Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Solubility, the Main Concern for Poorly Water-soluble Drugs: Techniques and Alternatives

Author(s): Komal Singh, Preet Amol Singh, Amanda Frank, Saahil Arora, Rajiv Sharma and Neha Bajwa*

Volume 21, Issue 12, 2024

Published on: 05 October, 2023

Page: [2248 - 2260] Pages: 13

DOI: 10.2174/1570180820666230807163632

Price: $65

Open Access Journals Promotions 2
Abstract

The most crucial variable that affects a drug's bioavailability is its aqueous solubility. One of the most significant issues facing the pharmaceutical business is improving water solubility, which is the key to improving therapeutic efficacy. During the first screening procedure, over 50% of recently created medications are discovered to be insoluble or weakly soluble. The solubility of the medicine can be increased using various techniques. The method entails both chemical and physical drug modifications. Any medicine that is absorbed must be present at the absorption site as a solution. Poorly soluble medications can be made more soluble using a variety of approaches, like physical and chemical alterations to the drug and other strategies. Using a surfactant, complexation, and so on are examples of solid dispersion. Pharmacological properties, absorption sites, and the requirements for the dosage form influence the choice of a solubility-improving technology. In order to serve as a quick reference, this study attempted to gather information on various solubility improvement methods and organize it systematically.

Keywords: Hydrotropy, complexation, solid dispersion, solubility, nanoparticles, drug’s bioavailability.

[1]
Kandasamy, R.; Ruckmani, K.; Muneera, M.S. Enhancement of solubility and dissolution of carbamazepine by PEG 6000 The Eastern Pharmacist, XLIII, 117-118. East Pharm., 2000, XLIII, 117-118.
[2]
Babu, V. Rajesh SHA, VM. Solubility and Dissolution Enhancement: An overview. J. Pharm. Res., 2015, 141-145.
[3]
Soniwala, Moinuddin Patel, P.R.; Mansuri, N.S.; Parikh, R.K.; Gohel, M. Various approaches in dissolution enhancement of rofecoxib. Indian J. Pharm. Sci., 2005, (67), 61-65.
[4]
Martin, A; Bustamante, P CA Solubility and distribution phenomena. Physical pharmacy., 1993, 212-250.
[5]
Aulton, M.E.T.K. Pharmaceutics-The Science of Dosage Form Design; London, England. Churchill Livingstone., 2002, pp. 340-348.
[6]
Lachman, L. The Theory and Practice of Industrial Pharmacy; Herbert, A.; Joseph, L; Kanig, L.L., Ed.; India, 1986.
[7]
Patil, P.; Joshi, P.; Paradkar, A.; Mahadik, K. Solubility: A frequently overlooked parameter. J. Pharm. Sci. Pharmacol., 2011, (2(1)), 1-6.
[8]
Myrdal, P.B.Y.S. Solubilization of drugs in aqueous media; Encycl Pharm Technol, 2007, p. 3311.
[9]
Pawar, S.R.; Barhate, S.D. Solubility enhancement (Solid Dispersions) novel boon to increase bioavailability. J. Drug Deliv. Ther., 2019, 9(2), 583-590.
[http://dx.doi.org/10.22270/jddt.v9i2.2437]
[10]
Coltescu, A.R.; Butnariu, M.; Sarac, I. The importance of solubility for new drug molecules. Biomed. Pharmacol. J., 2020, 13(2), 577-583.
[http://dx.doi.org/10.13005/bpj/1920]
[11]
Sharma, A.; Rastogi, V.; Kumar, P.; Prasad, N. Formulation approaches for solubility enhancement by using polar or non-polar lipid components of bcs class ii drugs through lbdds. 2020. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=13&issue=8&article=06710.5958/0974-360X.2020.00694.0
[12]
Vemula, V.R.; Lagishetty, V.L.S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res., 2010, 5(1), 41-51.
[13]
Alexander, A.; Tiwle, R. Ajazuddin,; Giri, T.K.; Tripathi, D.K.; Jain, V. An exhaustive review on solubility enhancement for hydrophobic compounds by possible applications of novel techniques. Trends Appl. Sci. Res., 2012, 7(8), 596-619.
[http://dx.doi.org/10.3923/tasr.2012.596.619]
[14]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[15]
Hammond, R.B.; Pencheva, K.; Roberts, K.J.; Auffret, T. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: Case study of acetyl salicylic acid. J. Pharm. Sci., 2007, 96(8), 1967-1973.
[http://dx.doi.org/10.1002/jps.20869] [PMID: 17323349]
[16]
Takano, N; Kawashima, H; Shinoda, Y; Inagi, T. Kowa Co Ltd. Solid dispersion composition. US 26753A, 2016.
[17]
Douvogianni, E.; Qiu, X.; Qiu, L.; Jahani, F.; Kooistra, F.B.; Hummelen, J.C.; Chiechi, R.C. Soft nondamaging contacts formed from eutectic ga–in for the accurate determination of dielectric constants of organic materials. Chem. Mater., 2018, 30(16), 5527-5533.
[http://dx.doi.org/10.1021/acs.chemmater.8b02212] [PMID: 30197469]
[18]
Tapas, A.R.; Kawtikwar, P.S.; Sakarkar, D.M. Modification of felodipine properties using spherically agglomerated solid dispersions. Am J. Drug Discov. Develop., 2011, 1(3), 160-173.
[http://dx.doi.org/10.3923/ajdd.2011.160.173]
[19]
Giri, T.K. AA Physicochemical classification and formulation development of solid dispersion of poorly water soluble drugs: An updated review. Int. J. Pharm. Biol. Arch., 2010, (1), 309-324.
[20]
Luo, Zhixun FY The applying of thz and raman techniques in non-destructive examination for nitrobenzoic acid. Trends Appl. Sci. Res., 2006, (1), 176-183.
[21]
Bajwa, N.; Baldi, A.; Singh, M.; Naryal, S. et al Formulation Development and Assessment of Solid Dispersion and Hydrotropy for BCS Class II Drug Solubility Enhancement; LDDD Benthamscience, 2022.
[http://dx.doi.org/10.2174/1570180819666220822115049 ]
[22]
Yiyun, C.; Tongwen, X.; Rongqiang, F. Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. Eur. J. Med. Chem., 2005, 40(12), 1390-1393.
[http://dx.doi.org/10.1016/j.ejmech.2005.08.002] [PMID: 16226353]
[23]
Sharma, D.; Soni, M. GDG, SK Solubility enhancement-eminent role in poorly soluble drugs. Res J Pharm Tech., 2009, (2), 220-224.
[24]
Goldberg, A.H.; Gibaldi, M.; Kanig, J.L.; Mayersohn, M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. IV. Chloramphenicol--urea system. J. Pharm. Sci., 1966, 55(6), 581-583.
[http://dx.doi.org/10.1002/jps.2600550610] [PMID: 5924122]
[25]
Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev., 2007, 59(7), 617-630.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[26]
Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm., 2006, 312(1-2), 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.008] [PMID: 16469459]
[27]
Bajwa, N.; Mahal, S.; Naryal, S. et al Development of Novel Solid Nanostructured Lipid Carriers for Bioavailability Enhancement Using a Quality by Design Approach. AAPS PharmSciTech, 23, 253. (2022)
[http://dx.doi.org/10.1208/s12249-022-02386-7]
[28]
Yadollahi, R.; Vasilev, K.; Simovic, S. Nanosuspension technologies for delivery of poorly soluble drugs. J. Nanomater., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/216375]
[29]
Adali, M.B.; Barresi, A.A.; Boccardo, G.; Pisano, R. Spray freeze-drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Processe, 2020, 8(6), 709.
[http://dx.doi.org/10.3390/pr8060709]
[30]
Mumenthaler, M.; Leuenberger, H. Atmospheric spray-freeze drying: A suitable alternative in freeze-drying technology. Int. J. Pharm., 1991, 72(2), 97-110.
[http://dx.doi.org/10.1016/0378-5173(91)90047-R]
[31]
Williams, R.O., III; Johnston, K.P.; Young, T.J.; Rogers, T.L.; Barron, M.K.; Yu, Z. Inventors. University of Texas System, assignee. Process for production of nanoparticles and microparticles by spray freezing into liquid. US 686290, 2014.
[32]
Aguiar, A.J.; Krc, J., Jr; Kinkel, A.W.; Samyn, J.C. Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. J. Pharm. Sci., 1967, 56(7), 847-853.
[http://dx.doi.org/10.1002/jps.2600560712] [PMID: 6034828]
[33]
Jindal, K. Reviewon solubility: A mandatory tool for pharmaceuticals. Int. Res. J. Pharm., 2017, 8(11), 11-15.
[http://dx.doi.org/10.7897/2230-8407.0811210]
[34]
Majid Khan, G. Farmanull, Wazir; Jia-bi, Zhu Ibuprofen-cyclodextrin inclusion complexes: Evaluation of different complexation methods. J. Med. Sci. (Faisalabad, Pak.), 2001, 1(4), 193-199.
[http://dx.doi.org/10.3923/jms.2001.193.199]
[35]
Saenger, W.; Betzel, C. GMB, BEH. Circular and flip-flop hydrogen bonding in B-cyclodextrin undecahydrate: A neutron diffraction study. J. Am. Chem. Soc., 1984, (106), 7545-7557.
[36]
Jain, P.; Goel, A.; Sharma, S.; Parmar, M. Solubility enhancement techniques with special emphasis on hydrotrophy. Int J Pharma Prof Res., 2010, (1), 34-45.
[37]
Neltner, T.G.; Alger, H.M.; Leonard, J.E.; Maffini, M.V. Data gaps in toxicity testing of chemicals allowed in food in the United States. Reprod. Toxicol., 2013, 42, 85-94.
[http://dx.doi.org/10.1016/j.reprotox.2013.07.023] [PMID: 23954440]
[38]
Desiraju, G.R. Supramolecular synthons in crystal engineering: A new organic synthesis. Angew. Chem. Int. Ed. Engl., 1995, 34(21), 2311-2327.
[http://dx.doi.org/10.1002/anie.199523111]
[39]
Fateh, AL Rahman Magbool, E Importance of solubility and solubility enhancement techniques. ejpmr, 2017, 5(6), 634-647.
[40]
Jouyban, A.; Chew, N.Y.K.; Chan, H.K.; Sabour, M.; Acree, W.E. Jr A unified cosolvency model for calculating solute solubility in mixed solvents. Chem. Pharm. Bull., 2005, 53(6), 634-637.
[http://dx.doi.org/10.1248/cpb.53.634] [PMID: 15930773]
[41]
Maulvi, F.A.; Dalwadi, S.J.; Thakkar, V.T.; Soni, T.G.; Gohel, M.C.; Gandhi, T.R. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol., 2011, 207(1-3), 47-54.
[http://dx.doi.org/10.1016/j.powtec.2010.10.009]
[42]
Badawi, A.A.; El-Nabaraw, M.A.; El-Setouhy, D.A.; Alsammit, S.A. Characterization and stability testing of itraconazole solid dispersions containing crystallization inhibitors. Am. J. Drug Discov. Develop., 2011, 1(3), 144-159.
[http://dx.doi.org/10.3923/ajdd.2011.144.159]
[43]
Gopa, R.; Roy, B.G.; Maity, S. Solubility enhancement of poorly water soluble drug amoxycillin trihydrate by modified gum karaya using solid dispersion technique. Int. J. Drug Formul. Res., 2011, 2(1), 235-249.
[44]
Esu, E.B.; Effa, E.E.; Opie, O.N.; Meremikwu, M.M. Artemether for severe malaria. Cochrane Database Syst. Rev., 2019, 6(6), CD010678.
[http://dx.doi.org/10.1002/14651858.CD010678.pub3]
[45]
Bobe, K.; Subrahmanya, C.; Suresh, S.; Gaikwad, D.; Patil, M.; Khade, T. Formulation and evaluation of solid dispersion of atorvastatin with various carriers. Pharm. Glob. Int. J. Compr. Pharm., 2011, 1(02)
[46]
Pandya, P.; Gattani, S.; Jain, P.; Khirwal, L.; Surana, S. Co-solvent evaporation method for enhancement of solubility and dissolution rate of poorly aqueous soluble drug simvastatin: In vitro-in vivo evaluation. AAPS PharmSciTech, 2008, 9(4), 1247-1252.
[http://dx.doi.org/10.1208/s12249-008-9176-z] [PMID: 19115110]
[47]
Liu, H.; Zhou, L-L.; Wei, L-L. Preparation of budesonide-poly (ethylene oxide) solid dispersions using supercritical fluid technology. Drug Dev. Ind. Pharm., 2007, 33(9), 959-966. Available from: http://www.tandfonline.com/doi/full/10.1080/03639040601134181
[48]
Wen, X.; Tan, F.; Jing, Z.; Liu, Z. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J. Pharm. Biomed. Anal., 2004, 34(3), 517-523.
[http://dx.doi.org/10.1016/S0731-7085(03)00576-4] [PMID: 15127807]
[49]
Raval, M.; Patel, J.; Parikh, R.; Sheth, N. Dissolution enhancement of chlorzoxazone using cogrinding technique. Int. J. Pharm. Investig., 2015, 5(4), 247-258.
[http://dx.doi.org/10.4103/2230-973X.167689] [PMID: 26682195]
[50]
Jun, S.W.; Kim, M.S.; Jo, G.H.; Lee, S.; Woo, J.S.; Park, J.S.; Hwang, S.J. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids. J. Pharm. Pharmacol., 2010, 57(12), 1529-1537.
[http://dx.doi.org/10.1211/jpp.57.12.0003] [PMID: 16354397]
[51]
Jagdale, S.C.; Bhadoriya, A.S.; Chabukswar, A.R. Solubility enhancement and formulation of mouth dissolving tablet of clonazepam with solid dispersion technology. J. Pharm. Sci. Pharmacol., 2012, 33.
[52]
Patel, V.; Kukadiya, H.; Mashru, R.; Surti, N.; Mandal, S. Development of microemulsion for solubility enhancement of clopidogrel. Iran. J. Pharm. Res., 2010, 9(4), 327-334.
[PMID: 24381597]
[53]
Nucifora, F.C., Jr; Mihaljevic, M.; Lee, B.J.; Sawa, A. Clozapine as a model for antipsychotic development. Neurotherapeutics, 2017, 14(3), 750-761.
[http://dx.doi.org/10.1007/s13311-017-0552-9] [PMID: 28653280]
[54]
Tseng, Y-C.; Kanthamneni, N.; Valiveti, S.; Patel, M.; Xia, H. Enhanced bioavailability of danazol nanosuspensions by wet milling and high-pressure homogenization. Int. J. Pharm. Investig., 2016, 6(4), 218-224.
[http://dx.doi.org/10.4103/2230-973X.195931] [PMID: 28123991]
[55]
Li, J.; Wang, L.; Ye, Y.Q.; Fu, X.; Ren, Q.; Zhang, H.; Deng, Z. Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide. Eur. J. Pharm. Sci., 2016, 85, 47-52.
[http://dx.doi.org/10.1016/j.ejps.2016.01.029] [PMID: 26836368]
[56]
Meyyanathan, S.N.; Rajan, S.; Muralidaharan, S.; Siddaiah, M.K.; Krishnaraj, K.; Suresh, B. Formulation and evaluation of dextromethorphan hydrobromide sustained release tablets. Drug Deliv., 2008, 15(7), 429-435.
[http://dx.doi.org/10.1080/10717540802035301] [PMID: 18712620]
[57]
Maski, N.; Maski, N.; Girhepunje, K.; Ghode, P.; Randivede, S.; Pal, R. Studies on the preparation, characterization and solubility of β-cyclodextrin -diacerein inclusion complexes. Int. J. Pharm. Pharm. Sci., 2009, 121-135.
[58]
Pund, S.; Mahajan, N.; Gangane, P.; Warokar, A. Enhancement of solubility of diclofenac sodium by pastillation method. J. Drug Deliv. Ther., 2021, 11(2), 6-10.
[http://dx.doi.org/10.22270/jddt.v11i2.4756]
[59]
Chaudhary, S.; Nair, A.B.; Shah, J.; Gorain, B.; Jacob, S.; Shah, H.; Patel, V. Enhanced solubility and bioavailability of dolutegravir by solid dispersion method: in vitro and in vivo evaluation-A potential approach for hiv therapy. AAPS PharmSciTech, 2021, 22(3), 127.
[http://dx.doi.org/10.1208/s12249-021-01995-y] [PMID: 33835317]
[60]
Madhavi, B.B.; Kusum, B.; Krishna Chatanya, C.H.; Madhu, M.N.; Sri Harsha, V.; Banji, D. Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques. Int. J. Pharm. Investig., 2011, 1(1), 29-34.
[http://dx.doi.org/10.4103/2230-973X.76726] [PMID: 23071917]
[61]
Zhang, X.; Rao, Q.; Qiu, Z.; Lin, Y.; Zhang, L.; Hu, Q.; Chen, T.; Ma, Z.; Gao, H.; Luo, D.; Zhao, J.; Ouyang, D.; Zhang, Z.J.; Li, Q. Using acetone/water binary solvent to enhance the stability and bioavailability of spray dried enzalutamide/hpmc-as solid dispersions. J. Pharm. Sci., 2021, 110(3), 1160-1171.
[http://dx.doi.org/10.1016/j.xphs.2020.10.010] [PMID: 33049259]
[62]
Agarwal, V.; Kumar, V.; Sharma, P.K. Dissolution enhancement of eplerenone using solvent melt method. Drug Deliv. Lett., 2021, 11(1), 71-80. [Available from: https://www.eurekaselect.com/186728/article
[http://dx.doi.org/10.2174/2210303110999201007164919]
[63]
Das, A.; Nayak, A.K.; Mohanty, B.; Panda, S. Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers. ISRN Pharm., 2011, 2011, 1-8.
[http://dx.doi.org/10.5402/2011/819765] [PMID: 22389861]
[64]
Won, D.H.; Kim, M.S.; Lee, S.; Park, J.S.; Hwang, S.J. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm., 2005, 301(1-2), 199-208.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.017] [PMID: 16024189]
[65]
Patel, D.T.; Patel, L.; Patel, T.; Makwana, S.; Patel, T. Enhancement of dissolution of fenofibrate by solid dispersion technique. Int. J. Res. Pharm. Sci., 2010, 1, 127-132.
[66]
Phillip Lee, Y.H.; Sathigari, S.; Jean Lin, Y.J.; Ravis, W.R.; Chadha, G.; Parsons, D.L.; Rangari, V.K.; Wright, N.; Babu, R.J. Gefitinib–cyclodextrin inclusion complexes: Physico-chemical characterization and dissolution studies. Drug Dev. Ind. Pharm., 2009, 35(9), 1113-1120.
[http://dx.doi.org/10.1080/03639040902783074] [PMID: 19640249]
[67]
Tabbakhian, M.; Hasanzadeh, F.; Tavakoli, N.; Jamshidian, Z. Dissolution enhancement of glibenclamide by solid dispersion: Solvent evaporation versus a supercritical fluid-based solvent -antisolvent technique. Res. Pharm. Sci., 2014, 9(5), 337-350.
[PMID: 25657806]
[68]
Choudhary, D.; Kumar, S.; Gupta, G.D. Enhancement of solubility and dissolution of glipizide by solid dispersion (kneading) technique. Asian J. Pharm., 2009, 3(3), 245.
[http://dx.doi.org/10.4103/0973-8398.56306]
[69]
Ratain, M.J.; Tannock, I.F.; Lichter, A.S. The dosing of ibrutinib and related Bruton’s tyrosine kinase inhibitors: Eliminating the use of brute force. Blood Adv., 2022, 6(17), 5041-5044.
[http://dx.doi.org/10.1182/bloodadvances.2022007793] [PMID: 35816636]
[70]
Fujimoto, Y.; Hirai, N.; Takatani-Nakase, T.; Takahashi, K. Preparation and evaluation of solid dispersion tablets by a simple and manufacturable wet granulation method using porous calcium silicate. Chem. Pharm. Bull., 2016, 64(4), 311-318.
[http://dx.doi.org/10.1248/cpb.c15-00838] [PMID: 27039831]
[71]
Jung, J.Y.; Yoo, S.D.; Lee, S.H.; Kim, K.H.; Yoon, D.S.; Lee, K.H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm., 1999, 187(2), 209-218.
[http://dx.doi.org/10.1016/S0378-5173(99)00191-X] [PMID: 10502627]
[72]
Rachmaniar, R.; Tristiyanti, D.; Hamdani, S. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation. AIP Conf. Proceed., 2018, 030024. [Available from: https://pubs.aip.org/aip/acp/article/757573
[73]
Khalikov, S.S. Solid dispersions of anthelmintics and plant protection preparations. Solids, 2021, 2(1), 60-75.https://www.mdpi.com/2673-6497/2/1/3
[http://dx.doi.org/10.3390/solids2010003]
[74]
Gutiérrez, E.L.; Souza, M.S.; Diniz, L.F.; Ellena, J. Synthesis, characterization and solubility of a new anthelmintic salt: Mebendazole nitrate. J. Mol. Struct., 2018, 1161, 113-121.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.060]
[75]
Volovitz, B.; Tabachnik, E.; Nussinovitch, M.; Shtaif, B.; Blau, H.; Gil-Ad, I.; Weizman, A.; Varsano, I. Montelukast, a leukotriene receptor antagonist, reduces the concentration of leukotrienes in the respiratory tract of children with persistent asthma. J. Allergy Clin. Immunol., 1999, 104(6), 1162-1167.
[http://dx.doi.org/10.1016/S0091-6749(99)70008-4] [PMID: 10588996]
[76]
Mura, P.; Furlanetto, S.; Cirri, M.; Maestrelli, F.; Corti, G.; Pinzauti, S. Interaction of naproxen with ionic cyclodextrins in aqueous solution and in the solid state. J. Pharm. Biomed. Anal., 2005, 37(5), 987-994.
[http://dx.doi.org/10.1016/j.jpba.2004.06.016] [PMID: 15862677]
[77]
Maurin, M.B.; Rowe, S.M.; Koval, C.A.; Hussain, M.A. Solubilization of nicardipine hydrochloride via complexation and salt formation. J. Pharm. Sci., 1994, 83(10), 1418-1420.
[http://dx.doi.org/10.1002/jps.2600831011] [PMID: 7884662]
[78]
Auda, S.H. Nimesulide/methyl β-cyclodextrin inclusion complexes: Physicochemical characterization, solubility, dissolution, and biological studies. Drug Dev. Res., 2014, 75(2), 68-75.
[http://dx.doi.org/10.1002/ddr.21156] [PMID: 24648149]
[79]
Zhang, Z.; Cai, Q.; Xue, J.; Qin, J.; Liu, J.; Du, Y. Co-crystal formation of antibiotic nitrofurantoin drug and melamine co-former based on a vibrational spectroscopic study. Pharmaceutics, 2019, 11(2), 56.
[http://dx.doi.org/10.3390/pharmaceutics11020056] [PMID: 30704026]
[80]
Sheth, N.S. Formulation and evaluation of solid dispersion of olanzepine. Int. J. Pharm. Sci. Res., 2011, (2(3)), 691.
[81]
Srebro, J.; Brniak, W.; Mendyk, A. Formulation of dosage forms with proton pump inhibitors: State of the art, challenges and future perspectives. Pharmaceutics, 2022, 14(10), 2043.
[http://dx.doi.org/10.3390/pharmaceutics14102043] [PMID: 36297478]
[82]
Mastiholimath, V.S.; Mashelkar, G.P.; Mannur, V.S. Solubility enhancement of oxcarbazepine by melt sonocrystallization technique to increase the bioavailability. Indian J. Pharm. Educ. Res., 2021, 55(1s), s56-s65. [Available from: http://ijper.org/article/1392
[83]
Duan, C.; Liu, W.; Tao, Y.; Liang, F.; Chen, Y.; Xiao, X.; Zhang, G.; Chen, Y.; Hao, C. Two novel palbociclib-resorcinol and palbociclib-orcinol cocrystals with enhanced solubility and dissolution rate. Pharmaceutics, 2021, 14(1), 23.
[http://dx.doi.org/10.3390/pharmaceutics14010023] [PMID: 35056919]
[84]
Kuminek, G.; Cao, F. Bahia de Oliveira da Rocha, A.; Gonçalves Cardoso, S.; Rodríguez-Hornedo, N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv. Drug Deliv. Rev., 2016, 101, 143-166.
[http://dx.doi.org/10.1016/j.addr.2016.04.022] [PMID: 27137109]
[85]
Agrawal, S.; Gaikwad, S.; Patel, R.; Shinde, L.; Deshmukh, A. Synthesis and formulation development of phenytoin by inclusion complexation. Indian J. Pharm. Sci., 2021, 83(5) Available from: https://www.ijpsonline.com/articles/synthesis-and-formulation-development-of-phenytoin-by-inclusion-complexation-4336.html
[86]
Nijhawan, M.; Godugu, M.; Saxena, T.; Farheen, T.; Dwivedi, K. Pharmaceutical co-crystals of posaconazole for improvement of physicochemical properties. Braz. J. Pharm. Sci., 2022, 58, e191024. [Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984- 82502022000100681&tlng=en
[http://dx.doi.org/10.1590/s2175-97902022e191024]
[87]
Daravath, B.; Kumari, G. Improvement of bioavailability of poorly soluble racecadotril by solid dispersion with surface adsorption method: A case study. J. Reports Pharm. Sci., 2021, 10(1), 77. [Available from: http://www.jrpsjournal.com/text.asp?2021/10/1/77/317258
[http://dx.doi.org/10.4103/jrptps.JRPTPS_129_19]
[88]
Hussain, A.; Altamimi, M.A.; Alshehri, S.; Imam, S.S.; Shakeel, F.; Singh, S.K. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion Gel. Int. J. Nanomedicine, 2020, 15, 1073-1094. Available from: https://www.dovepress.com/novel-approach-for-transdermal-delivery-of-rifampicin-to-induce-synerg-peer-reviewed-article-IJN10.2147/IJN.S236277
[PMID: 32103956]
[89]
Salarvand, M.; Ramezani, V.; Salarvand, F.; Aref Darabi, Z.; Akrami, M. Improvement of drug delivery properties of risperidone via preparation of fast dissolution tablet containing nanostructured microparticles. Iran. J. Pharm. Res., 2021, 20(2), 183-196.
[PMID: 34567155]
[90]
Butt, S.; Hasan, S.M.F.; Hassan, M.M.; Alkharfy, K.M.; Neau, S.H. Directly compressed rosuvastatin calcium tablets that offer hydrotropic and micellar solubilization for improved dissolution rate and extent of drug release. Saudi Pharm. J., 2019, 27(5), 619-628. [Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319016418303797
[http://dx.doi.org/10.1016/j.jsps.2019.03.002] [PMID: 31297015]
[91]
Venkatesh, N.D.; Karthick, S. Studies on the preparation, characterization and solubility of β-cyclodextrin-roxythromycin inclusion complexes. Int. J. Pharm. Sci. Nanotechnol., 2009, (2), 523-530.
[http://dx.doi.org/10.37285/ijpsn.2009.2.2.5]
[92]
MacQueen, G.; Born, L.; Steiner, M. The selective serotonin reuptake inhibitor sertraline: Its profile and use in psychiatric disorders. CNS Drug Rev., 2001, 7(1), 1-24.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00188.x] [PMID: 11420570]
[93]
Gupta, A.; Indurkhya, A.; Chaturvedi, S.; Varma, A. Formulation and characterization of self emulsifying drug delivery system of spironolactone. Asian J. Pharm. Res. Dev., 1970, 7(1), 38-40. Available at: http://ajprd.com/index.php/journal/article/view/462
[94]
Bowen, A.C.; Carapetis, J.R.; Currie, B.J.; Fowler, V., Jr; Chambers, H.F.; Tong, S.Y.C. Sulfamethoxazole-trimethoprim (cotrimoxazole) for skin and soft tissue infections including impetigo, cellulitis, and abscess. Open Forum Infect. Dis., 2017, 4(4), ofx232.
[http://dx.doi.org/10.1093/ofid/ofx232] [PMID: 29255730]
[95]
SreeHarsha, H.; Hiremath, J.G.; Chilukuri, S.; Aitha, R.K.; Al-Dhubia, B.E.; Venugopala, K.N. An approach to enhance dissolution rate of tamoxifen citrate. BioMed Res. Int., 2019, 2019, 1-11. Available from: https://www.hindawi.com/journals/bmri/2019/2161348/
[96]
Aboud, H.M.; Ali, A.A.; Abd Elbary, A. Formulation and optimization of tenoxicam orodispersible tablets by solid deposition technique. J. Drug Deliv. Sci. Technol., 2012, 22(6), 555-561.
[http://dx.doi.org/10.1016/S1773-2247(12)50096-1]
[97]
Banik, K.; Yashasree, K. Formulation and evalution of telmisartan solid dispersion of encapsulation using different polymer. Acta Sci. Pharm. Sci., 2020, 47, 42-48.
[98]
Debnath, S.; Vijay Kumar, S.V.S. Preparation and evaluation of solid dispersion of terbinafine hydrochloride. Asian J. Pharm. Tech., 2013, 3(1), 9-15.
[99]
Gleckman, R.; Blagg, N.; Joubert, D.W. Trimethoprim: Mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy, 1981, 1(1), 14-19.
[http://dx.doi.org/10.1002/j.1875-9114.1981.tb03548.x] [PMID: 6985448]
[100]
Mohammadreza, M.; Iraji, P.; Mahmoudi, Z.; Rahiman, N.; Akhgari, A. Design and physico-mechanical evaluation of fast-dissolving valsartan polymeric drug delivery system by electrospinning method. Iran. J. Basic Med. Sci., 2021, 24(12), 1683-1694.
[PMID: 35432803]
[101]
Koehl, N.J.; Henze, L.J.; Bennett-Lenane, H.; Faisal, W.; Price, D.J.; Holm, R.; Kuentz, M.; Griffin, B.T. In Silico, In vitro, and In vivo evaluation of precipitation inhibitors in supersaturated lipid-based formulations of venetoclax. Mol. Pharm., 2021, 18(6), 2174-2188.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00645] [PMID: 33890794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy