contribution to the pharmacological effects. Curr. Drug Metab., 2013, 14(7), 791-806.
[http://dx.doi.org/10.2174/13892002113149990102] [PMID: 23937173]
[147]
Naito, M.; Wu, X.; Nomura, H.; Kodama, M.; Kato, Y.; Kato, Y.; Osawa, T. The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J. Atheroscler. Thromb., 2002, 9(5), 243-250.
[http://dx.doi.org/10.5551/jat.9.243] [PMID: 12409634]
[148]
Gao, Y.; Li, J.; Wu, L.; Zhou, C.; Wang, Q.; Li, X.; Zhou, M.; Wang, H. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: autophagy and the PI3K/AKT pathways as a potential mechanism. J. Surg. Res., 2016, 206(1), 67-76.
[http://dx.doi.org/10.1016/j.jss.2016.07.014] [PMID: 27916377]
[149]
Murugan, P.; Pari, L. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(2), 122-127.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_447.x] [PMID: 16918712]
[150]
Pari, L.; Murugan, P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren. Fail., 2007, 29(7), 881-889.
[http://dx.doi.org/10.1080/08860220701540326] [PMID: 17994458]
[151]
Vijaya Saradhi, U.V.R.; Ling, Y.; Wang, J.; Chiu, M.; Schwartz, E.B.; Fuchs, J.R.; Chan, K.K.; Liu, Z. A liquid chromatography–tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(30), 3045-3051.
[http://dx.doi.org/10.1016/j.jchromb.2010.08.039] [PMID: 20934924]
[152]
Yu, Q.; Liu, Y.; Wu, Y.; Chen, Y. Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells. Biomed. Pharmacother., 2018, 103, 1327-1336.
[http://dx.doi.org/10.1016/j.biopha.2018.04.143] [PMID: 29864915]
[153]
Gota, V.S.; Maru, G.B.; Soni, T.G.; Gandhi, T.R.; Kochar, N.; Agarwal, M.G. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem., 2010, 58(4), 2095-2099.
[http://dx.doi.org/10.1021/jf9024807] [PMID: 20092313]
[154]
Garcea, G.; Jones, D.J.L.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J.; Berry, D.P. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer, 2004, 90(5), 1011-1015.
[http://dx.doi.org/10.1038/sj.bjc.6601623] [PMID: 14997198]
[155]
Madhavi, D.; Kagan, D. Bioavailability of a sustained release formulation of curcumin. Integr. Med. (Encinitas), 2014, 13(3), 24-30.
[PMID: 26770097]
[156]
Sharma, R.A.; McLelland, H.R.; Hill, K.A.; Ireson, C.R.; Euden, S.A.; Manson, M.M.; Pirmohamed, M.; Marnett, L.J.; Gescher, A.J.; Steward, W.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res., 2001, 7(7), 1894-1900.
[PMID: 11448902]
[157]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6(1), 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[158]
Antony, B.; Merina, B.; Iyer, V.S.; Judy, N.; Lennertz, K.; Joyal, S. A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (BiocurcumaxTM ), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci., 2008, 70(4), 445-449.
[http://dx.doi.org/10.4103/0250-474X.44591] [PMID: 20046768]
[159]
Im, K.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods, 2012, 4(1), 348-357.
[http://dx.doi.org/10.1016/j.jff.2012.01.004]
[160]
Cuomo, J.; Appendino, G.; Dern, A.S.; Schneider, E.; McKinnon, T.P.; Brown, M.J.; Togni, S.; Dixon, B.M. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod., 2011, 74(4), 664-669.
[http://dx.doi.org/10.1021/np1007262] [PMID: 21413691]
[161]
Basnet, P.; Skalko-Basnet, N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[162]
Asher, G.N.; Spelman, K. Clinical utility of curcumin extract. Altern. Ther. Health Med., 2013, 19(2), 20-22.
[PMID: 23594449]
[163]
Panahi, Y.; Saadat, A.; Beiraghdar, F.; Hosseini Nouzari, S.M.; Jalalian, H.R.; Sahebkar, A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: A randomized double-blind placebo-controlled trial. J. Funct. Foods, 2014, 6, 615-622.
[http://dx.doi.org/10.1016/j.jff.2013.12.008]
[164]
Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res., 2013, 180(1), 34-43.
[http://dx.doi.org/10.1667/RR3255.1] [PMID: 23745991]
[165]
Molana, S.-H. A pilot clinical trial of radioprotective effects of curcumin supplementation in patients with prostate cancer. Int. J. Cancer. Sci. Ther., 2013, 5(10), 320-324.
[http://dx.doi.org/10.4172/1948-5956.1000222]
[166]
Ganiger, S.; Malleshappa, H.N.; Krishnappa, H.; Rajashekhar, G.; Ramakrishna Rao, V.; Sullivan, F. A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem. Toxicol., 2007, 45(1), 64-69.
[http://dx.doi.org/10.1016/j.fct.2006.07.016] [PMID: 16987575]
[167]
Sahebkar, A.; Henrotin, Y. Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med., 2016, 17(6), 1192-1202.
[PMID: 26814259]
[168]
Lamb, S.R.; Wilkinson, S.M. Contact allergy to tetrahydrocurcumin. Contact Dermat., 2003, 48(4), 227-227.
[http://dx.doi.org/10.1034/j.1600-0536.2003.00062.x] [PMID: 12786734]
[169]
Hsu, C.-H.; Cheng, A.-L. The molecular targets and therapeutic uses of curcumin in health and disease. Adv. Exp. Med. Biol., 2007, 471-480.
[http://dx.doi.org/10.1007/978-0-387-46401-5_21]
[170]
Cao, J.; Jia, L.; Zhou, H.M.; Liu, Y.; Zhong, L.F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol. Sci., 2006, 91(2), 476-483.
[http://dx.doi.org/10.1093/toxsci/kfj153] [PMID: 16537656]
[171]
DiSilvestro, R.A.; Joseph, E.; Zhao, S.; Bomser, J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J., 2012, 11(1), 79.
[http://dx.doi.org/10.1186/1475-2891-11-79] [PMID: 23013352]
[172]
Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Efficacy and safety of combination of curcuminoid complex and diclofenac versus diclofenac in knee osteoarthritis. Medicine, 2020, 99(16), e19723.
[http://dx.doi.org/10.1097/MD.0000000000019723] [PMID: 32311961]
[173]
Wang, Z.; Sun, W.; Huang, C.K.; Wang, L.; ia, M-M.; Cui, X.; Hu, G.X.; Wang, Z.S. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes. Drug Dev. Ind. Pharm., 2015, 41(4), 613-616.
[http://dx.doi.org/10.3109/03639045.2014.886697] [PMID: 24517573]
[174]
Babu, P.S.; Srinivasan, K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol. Cell. Biochem., 1997, 166(1/2), 169-175.
[http://dx.doi.org/10.1023/A:1006819605211] [PMID: 9046034]
[175]
Fan, C.; Wo, X.; Qian, Y.; Yin, J.; Gao, L. Effect of curcumin on the expression of LDL receptor in mouse macrophages. J. Ethnopharmacol., 2006, 105(1-2), 251-254.
[http://dx.doi.org/10.1016/j.jep.2005.11.009] [PMID: 16406419]
[176]
Kim, D.C.; Kim, S.H.; Choi, B.H.; Baek, N.I.; Kim, D.; Kim, M.J.; Kim, K.T. Curcuma longa extract protects against gastric ulcers by blocking H2 histamine receptors. Biol. Pharm. Bull., 2005, 28(12), 2220-2224.
[http://dx.doi.org/10.1248/bpb.28.2220] [PMID: 16327153]
[177]
Imam, Z. Drug induced liver injury attributed to a curcumin supplement. Case Rep. Gastroenterol., 2019.
[http://dx.doi.org/10.1155/2019/6029403]
[178]
Borsari, M.; Ferrari, E.; Grandi, R.; Saladini, M. Curcuminoids as potential new iron-chelating agents: spectroscopic, polarographic and potentiometric study on their Fe(III) complexing ability. Inorg. Chim. Acta, 2002, 328(1), 61-68.
[http://dx.doi.org/10.1016/S0020-1693(01)00687-9]
[179]
Jiao, Y.; Wilkinson, J., IV; Di, X.; Wang, W.; Hatcher, H.; Kock, N.D.; D’Agostino, R., Jr; Knovich, M.A.; Torti, F.M.; Torti, S.V. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood, 2009, 113(2), 462-469.
[http://dx.doi.org/10.1182/blood-2008-05-155952] [PMID: 18815282]
[180]
Vijayalaxmi B. Genetic effects of turmeric and curcumin in mice and rats. Mutat. Res. Genet. Toxicol. Test., 1980, 79(2), 125-132.
[http://dx.doi.org/10.1016/0165-1218(80)90080-4] [PMID: 7432370]
[181]
Abraham, S.K.; Kesavan, P. Genotoxicity of garlic, turmeric and asafoetida in mice. Mutat Res, 1984, 136(1), 85-88.
[http://dx.doi.org/10.1016/0165-1218(84)90138-1]
[182]
Kim, D.C.; Ku, S.K.; Bae, J.S. Anticoagulant activities of curcumin and its derivative. BMB Rep., 2012, 45(4), 221-226.
[http://dx.doi.org/10.5483/BMBRep.2012.45.4.221] [PMID: 22531131]
[183]
Rasyid, A.; Lelo, A. The effect of curcumin and placebo on human gall-bladder function: an ultrasound study. Aliment. Pharmacol. Ther., 1999, 13(2), 245-249.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00464.x] [PMID: 10102956]
[184]
Rasyid, A.; Rahman, A.R.A.; Jaalam, K.; Lelo, A. Effect of different curcumin dosages on human gall bladder. Asia Pac. J. Clin. Nutr., 2002, 11(4), 314-318.
[http://dx.doi.org/10.1046/j.1440-6047.2002.00296.x] [PMID: 12495265]
[185]
Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy