Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy

Author(s): Chunmei Lai, Simin Lin, Wei Liu and Yanqiao Jin*

Volume 31, Issue 21, 2024

Published on: 26 June, 2023

Page: [3074 - 3092] Pages: 19

DOI: 10.2174/0929867330666230416153352

Price: $65

Open Access Journals Promotions 2
Abstract

Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.

Keywords: Chitosan, nanoparticles, targeted delivery, cancer treatment, nano-drug delivery systems (DDSs), biocompatibility.

[1]
Sohail, M.; Guo, W.; Li, Z.; Xu, H.; Zhao, F.; Chen, D.; Fu, F. Nanocarrier-based drug delivery system for cancer therapeutics: A review of the last decade. Curr. Med. Chem., 2021, 28(19), 3753-3772.
[http://dx.doi.org/10.2174/1875533XMTEwbNDMs2] [PMID: 33019919]
[2]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[3]
Klimpel, A.; Lützenburg, T.; Neundorf, I. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr. Opin. Pharmacol., 2019, 47, 8-13.
[http://dx.doi.org/10.1016/j.coph.2019.01.003] [PMID: 30771730]
[4]
Pedziwiatr-Werbicka, E.; Horodecka, K.; Shcharbin, D.; Bryszewska, M. Nanoparticles in combating cancer: Opportunities and limitations: A brief review. Curr. Med. Chem., 2021, 28(2), 346-359.
[http://dx.doi.org/10.2174/1875533XMTA0kMDkhw] [PMID: 32000637]
[5]
Yu, H.; He, J.; Lu, Q.; Huo, D.; Yuan, S.; Zhou, Z.; Xu, P.; Hu, Y. Anti-fas Antibody conjugated nanoparticles enhancing the antitumor effect of camptothecin by activating the fas–fasl apoptotic pathway. ACS Appl. Mater. Interfaces, 2016, 8(44), 29950-29959.
[http://dx.doi.org/10.1021/acsami.6b09760] [PMID: 27754664]
[6]
Liu, B.; Yang, Y.; Chao, Y.; Xiao, Z.; Xu, J.; Wang, C.; Dong, Z.; Hou, L.; Li, Q.; Liu, Z. Equipping cancer cell membrane vesicles with functional DNA as a targeted vaccine for cancer immunotherapy. Nano Lett., 2021, 21(22), 9410-9418.
[http://dx.doi.org/10.1021/acs.nanolett.1c02582] [PMID: 34730968]
[7]
Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[8]
Lee, J.; Lee, C.; Kim, T.H.; Lee, E.S.; Shin, B.S.; Chi, S.C.; Park, E.S.; Lee, K.C.; Youn, Y.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J. Control. Release, 2012, 161(3), 728-734.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.029] [PMID: 22634071]
[9]
Chen, G.; Svirskis, D.; Lu, W.; Ying, M.; Huang, Y.; Wen, J. N -trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N -trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J. Control. Release, 2018, 277, 142-153.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.013] [PMID: 29548985]
[10]
Ding, Y.; Lv, B.; Zheng, J.; Lu, C.; Liu, J.; Lei, Y.; Yang, M.; Wang, Y.; Li, Z.; Yang, Y.; Gong, W.; Han, J.; Gao, C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J. Control. Release, 2022, 341, 702-715.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.018] [PMID: 34933051]
[11]
Vikas; Viswanadh, M.K.; Mehata, A.K.; Sharma, V.; Priya, V.; Varshney, N.; Mahto, S.K.; Muthu, M.S. Bioadhesive chitosan nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr. Polym., 2021, 274, 118617.
[http://dx.doi.org/10.1016/j.carbpol.2021.118617]
[12]
Heydari, A.; Darroudi, M.; Lacík, I. Efficient N -sulfopropylation of chitosan with 1,3-propane sultone in aqueous solutions: Neutral pH as the key condition. React. Chem. Eng., 2021, 6(11), 2146-2158.
[http://dx.doi.org/10.1039/D1RE00089F]
[13]
Johari, M.A.; Azmi, A.S.; Jamaluddin, J.; Hasham, R.; Chee, C.F.; Ali, F. Comparison study between encapsulation of acalypha indica linn extracts with chitosan-PCL and chitosan-OA. 6th International Conference on Biotechnology Engineering (ICBioE 2021), 22nd-23rd June 2021 Kuala Lumpur, Malaysia 2021, pp. 012007.
[http://dx.doi.org/10.1088/1757-899X/1192/1/012007]
[14]
Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll., 2011, 25(2), 170-179.
[http://dx.doi.org/10.1016/j.foodhyd.2010.03.003]
[15]
Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 2018, 10(4), 462.
[http://dx.doi.org/10.3390/polym10040462] [PMID: 30966497]
[16]
Fathi, M.; Majidi, S.; Zangabad, P.S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med. Res. Rev., 2018, 38(6), 2110-2136.
[http://dx.doi.org/10.1002/med.21506] [PMID: 29846948]
[17]
Attaran Dowom, S.; Karimian, Z.; Mostafaei Dehnavi, M.; Samiei, L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol., 2022, 22(1), 364.
[http://dx.doi.org/10.1186/s12870-022-03689-4] [PMID: 35869431]
[18]
Holyavka, M.; Faizullin, D.; Koroleva, V.; Olshannikova, S.; Zakhartchenko, N.; Zuev, Y.; Kondratyev, M.; Zakharova, E.; Artyukhov, V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. Int. J. Biol. Macromol., 2021, 180, 161-176.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.016] [PMID: 33676977]
[19]
Wang, F.; Yang, S.; Yuan, J.; Gao, Q.; Huang, C. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J. Biomater. Appl., 2016, 31(1), 3-12.
[http://dx.doi.org/10.1177/0885328216648478] [PMID: 27164869]
[20]
Han, H.D.; Byeon, Y.; Jang, J.H.; Jeon, H.N.; Kim, G.H.; Kim, M.G.; Pack, C.G.; Kang, T.H.; Jung, I.D.; Lim, Y.T.; Lee, Y.J.; Lee, J.W.; Shin, B.C.; Ahn, H.J.; Sood, A.K.; Park, Y.M. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci. Rep., 2016, 6(1), 38348.
[http://dx.doi.org/10.1038/srep38348] [PMID: 27910914]
[21]
Anitha, A.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J. Biomed. Nanotechnol., 2012, 8(1), 29-42.
[http://dx.doi.org/10.1166/jbn.2012.1365] [PMID: 22515092]
[22]
Song, P.; Du, W.; Li, W.; Zhu, L.; Zhang, W.; Gao, X.; Tao, Y.; Ge, F. Preparation, characterization, and in vitro evaluation of amphiphilic peptide P12 and P12-DOX nanomicelles as antitumor drug carriers. Nanomater. Nanotechnol., 2020, 10
[http://dx.doi.org/10.1177/1847980420911519]
[23]
Liu, Q.; Li, B.; Li, Y.; Yang, X.; Qiao, C.; Hu, W.; Liu, M. Solution properties of N-(2-allyl-butyl ether)-O-carboxymethyl chitosan and N-(2-allyl-isooctyl ether)-O-carboxymethyl chitosan. Int. J. Biol. Macromol., 2021, 190, 93-100.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.208] [PMID: 34481851]
[24]
Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym., 2011, 83(2), 452-461.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.008]
[25]
Chen, L.; Tian, Z.; Du, Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004, 25(17), 3725-3732.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.100] [PMID: 15020148]
[26]
Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tokura, S.; Tamura, H.; Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 2010, 55(7), 675-709.
[http://dx.doi.org/10.1016/j.pmatsci.2010.03.001]
[27]
Mahmoudzadeh, M.; Fassihi, A.; Emami, J.; Davies, N.M.; Dorkoosh, F. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. J. Drug Target., 2013, 21(8), 693-709.
[http://dx.doi.org/10.3109/1061186X.2013.824455] [PMID: 23915108]
[28]
Xie, P.; Liu, P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydr. Polym., 2020, 236, 116093.
[http://dx.doi.org/10.1016/j.carbpol.2020.116093] [PMID: 32172895]
[29]
Su, Y.; Hu, Y.; Du, Y.; Huang, X.; He, J.; You, J.; Yuan, H.; Hu, F. Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol. Pharm., 2015, 12(4), 1193-1202.
[http://dx.doi.org/10.1021/mp500710x] [PMID: 25751168]
[30]
Sakloetsakun, D.; Iqbal, J.; Millotti, G.; Vetter, A.; Bernkop-Schnürch, A. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev. Ind. Pharm., 2011, 37(6), 648-655.
[http://dx.doi.org/10.3109/03639045.2010.534484] [PMID: 21561400]
[31]
Othman, N.; Masarudin, M.J.; Kuen, C.Y.; Dasuan, N.A.; Abdullah, L.C.; Md Jamil, S.N.A. S.N.A. Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials, 2018, 8(11), 920.
[http://dx.doi.org/10.3390/nano8110920] [PMID: 30405074]
[32]
Yu, B.; Zhang, Y.; Zheng, W.; Fan, C.; Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem., 2012, 51(16), 8956-8963.
[http://dx.doi.org/10.1021/ic301050v] [PMID: 22873404]
[33]
Tan, C.; Feng, B.; Zhang, X.; Xia, W.; Xia, S. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll., 2016, 52, 774-784.
[http://dx.doi.org/10.1016/j.foodhyd.2015.08.016]
[34]
Hassani Najafabadi, A.; Abdouss, M.; Faghihi, S. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen. Mater. Sci. Eng. C, 2014, 41, 91-99.
[http://dx.doi.org/10.1016/j.msec.2014.04.035] [PMID: 24907742]
[35]
Gabriele, F.; Donnadio, A.; Casciola, M.; Germani, R.; Spreti, N. Ionic and covalent crosslinking in chitosan-succinic acid membranes: Effect on physicochemical properties. Carbohydr. Polym., 2021, 251, 117106.
[http://dx.doi.org/10.1016/j.carbpol.2020.117106] [PMID: 33142643]
[36]
Liu, J.; Yu, S.; Qu, W.; Jin, Z.; Zhao, K. Self-assembly of soluble chitosan derivatives nanoparticles for vaccine: synthesis, characterization and evaluation. Polymers, 2021, 13(23), 4097.
[http://dx.doi.org/10.3390/polym13234097] [PMID: 34883601]
[37]
Nguyen, G.H.; Le, X.T. Palmarosa essential oil encapsulated in chitosan nanoparticles by ionotropic gelation: Formulation and characterization. The 5th International Conference on Chemical Engineering, Food and Biotechnology (ICCFB 2021), 4th-5th November 2021 Ho Chi Minh City, Viet Nam 2021, pp. 012002.
[http://dx.doi.org/10.1088/1755-1315/947/1/012002]
[38]
Özkahraman, B.; Tamahkar, E.; İdil, N.; Kılıç Suloglu, A.; Perçin, I. Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release. Drug Dev. Res., 2021, 82(2), 241-250.
[http://dx.doi.org/10.1002/ddr.21747] [PMID: 33009868]
[39]
Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 2018, 8(14), 7533-7549.
[http://dx.doi.org/10.1039/C7RA13510F] [PMID: 35539132]
[40]
Zhang, Y.; Yu, J.; Ren, K.; Zuo, J.; Ding, J.; Chen, X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules, 2019, 20(4), 1478-1492.
[http://dx.doi.org/10.1021/acs.biomac.9b00043] [PMID: 30843390]
[41]
Qiao, Z.; Lv, X.; He, S.; Bai, S.; Liu, X.; Hou, L.; He, J.; Tong, D.; Ruan, R.; Zhang, J.; Ding, J.; Yang, H. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioact. Mater., 2021, 6(9), 2829-2840.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.039] [PMID: 33718665]
[42]
Wang, H.; Mu, Q.; Revia, R.; Wang, K.; Zhou, X.; Pauzauskie, P.J.; Zhou, S.; Zhang, M. Chitosan-gated magnetic-responsive nanocarrier for dual-modal optical imaging, switchable drug release, and synergistic therapy. Adv. Healthc. Mater., 2017, 6(6), 1601080.
[http://dx.doi.org/10.1002/adhm.201601080] [PMID: 28121065]
[43]
Tian, H.; He, Z.; Sun, C.; Yang, C.; Zhao, P.; Liu, L.; Leong, K.W.; Mao, H.Q.; Liu, Z.; Chen, Y. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv. Healthc. Mater., 2018, 7(17), 1800285.
[http://dx.doi.org/10.1002/adhm.201800285] [PMID: 29984479]
[44]
Lee, J.Y.; Crake, C.; Teo, B.; Carugo, D.; de Saint Victor, M.; Seth, A.; Stride, E. Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv. Healthc. Mater., 2017, 6(8), 1601246.
[http://dx.doi.org/10.1002/adhm.201601246] [PMID: 28195673]
[45]
Luo, L.; Bian, Y.; Liu, Y.; Zhang, X.; Wang, M.; Xing, S.; Li, L.; Gao, D. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small, 2016, 12(30), 4103-4112.
[http://dx.doi.org/10.1002/smll.201503961] [PMID: 27294601]
[46]
Sun, J.Z.; Sun, Y.C.; Sun, L. Synthesis of surface modified Fe3O4 super paramagnetic nanoparticles for ultra sound examination and magnetic resonance imaging for cancer treatment. J. Photochem. Photobiol. B, 2019, 197, 111547.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111547] [PMID: 31325773]
[47]
Miguel, S.P.; Moreira, A.F.; Correia, I.J. Chitosan based-asymmetric membranes for wound healing: A review. Int. J. Biol. Macromol., 2019, 127, 460-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.072] [PMID: 30660567]
[48]
Ma, Q.; Lin, Z.H.; Yang, N.; Li, Y.; Su, X.G. A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater., 2014, 10(2), 868-874.
[http://dx.doi.org/10.1016/j.actbio.2013.10.039] [PMID: 24211611]
[49]
Tan, W.B.; Jiang, S.; Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28(8), 1565-1571.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.018] [PMID: 17161865]
[50]
Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6(7), 2732-2739.
[http://dx.doi.org/10.1016/j.actbio.2010.01.025] [PMID: 20100604]
[51]
Yu, W.; Yu, N.; Wang, Z.; Li, X.; Song, C.; Jiang, R.; Geng, P.; Li, M.; Yin, S.; Chen, Z. Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J. Colloid Interface Sci., 2019, 555, 480-488.
[http://dx.doi.org/10.1016/j.jcis.2019.08.001] [PMID: 31401480]
[52]
Thangam, R.; Sundarraj, S.; Vivek, R.; Suresh, V.; Sivasubramanian, S.; Paulpandi, M.; Karthick, S.V.; Ragavi, A.S.; Kannan, S. Theranostic potentials of multifunctional chitosan–silver–phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Advances, 2015, 5(16), 12209-12223.
[http://dx.doi.org/10.1039/C4RA14043E]
[53]
Zhu, H.; Liu, F.; Guo, J.; Xue, J.; Qian, Z.; Gu, Y. Folate-modified chitosan micelles with enhanced tumor targeting evaluated by near infrared imaging system. Carbohydr. Polym., 2011, 86(3), 1118-1129.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.061]
[54]
Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]
[55]
Wang, F.; Zhang, D.; Duan, C.; Jia, L.; Feng, F.; Liu, Y.; Wang, Y.; Hao, L.; Zhang, Q. Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and self-aggregates. Carbohydr. Polym., 2011, 84(3), 1192-1200.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.017]
[56]
Wang, F.; Chen, Y.; Zhang, D.; Zhang, Q.; Zheng, D.; Hao, L.; Liu, Y.; Duan, C.; Jia, L.; Liu, G. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int. J. Nanomedicine, 2012, 7, 325-337.
[PMID: 22287842]
[57]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[58]
Zhang, S.; Liu, Y.; Gan, Y.; Qiu, N.; Gu, Y.; Zhu, H. Conjugates of TAT and folate with DOX-loaded chitosan micelles offer effective intracellular delivery ability. Pharm. Dev. Technol., 2019, 24(2), 253-261.
[http://dx.doi.org/10.1080/10837450.2018.1469147] [PMID: 29688120]
[59]
Chen, H.P.; Chen, M.H.; Tung, F.I.; Liu, T.Y. A novel micelle-forming material used for preparing a theranostic vehicle exhibiting enhanced in vivo therapeutic efficacy. J. Med. Chem., 2015, 58(9), 3704-3719.
[http://dx.doi.org/10.1021/jm501996y] [PMID: 25933159]
[60]
Cheng, M.; Zhu, W.; Li, Q.; Dai, D.; Hou, Y. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer. Oncotarget, 2017, 8(35), 59068-59085.
[http://dx.doi.org/10.18632/oncotarget.19146] [PMID: 28938619]
[61]
Fujii, F. Semiconductor nanocrystals for biological imaging and fluorescence spectroscopy. Adv. Exp. Med. Biol., 2021, 1310, 449-473.
[http://dx.doi.org/10.1007/978-981-33-6064-8_16] [PMID: 33834445]
[62]
Twu, Y.K.; Chen, Y.W.; Shih, C.M. Preparation of silver nanoparticles using chitosan suspensions. Powder Technol., 2008, 185(3), 251-257.
[http://dx.doi.org/10.1016/j.powtec.2007.10.025]
[63]
Wahid, F.; Wang, H.S.; Zhong, C.; Chu, L.Q. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym., 2017, 165, 455-461.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.085] [PMID: 28363572]
[64]
Wahid, F.; Wang, H.S.; Lu, Y.S.; Zhong, C.; Chu, L.Q. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int. J. Biol. Macromol., 2017, 101, 690-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.132] [PMID: 28356237]
[65]
Wang, Z.; Dong, J.; Zhao, Q.; Ying, Y.; Zhang, L.; Zou, J.; Zhao, S.; Wang, J.; Zhao, Y.; Jiang, S. Gold nanoparticle-mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review). Mol. Med. Rep., 2020, 22(6), 4475-4484.
[http://dx.doi.org/10.3892/mmr.2020.11580] [PMID: 33173972]
[66]
Zhang, C.; Huang, P.; Bao, L.; He, M.; Luo, T.; Gao, G.; Cui, D. Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J. Nanosci. Nanotechnol., 2011, 11(11), 9528-9535.
[http://dx.doi.org/10.1166/jnn.2011.5318] [PMID: 22413242]
[67]
Sahoo, A.K.; Banerjee, S.; Ghosh, S.S.; Chattopadhyay, A. Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl. Mater. Interfaces, 2014, 6(1), 712-724.
[http://dx.doi.org/10.1021/am4051266] [PMID: 24281656]
[68]
Yan, E.; Cao, M.; Wang, Y.; Hao, X.; Pei, S.; Gao, J.; Wang, Y.; Zhang, Z.; Zhang, D. Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater. Sci. Eng. C, 2016, 58, 1090-1097.
[http://dx.doi.org/10.1016/j.msec.2015.09.080] [PMID: 26478408]
[69]
Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168-186.
[http://dx.doi.org/10.1002/adma.201203229] [PMID: 23161646]
[70]
Priya Swetha, P.D.; Manisha, H.; Sudhakaraprasad, K. Graphene and graphene-based materials in biomedical science. Part. Part. Syst. Charact., 2018, 35(8), 1800105.
[http://dx.doi.org/10.1002/ppsc.201800105]
[71]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[72]
Yim, Y.; Shin, H.; Ahn, S.M.; Min, D.H. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem. Commun., 2021, 57(77), 9820-9833.
[http://dx.doi.org/10.1039/D1CC02157E] [PMID: 34494621]
[73]
Fu, G.; Zhu, L.; Yang, K.; Zhuang, R.; Xie, J.; Zhang, F. Diffusion-weighted magnetic resonance imaging for therapy response monitoring and early treatment prediction of photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(8), 5137-5147.
[http://dx.doi.org/10.1021/acsami.5b11936] [PMID: 26845246]
[74]
Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218.
[http://dx.doi.org/10.1007/s12033-014-9816-3] [PMID: 25385004]
[75]
Prabaharan, M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol., 2015, 72, 1313-1322.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.052] [PMID: 25450550]
[76]
Kwon, I.K.; Lee, S.C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release, 2012, 164(2), 108-114.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.010] [PMID: 22800574]
[77]
Mushtaq, A.; Li, L.; A, A.; Grøndahl, L. Chitosan nanomedicine in cancer therapy: Targeted delivery and cellular uptake. Macromol. Biosci., 2021, 21(5), 2100005.
[http://dx.doi.org/10.1002/mabi.202100005] [PMID: 33738977]
[78]
Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113.
[http://dx.doi.org/10.1016/j.apradiso.2013.12.018] [PMID: 24462286]
[79]
Cheng, B.; Gao, F.; Maissy, E.; Xu, P. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater., 2019, 84, 378-390.
[http://dx.doi.org/10.1016/j.actbio.2018.12.010] [PMID: 30528604]
[80]
Fan, C.; Gao, W.; Chen, Z.; Fan, H.; Li, M.; Deng, F.; Chen, Z. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm., 2011, 404(1-2), 180-190.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.038] [PMID: 21087660]
[81]
Termsarasab, U.; Cho, H.J.; Kim, D.H.; Chong, S.; Chung, S.J.; Shim, C.K.; Moon, H.T.; Kim, D.D. Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int. J. Pharm., 2013, 441(1-2), 373-380.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.018] [PMID: 23174411]
[82]
Lee, J.Y.; Termsarasab, U.; Lee, M.Y.; Kim, D.H.; Lee, S.Y.; Kim, J.S.; Cho, H.J.; Kim, D.D. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery. Acta Biomater., 2017, 57, 262-273.
[http://dx.doi.org/10.1016/j.actbio.2017.05.012] [PMID: 28483700]
[83]
Muntimadugu, E.; Kommineni, N.; Khan, W. Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy. Pharmacol. Res., 2017, 126, 109-122.
[http://dx.doi.org/10.1016/j.phrs.2017.05.010] [PMID: 28511988]
[84]
Yhee, J.Y.; Jeon, S.; Yoon, H.Y.; Shim, M.K.; Ko, H.; Min, J.; Na, J.H.; Chang, H.; Han, H.; Kim, J.H.; Suh, M.; Lee, H.; Park, J.H.; Kim, K.; Kwon, I.C. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. J. Control. Release, 2017, 267, 223-231.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.015] [PMID: 28917532]
[85]
Alonso, M.J.; Garcia-Fuentes, M. Nano-Oncologicals: New Targeting and Delivery Approaches In: Advances in Delivery Science and Technology (ADST); Springer, 2014.
[86]
Vandghanooni, S.; Eskandani, M.; Barar, J.; Omidi, Y. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer. Eur. J. Pharm. Sci., 2018, 117, 301-312.
[http://dx.doi.org/10.1016/j.ejps.2018.02.027] [PMID: 29499349]
[87]
You, J.; Li, X.; de Cui, F.; Du, Y.Z.; Yuan, H.; Hu, F. Folate-conjugated polymer micelles for active targeting to cancer cells: Preparation, in vitro evaluation of targeting ability and cytotoxicity. Nanotechnology, 2008, 19(4), 045102.
[http://dx.doi.org/10.1088/0957-4484/19/04/045102] [PMID: 21817496]
[88]
Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem., 2020, 8, 286.
[http://dx.doi.org/10.3389/fchem.2020.00286] [PMID: 32391321]
[89]
Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28(3), 540-549.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.046] [PMID: 16999995]
[90]
Bhattacharya, D.; Das, M.; Mishra, D.; Banerjee, I.; Sahu, S.K.; Maiti, T.K.; Pramanik, P. Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: A novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale, 2011, 3(4), 1653-1662.
[http://dx.doi.org/10.1039/c0nr00821d] [PMID: 21331392]
[91]
Jana, D.; Jia, S.; Bindra, A.K.; Xing, P.; Ding, D.; Zhao, Y. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces, 2020, 12(16), 18342-18351.
[http://dx.doi.org/10.1021/acsami.0c02718] [PMID: 32223204]
[92]
Hu, Z.; Chen, J.; Zhou, S.; Yang, N.; Duan, S.; Zhang, Z.; Su, J.; He, J.; Zhang, Z.; Lu, X.; Zhao, Y. Mouse IP-10 Gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics, 2017, 7(7), 1942-1952.
[http://dx.doi.org/10.7150/thno.16236] [PMID: 28638480]
[93]
Menon, J.U.; Kuriakose, A.; Iyer, R.; Hernandez, E.; Gandee, L.; Zhang, S.; Takahashi, M.; Zhang, Z.; Saha, D.; Nguyen, K.T. Dual-drug containing core-shell nanoparticles for lung cancer therapy. Sci. Rep., 2017, 7(1), 13249.
[http://dx.doi.org/10.1038/s41598-017-13320-4] [PMID: 29038584]
[94]
Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Coukos, G.; Omidi, Y. Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J. Drug Target., 2013, 21(4), 328-340.
[http://dx.doi.org/10.3109/1061186X.2012.750325] [PMID: 23293842]
[95]
Johari-Ahar, M.; Barar, J.; Alizadeh, A.M.; Davaran, S.; Omidi, Y.; Rashidi, M.R. Methotrexate-conjugated quantum dots: Synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J. Drug Target., 2016, 24(2), 120-133.
[http://dx.doi.org/10.3109/1061186X.2015.1058801] [PMID: 26176269]
[96]
Ranjbar-Navazi, Z.; Eskandani, M.; Johari-Ahar, M.; Nemati, A.; Akbari, H.; Davaran, S.; Omidi, Y. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. J. Drug Target., 2018, 26(3), 267-277.
[http://dx.doi.org/10.1080/1061186X.2017.1365876] [PMID: 28795849]
[97]
Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Abadpour, A.; Moumivand, E.; Mojarrad, J.S.; Rashidi, M.R.; Coukos, G.; Omidi, Y. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B Biointerfaces, 2013, 106, 117-125.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.051] [PMID: 23434700]
[98]
Qindeel, M.; Ahmed, N.; Khan, G.M.; Rehman, A. Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: A critical review. Nanomedicine, 2019, 14(12), 1623-1642.
[http://dx.doi.org/10.2217/nnm-2018-0490] [PMID: 31166147]
[99]
Park, E.K.; Lee, S.B.; Lee, Y.M. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 2005, 26(9), 1053-1061.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.008] [PMID: 15369694]
[100]
Singh, R.P.; Sharma, G.; Sonali; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458.
[http://dx.doi.org/10.1016/j.msec.2017.03.225]
[101]
Barar, J.; Kafil, V.; Majd, M.H.; Barzegari, A.; Khani, S.; Johari-Ahar, M.; Asgari, D.; Cokous, G.; Omidi, Y.J. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. J. Nanobiotechnology, 2015, 13(1), 1-16.
[102]
Zheng, Z.; Li, Z.; Xu, C.; Guo, B.; Guo, P. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J. Control. Release, 2019, 311-312, 43-49.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.021] [PMID: 31446085]
[103]
Bu, L.; Gan, L.C.; Guo, X.Q.; Chen, F.Z.; Song, Q.; Qi-Zhao; Gou, X.J.; Hou, S.X.; Yao, Q. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int. J. Pharm., 2013, 452(1-2), 355-362.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.007] [PMID: 23685116]
[104]
Bonferoni, M.C.; Gavini, E.; Rassu, G.; Maestri, M.; Giunchedi, P. Chitosan nanoparticles for therapy and theranostics of hepatocellular carcinoma (HCC) and liver-targeting. Nanomaterials, 2020, 10(5), 870.
[http://dx.doi.org/10.3390/nano10050870] [PMID: 32365938]
[105]
Zhou, N.; Zan, X.; Wang, Z.; Wu, H.; Yin, D.; Liao, C.; Wan, Y. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr. Polym., 2013, 94(1), 420-429.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.014] [PMID: 23544558]
[106]
Babu, K.R.; Muckenthaler, M.U. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 1518.
[http://dx.doi.org/10.1038/s41598-018-35947-7] [PMID: 30728365]
[107]
Schuster, S.J. Bispecific antibodies for the treatment of lymphomas: Promises and challenges. Hematol. Oncol., 2021, 39(S1), 113-116.
[http://dx.doi.org/10.1002/hon.2858] [PMID: 34105818]
[108]
Agrawal, P.; Sonali; Singh, R.P.; Sharma, G.; Mehata, A.K.; Singh, S.; Rajesh, C.V.; Pandey, B.L.; Koch, B.; Muthu, M.S. Bioadhesive micelles of d -α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf. B Biointerfaces, 2017, 152, 277-288.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.021] [PMID: 28122295]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy