Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Commentary

New Inspirations from Discovering the Molecular Target of Metformin

Author(s): Chengfei Zhao*

Volume 29, Issue 23, 2023

Published on: 09 August, 2023

Page: [1863 - 1866] Pages: 4

DOI: 10.2174/1381612829666230807160956

[1]
Bailey CJ. Metformin: Historical overview. Diabetologia 2017; 60(9): 1566-76.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[2]
Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol (Lausanne) 2020; 11: 191.
[http://dx.doi.org/10.3389/fendo.2020.00191] [PMID: 32425881]
[3]
Kheirandish M, Mahboobi H, Yazdanparast M, Kamal W, Kamal MA. Anti-cancer effects of metformin: recent evidences for its role in prevention and treatment of cancer. Curr Drug Metab 2018; 19(9): 793-7.
[http://dx.doi.org/10.2174/1389200219666180416161846] [PMID: 29663879]
[4]
Hollunger G. Guanidines and oxidative phosphorylations. Acta Pharmacol Toxicol (Copenh) 1955; 11(S1) (Suppl. 1): 1-84.
[http://dx.doi.org/10.1111/j.1600-0773.1955.tb02972.x] [PMID: 13248572]
[5]
Schäfer G. Site-specific uncoupling and inhibition of oxidative phosphorylation by biguanides. II. Biochim Biophys Acta Bioenerg 1969; 172(2): 334-7.
[http://dx.doi.org/10.1016/0005-2728(69)90077-2] [PMID: 4304727]
[6]
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 2019; 15(10): 569-89.
[http://dx.doi.org/10.1038/s41574-019-0242-2] [PMID: 31439934]
[7]
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: From mechanisms of action to therapies. Cell Metab 2014; 20(6): 953-66.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[8]
Zheng J, Woo SL, Hu X, et al. Metformin and metabolic diseases: A focus on hepatic aspects. Front Med 2015; 9(2): 173-86.
[http://dx.doi.org/10.1007/s11684-015-0384-0] [PMID: 25676019]
[9]
El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275(1): 223-8.
[http://dx.doi.org/10.1074/jbc.275.1.223] [PMID: 10617608]
[10]
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(3): 607-14.
[http://dx.doi.org/10.1042/bj3480607] [PMID: 10839993]
[11]
Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA. Dealing with energy demand: The AMP-activated protein kinase. Trends Biochem Sci 1999; 24(1): 22-5.
[http://dx.doi.org/10.1016/S0968-0004(98)01340-1] [PMID: 10087918]
[12]
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-74.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624 ]
[13]
Detaille D, Guigas B, Chauvin C, et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005; 54(7): 2179-87.
[http://dx.doi.org/10.2337/diabetes.54.7.2179] [PMID: 15983220]
[14]
Stephenne X, Foretz M, Taleux N, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011; 54(12): 3101-10.
[http://dx.doi.org/10.1007/s00125-011-2311-5] [PMID: 21947382]
[15]
Carling D, Mayer FV, Sanders MJ, Gamblin SJ. AMP-activated protein kinase: Nature’s energy sensor. Nat Chem Biol 2011; 7(8): 512-8.
[http://dx.doi.org/10.1038/nchembio.610] [PMID: 21769098 ]
[16]
Ma T, Tian X, Zhang B, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022; 603(7899): 159-65.
[http://dx.doi.org/10.1038/s41586-022-04431-8] [PMID: 35197629]

© 2024 Bentham Science Publishers | Privacy Policy