Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

Impact of the Rutin on Diabetic Complications

Author(s): Yash Kumar Gaur, Shivendra Kumar*, Jeetendra Kumar Gupta, Kuldeep Singh, Sunam Saha and Soumyadip Mukherjee

Volume 2, Issue 1, 2024

Published on: 22 September, 2023

Article ID: e030823219378 Pages: 9

DOI: 10.2174/2666862901666230803093458

Price: $65

Abstract

Diabetes is spread all over the world and frequently causes side effects, such as neuropathy, eye disease, kidney disease, and cardiovascular disease. The patient's life span is shortened by these problems. Numerous fruits and vegetables contain the naturally active flavonoid rutin. It has several medicinal benefits, including anti-inflammatory, antioxidant, and anticancer properties. Different researches suggest that rutin may be useful in treating these problems. The purpose of this study was to investigate the connection between the administration of rutin and the complications of diabetes. According to this study, rutin has both preventive and therapeutic effects on the side effects of diabetes as it lowers oxidative stress, inflammation and apoptosis in animal models. To completely comprehend the preventive and therapeutic benefits of rutin in diabetic patients, more clinical study is necessary.

Keywords: Rutin, diabetic complications, neuropathy, diabetic patients, medications, pregnancy.

Graphical Abstract
[1]
Regina CC, Mu’ti A, Fitriany E. Diabetes mellitus type 2. verdure heal sci j [internet] 2022; 3(1): 8-17. Available From: https://www.ncbi.nlm.nih.gov/books/NBK513253/ accessed on 2023 Mar 27
[2]
Association AD. Diagnosis and classification of diabetes mellitus diabetes care [internet]. 2009; 32(Suppl 1): S62. Available From: /pmc/articles/PMC2613584/ accessed on 2023 Mar 25
[3]
Willner S, Whittemore R, Keene D. Life or death: Experiences of insulin insecurity among adults with type 1 diabetes in the United States. SSM Popul Health 2020; 11: 100624.
[4]
Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol 2021; 69(11): 2932. Available From: /pmc/articles/PMC8725109/ accessed on 2023 Jun 10
[5]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes: Global burden of disease and forecasted trends. J Epidemiol Glob Health 2019; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[6]
Jha RP, Shri N, Patel P, Dhamnetiya D, Bhattacharyya K, Singh M. Trends in the diabetes incidence and mortality in India from 1990 to 2019: a joinpoint and age-period-cohort analysis. J Diabetes Metab Disord 2021; 20(2): 1725-40.
[http://dx.doi.org/10.1007/s40200-021-00834-y] [PMID: 34900822]
[7]
Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2020; 17(3): 150-61. Available From: https://www.nature.com/articles/s41574-020-00443-4 accessed on 2023 Jun 10
[8]
Diabetes symptoms: When diabetes symptoms are a concern - Mayo Clinic. 2020.
[9]
Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat Rev Endocrinol 2012; 8(11): 639. Available from: /pmc/articles/PMC4404707/ accessed on 2023 Jun 10
[10]
Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: A high-risk state for developing diabetes. Lancet 2012; 379(9833): 2279. Available from: /pmc/articles/PMC3891203/ accessed on 2023 Jun 10
[11]
Sanzana GMG, Durruty AP. Other specific types of diabetes. Rev Med Clin Las Condes 2018; 27(2): 160-70. Available From: https://www.ncbi.nlm.nih.gov/books/NBK567978/ accessed on 2023 Jun 10
[12]
Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17(3): 150. Available From: /pmc/articles/PMC7722981/ accessed on 2023 Mar 27
[13]
Burrack AL, Martinov T, Fife BT. T Cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol 2017; 8(DEC): 343.
[http://dx.doi.org/10.3389/fendo.2017.00343] [PMID: 29259578]
[14]
what is diabetic. 2020. Available From: https://www.cdc.gov/diabetes/basics/diabetes.html
[15]
Association AD. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2011; 34(1): S62. Available From: /pmc/articles/PMC3006051/ accessed on 2023 Mar 27
[16]
Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther 2008; 88(11): 1254-64.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[17]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058. Available From: /pmc/articles/PMC2996922/ accessed on 2023 Mar 30
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545]
[18]
Paul P, Kaul R, Abdellatif B, et al. The promising role of microbiome therapy on biomarkers of inflammation and oxidative stress in type 2 diabetes: A systematic and narrative review. Front Nutr 2022; 9(May): 906243.
[http://dx.doi.org/10.3389/fnut.2022.906243] [PMID: 35711547]
[19]
Parasuraman S, Anand David AV, Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev 2016; 10(20): 84-9.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[20]
Salehi B, Ata A. Sharopov, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019; 9(10): 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[21]
Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab 2012; 16(8) (Suppl. 2): 267.
[http://dx.doi.org/10.4103/2230-8210.104057] [PMID: 23565396]
[22]
Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxid Med Cell Longev 2020.
[23]
Alqahtani AS, Hidayathulla S, Rehman MT, et al. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 2019; 10(1): 61.
[http://dx.doi.org/10.3390/biom10010061] [PMID: 31905962]
[24]
Gromova LV, Fetissov SO, Gruzdkov AA. Mechanisms of glucose absorption in the small intestine in health and metabolic diseases and their role in appetite regulation. Nutrients 2021; 13(7): 2474.
[http://dx.doi.org/10.3390/nu13072474] [PMID: 34371983]
[25]
Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci 2014; 15(10): 18677-92.
[http://dx.doi.org/10.3390/ijms151018677] [PMID: 25325535]
[26]
Fujishiro M, Gotoh Y, Katagiri H, et al. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3t3-l1 adipocytes. Mol Endocrinol 2003; 17(3): 487-97.
[http://dx.doi.org/10.1210/me.2002-0131] [PMID: 12554784]
[27]
Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling. Biochem J 1998; 333(3): 471-90.
[http://dx.doi.org/10.1042/bj3330471] [PMID: 9677303]
[28]
Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6(3): 432-44.
[http://dx.doi.org/10.4239/wjd.v6.i3.432] [PMID: 25897354]
[29]
Bodman MA, Varacallo M. Peripheral diabetic neuropathy. StatPearls 2022.
[30]
Diabetes and nerve damage. 2020. Available from: https://www.cdc.gov/diabetes/library/features/diabetes-nerve-damage.html
[31]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197183]
[32]
Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2(1): 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[33]
Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int J Endocrinol 2014.
[34]
Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. BioMed Res Int 2015.
[http://dx.doi.org/10.1155/2015/515042]
[35]
AL-Ishaq RK. Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9(9): 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[36]
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9(1): 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[37]
Ansari P, Choudhury ST, Seidel V, et al. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life 2022; 12(8): 1146.
[http://dx.doi.org/10.3390/life12081146] [PMID: 36013325]
[38]
Kawashiri T, Mine K, Kobayashi D, et al. Therapeutic agents for oxaliplatin-induced peripheral neuropathy; experimental and clinical evidence. Int J Mol Sci 2021; 22(3): 1393.
[http://dx.doi.org/10.3390/ijms22031393] [PMID: 33573316]
[39]
Azevedo MI, Pereira AF, Nogueira RB, et al. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain 2013; 9(1): 1744-8069-9-53.
[http://dx.doi.org/10.1186/1744-8069-9-53] [PMID: 24152430]
[40]
Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J 2017; 25(2): 149-64.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[41]
Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012; 2(2): 1303-53.
[http://dx.doi.org/10.1002/cphy.c110041] [PMID: 23798302]
[42]
Chang AS, Hathaway CK, Smithies O, Kakoki M. Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Renal Physiol 2016; 310(8): F689-96.
[http://dx.doi.org/10.1152/ajprenal.00502.2015] [PMID: 26719364]
[43]
Cravedi P, Remuzzi G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br J Clin Pharmacol 2013; 76(4): 516-23.
[PMID: 23441592]
[44]
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311(5): F831-43.
[http://dx.doi.org/10.1152/ajprenal.00313.2016] [PMID: 27582102]
[45]
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Biomed Res Int 2014; 18(1): 1. Available From: /pmc/articles/PMC3951818/ accessed on 2023 Jun 10
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1]
[46]
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-Induced Reactive Oxygen species: Mechanism of their generation and role in renal injury. J Diabetes Res 2017.
[47]
Cabral-Pacheco GA, Garza-Veloz I, Rosa CCD, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci 2020; 21(24): 1-53. Available From: /pmc/articles/PMC7767220/ accessed on 2023 Jun 10
[http://dx.doi.org/10.3390/ijms21249739]
[48]
Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An update. Life 2023; 13(2): 539.
[http://dx.doi.org/10.3390/life13020539] [PMID: 36836895]
[49]
Prince PSM, Kamalakkannan N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol 2006; 20(2): 96-102.
[http://dx.doi.org/10.1002/jbt.20117] [PMID: 16615078]
[50]
Prince PSM, Kannan NK. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2010; 58(10): 1373-83.
[http://dx.doi.org/10.1211/jpp.58.10.0011] [PMID: 17034661]
[51]
Widowati W, Prahastuti S, Tjokropranoto R, et al. Quercetin prevents chronic kidney disease on mesangial cells model by regulating inflammation, oxidative stress, and TGF-β1/SMADs pathway. PeerJ 2022; 10(Jun): e13257.
[http://dx.doi.org/10.7717/peerj.13257] [PMID: 35673387]
[52]
Aluwong T, Ayo J, Kpukple A, Oladipo O. Amelioration of hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic wistar rats treated with probiotic and vitamin C. Nutrients 2016; 8(5): 151.
[http://dx.doi.org/10.3390/nu8050151] [PMID: 27164129]
[53]
Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Cañizo-Gómez FJ. del. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?. World J Diabetes 2014; 5(4): 44.2014. Available From: /pmc/articles/PMC4127581/ accessed on 2021 Sep 14
[54]
Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149-66.
[http://dx.doi.org/10.1007/s10741-012-9313-3] [PMID: 22453289]
[55]
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol 2020; 17(9): 585-607.
[http://dx.doi.org/10.1038/s41569-020-0339-2] [PMID: 32080423]
[56]
Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig 2014; 5(6): 623-34.
[http://dx.doi.org/10.1111/jdi.12250] [PMID: 25422760]
[57]
Kehrer JP. The haber–weiss reaction and mechanisms of toxicity. Toxicology 2000; 149(1): 43-50.
[http://dx.doi.org/10.1016/S0300-483X(00)00231-6] [PMID: 10963860]
[58]
Li B, Yin J, Chang J, et al. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction. J Endocrinol 2021; 249(1): 1-18.
[http://dx.doi.org/10.1530/JOE-20-0398] [PMID: 33504680]
[59]
Wu W, Liu X, Han L. Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression of glycogen synthase kinase-3β. Biosci Rep 2019; 39(1): BSR20171307.
[http://dx.doi.org/10.1042/BSR20171307]
[60]
Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002; 51(6): 1938-48.
[http://dx.doi.org/10.2337/diabetes.51.6.1938] [PMID: 12031984]
[61]
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169: 317-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.046] [PMID: 33910093]
[62]
Nair A, Nair B. Comparative analysis of the oxidative stress and antioxidant status in type II diabetics and nondiabetics: A biochemical study. J Oral Maxillofac Pathol 2017; 21(3): 394-401.
[http://dx.doi.org/10.4103/jomfp.JOMFP_56_16] [PMID: 29391714]
[63]
Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications = مرض مضاع فات ف ي ل لأك سدة ال م ضادة ال مواد و ال تأك سدي الإجهاد دور ال س كري . Sultan Qaboos Univ Med J 2012; 12(1): 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[64]
Dal S, Sigrist S. The protective effect of antioxidants consumption on diabetes and vascular complications. Diseases 2016; 4(4): 24.
[http://dx.doi.org/10.3390/diseases4030024] [PMID: 28933404]
[65]
Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab 2013; 17(3): 329-41.
[http://dx.doi.org/10.1016/j.cmet.2013.02.007] [PMID: 23473030]
[66]
Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes 2015; 6(1): 92-108.
[http://dx.doi.org/10.4239/wjd.v6.i1.92] [PMID: 25685281]
[67]
Wang W, Lo A. Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci 2018; 19(6): 1816.
[http://dx.doi.org/10.3390/ijms19061816] [PMID: 29925789]
[68]
Shukla UV, Kaufman EJ. Intraocular hemorrhage. Decis Mak Ophthalmol An Algorithmic Approach 2023; (Dec): 438-8.
[PMID: 33620856]
[69]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[70]
Selim K, Sahan D, Muhittin T, Osman C, Mustafa O. Increased levels of vascular endothelial growth factor in the aqueous humor of patients with diabetic retinopathy. Indian J Ophthalmol 2010; 58(5): 375-9.
[http://dx.doi.org/10.4103/0301-4738.67042] [PMID: 20689190]
[71]
Ruszkowska-Ciastek B, Sokup A, Socha MW, et al. A preliminary evaluation of VEGF-A, VEGFR1 and VEGFR2 in patients with well-controlled type 2 diabetes mellitus. J Zhejiang Univ Sci B 2014; 15(6): 575-81.
[http://dx.doi.org/10.1631/jzus.B1400024] [PMID: 24903995]
[72]
Limb GA, Soomro H, Janikoun S, Hollifield RD, Shilling J. Evidence for control of tumour necrosis factor-alpha (TNF-α) activity by TNF receptors in patients with proliferative diabetic retinopathy. Clin Exp Immunol 2001; 115(3): 409-14.
[http://dx.doi.org/10.1046/j.1365-2249.1999.00839.x] [PMID: 10193411]
[73]
Gupta SK, Sharma HP, Das U, Velpandian T, Saklani R. Effect of rutin on retinal VEGF, TNF-α aldose reductase, and total antioxidant capacity in diabetic rats: molecular mechanism and ocular pharmacokinetics. Int Ophthalmol 2020; 40(1): 159-68.
[http://dx.doi.org/10.1007/s10792-019-01165-x] [PMID: 31456155]
[74]
Maradesha T, Patil SM, Phanindra B, et al. Multiprotein inhibitory effect of dietary polyphenol rutin from whole green jackfruit flour targeting different stages of diabetes mellitus: Defining a bio-computational stratagem. Separations 2022; 9(9): 262.
[http://dx.doi.org/10.3390/separations9090262]
[75]
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose reductase: An emerging target for development of interventions for diabetic cardiovascular complications. Front Endocrinol 2021; 12(Mar): 636267.
[http://dx.doi.org/10.3389/fendo.2021.636267] [PMID: 33776930]
[76]
Shafi W, Mansoor S, Jan S, et al. Variability in catechin and rutin contents and their antioxidant potential in diverse apple genotypes. Molecules 2019; 24(5): 943.
[http://dx.doi.org/10.3390/molecules24050943] [PMID: 30866542]
[77]
Toth C. Pregabalin: latest safety evidence and clinical implications for the management of neuropathic pain. Ther Adv Drug Saf 2014; 5(1): 38-56.
[http://dx.doi.org/10.1177/2042098613505614] [PMID: 25083261]
[78]
Rao KV, Faso A. Chemotherapy-induced nausea and vomiting: Optimizing prevention and management. Am Health Drug Benefits 2012; 5(4): 232-40.
[PMID: 24991322]
[79]
Choi SJ, Lee SN, Kim K, et al. Biological effects of rutin on skin aging. Int J Mol Med 2016; 38(1): 357-63.
[http://dx.doi.org/10.3892/ijmm.2016.2604] [PMID: 27220601]
[80]
Dhatariya K, Corsino L, Umpierrez GE. Management of diabetes and hyperglycemia in hospitalized patients. Endotext 2020.
[81]
Sudhakaran S, Surani SR. Guidelines for perioperative management of the diabetic patient. Surg Res Pract 2015.
[http://dx.doi.org/10.1155/2015/284063]
[82]
Wolpert HA. Use of continuous glucose monitoring in the detection and prevention of hypoglycemia. J Diabetes Sci Technol 2007; 1(1): 146-50.
[http://dx.doi.org/10.1177/193229680700100126] [PMID: 19888397]
[83]
Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the american diabetes association and the european association for the study of diabetes. Diabetes Care 2009; 32(1): 193-2009. Available From: /pmc/articles/PMC2606813/ accessed on 2023 May 11
[84]
Crader MF, Johns T, Arnold JK. Warfarin drug interactions. StatPearls 2022.
[85]
Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy