Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Pharmacodynamics, Antineoplastic Activity and Molecular Docking of two Phytochemicals Isolated from Thymelaea microphylla

Author(s): Hasna Ghanem, Oussama Khaoua, Ammar Ouahab, Noura Benbellat and Hamada Haba*

Volume 21, Issue 13, 2024

Published on: 07 September, 2023

Page: [2644 - 2660] Pages: 17

DOI: 10.2174/1570180820666230726111321

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The lead compounds isolated from medicinal plants constitute a matrix for research and discovery of new drugs using in silico study and molecular docking.

Objective: This work explores the in silico study and the molecular docking of two rare phytochemicals, namely Microphynolide A (1) and Microphynolide B (2), isolated from the Saharan medicinal plant Thymelaea microphylla (Thymelaeaceae family).

Methods: In the current work, several integrated web-based in silico pharmacokinetic tools were used to estimate the druggability of two isolated phytochemicals. In addition, molecular docking was conducted using AutoDockVina 4.2 to study the binding interactions with the targets predicted employing the PharmMapper server. The toxicological study was evaluated using ProTox-II online server. DFT methods were utilized to evaluate some physicochemical properties of structures, vibrational wavenumbers, and molecular electrostatic potentials.

Results: Molecules (1) and (2) showed good ADMET profiles and antineoplastic activity. Also, they exhibited non-toxicity and belong to the Toxicity class VI (LD50 >8000 mg/kg) with immunotoxic activity. A good correlation was observed between the experimental and theoretical IR spectra, with no negative values in the theoretical spectra indicating the high stability of these compounds. Docking simulation studies against protein receptors Sulfotransferase 1A1 (PDB ID: 1LS6) and Angiogenin (PDB ID: 1B1I) displayed good binding affinity values of -5.8 and -6.8 kcal/mol, respectively, with number of H-bonding interactions. Furthermore, the control molecules p-Nitrophenol (pNP), Dopamine, Axitinib and Bevacizumab displayed values of binding energies of -6.7, -6.7, -6.9 and -6.3 Kcal/mol, respectively.

Conclusion: This study provides evidence supporting that the two molecules could be effective drugs to inhibit cancer cells and did not show any acute toxicity or mutagenic effects.

Keywords: Thymelaea microphylla, Thymelaeaceae, microphynolides A and B, DFT, in silico study, antineoplastic activity, molecular docking.

Graphical Abstract
[1]
Nabati, M.; Kermanian, M.; Mohammadnejad-mehrabani, H.; Rahbar Kafshboran, H.; Mehmannavaz, M.; Sarshar, S. Theoretical investigation on the antitumor drug: Thiotepa and its interaction with s-donor biomolecules and dna purine bases. Chem. Methodol., 2018, 2(2), 128-140.
[2]
Subramanyam, M.; Sreenivasulu, R.; Gundla, R.; Rao, M.V.B.; Rao, K.P. Synthesis, biological evaluation and docking studies of 1,3,4-oxadiazole fused benzothiazole derivatives for anticancer drugs. Lett. Drug Des. Discov., 2018, 15(12), 1299-1307.
[http://dx.doi.org/10.2174/1570180815666180219165119]
[3]
Remington, M.D. The Science and Practice of Pharmacy, 19th ed.; MACK Publishing Company: Pennsylvania, 1995.
[4]
Gilchrist, T.L. Heterocyclic Chemistry, 3rd ed.; Addison-Wesley: England, 1997.
[5]
Bramhananda Reddy, N.; Burra, V.R.; Ravindranath, L.K.; Naresh Kumar, V.; Sreenivasulu, R.; Sadanandam, P. Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents. Monatsh. Chem., 2016, 147(3), 599-604.
[http://dx.doi.org/10.1007/s00706-016-1684-z]
[6]
Padmaja, P.; Yedukondalu, M.; Sridhar, R.; Busi, S.; Rao, M. Synthesis and antimicrobial screening of novel 3,5-disubstituted indazole derivatives. Lett. Drug Des. Discov., 2013, 10(7), 625-631.
[http://dx.doi.org/10.2174/1570180811310070010]
[7]
Mehta, B.; Rambabu, D.; Raja, G.; Prasad, A.; Fang, J.M.; Rao, M. Synthesis of novel macrocyclic tetra amides. Lett. Drug Des. Discov., 2014, 11(6), 756-761.
[http://dx.doi.org/10.2174/1570180811666140116215724]
[8]
Caron, P.R.; Mullican, M.D.; Mashal, R.D.; Wilson, K.P.; Su, M.S.; Murcko, M.A. Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol., 2001, 5(4), 464-470.
[http://dx.doi.org/10.1016/S1367-5931(00)00229-5] [PMID: 11470611]
[9]
Khan, F.; Kumar Yadav, D.; Maurya, A.; Kumar Srivastava, S. Modern methods & web resources in drug design & discovery. Lett. Drug Des. Discov., 2011, 8(5), 469-490.
[http://dx.doi.org/10.2174/157018011795514249]
[10]
Sams-Dodd, F. Drug discovery: Selecting the optimal approach. Drug Discov. Today, 2006, 11(9-10), 465-472.
[http://dx.doi.org/10.1016/j.drudis.2006.03.015] [PMID: 16635811]
[11]
Bharath, E.N.; Manjula, S.N.; Vijaychand, A. In silico drug design tool for overcoming the innovation deficit in the drug discovery process. Int. J. Pharm. Pharm. Sci., 2011, 3, 8-12.
[12]
Sarnpitak, P.; Mujumdar, P.; Taylor, P.; Cross, M.; Coster, M.J.; Gorse, A.D.; Krasavin, M.; Hofmann, A. Panel docking of small-molecule libraries - Prospects to improve efficiency of lead compound discovery. Biotechnol. Adv., 2015, 33(6), 941-947.
[http://dx.doi.org/10.1016/j.biotechadv.2015.05.006] [PMID: 26025037]
[13]
Asada, Y.; Sukemori, A.; Watanabe, T.; Malla, K.J.; Yoshikawa, T.; Li, W.; Kuang, X.; Koike, K.; Chen, C.H.; Akiyama, T.; Qian, K.; Nakagawa-Goto, K.; Morris-Natschke, S.L.; Lu, Y.; Lee, K.H. Isolation, structure determination, and anti-HIV evaluation of tigliane-type diterpenes and biflavonoid from Stellera chamaejasme. J. Nat. Prod., 2013, 76(5), 852-857.
[http://dx.doi.org/10.1021/np300815t] [PMID: 23611151]
[14]
Ramsewak, R.S.; Nair, M.G.; DeWitt, D.L.; Mattson, W.G.; Zasada, J. Phenolic glycosides from Dirca palustris. J. Nat. Prod., 1999, 62(11), 1558-1561.
[http://dx.doi.org/10.1021/np9903595] [PMID: 10579873]
[15]
Lee, K.H.; Tagahara, K.; Suzuki, H.; Wu, R.Y.; Haruna, M.; Hall, I.H.; Huang, H.C.; Ito, K.; Iida, T.; Lai, J.S. Antitumor agents. 49 tricin, kaempferol-3-O-β-D-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from Wikstroemia indica. J. Nat. Prod., 1981, 44(5), 530-535.
[http://dx.doi.org/10.1021/np50017a003] [PMID: 7320737]
[16]
Yang, L.; Qiao, L.; Ji, C.; Xie, D.; Gong, N.B.; Lu, Y.; Zhang, J.; Dai, J.; Guo, S. Antidepressant abietane diterpenoids from Chinese eaglewood. J. Nat. Prod., 2013, 76(2), 216-222.
[http://dx.doi.org/10.1021/np3006925] [PMID: 23394318]
[17]
Boukef, M.K. Cultural and technical cooperation agency. Raditional medicine and pharmacoTpoeia. In: Plants in traditional Tunisian medicine; Paris, France, 1986.
[18]
Dahamna, S.; Dehimi, K.; Merghem, M.; Djarmouni, M.; Bouamra, D.; Harzallah, D.; Khennouf, S. Antioxidant, antibacterial and hypoglycemicactivity of extractsfrom Thymelaea microphylla Coss. et Dur. Int. J. Phytocosmet. Nat. Ingred., 2015, 2(1), 15.
[http://dx.doi.org/10.15171/ijpni.2015.15]
[19]
Noman, L.; Zellagui, A.; Hallis, Y.; Yaglioglu, A.S.; Demirtas, I.; Gherraf, N.; Rhouati, S. Antioxidant and antimicrobial activities of an endemic desert species Thymelea microphyllaCoss. et Dur. Der. Pharm. Lett., 2015, 7, 118-121.
[20]
Mansour, R.B.; Chaouachi, F.; Falleh, H.; Pichette, A.; Legault, J.; Ksouri, R. Powerful anti-inflammatory, anti-Herpes and anticancer capacities of Thymelaea microphylla L. and TLC phenolic identification. J. Nat. Prod. Res. Appl., 2022, 1(3), 1-16.
[http://dx.doi.org/10.46325/jnpra.v1i03.24]
[21]
Bencheikh, N.; Ouahhoud, S.; Cordero, M.A.W.; Alotaibi, A.; Fakchich, J.; Ouassou, H.; Assri, S.E.; Choukri, M.; Elachouri, M. Nephroprotective and Antioxidant Effects of Flavonoid-Rich Extract of Thymelaea microphylla Coss. et Dur Aerial Part. Appl. Sci., 2022, 12(18), 9272.
[http://dx.doi.org/10.3390/app12189272]
[22]
Ghanem, H.; Haba, H.; Marcourt, L.; Benkhaled, M.; Wolfender, J.L. Microphynolides A and B, new spiro-γ-lactone glycosides from Thymelaea microphylla. Nat. Prod. Res., 2014, 28(20), 1732-1738.
[http://dx.doi.org/10.1080/14786419.2014.942662] [PMID: 25076123]
[23]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33]
[24]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[25]
Poroikov, V.V.; Filimonov, D.A.; Ihlenfeldt, W.D.; Gloriozova, T.A.; Lagunin, A.A.; Borodina, Y.V.; Stepanchikova, A.V.; Nicklaus, M.C. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J. Chem. Inf. Comput. Sci., 2003, 43(1), 228-236.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[26]
Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38((Web Server issue)), W609-14.
[http://dx.doi.org/10.1093/nar/gkq300] [PMID: 20430828]
[27]
Wang, X.; Pan, C.; Gong, J.; Liu, X.; Li, H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J. Chem. Inf. Model., 2016, 56(6), 1175-1183.
[http://dx.doi.org/10.1021/acs.jcim.5b00690] [PMID: 27187084]
[28]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[29]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M. R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42((Web Server issue)), W53-8.
[30]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[31]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian, Inc., Wallingford CT.. 2016. Available from: https://www.scirp.org/(S(lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid=2418053
[32]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[33]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[34]
Jamróz, M.H. Vibrational energy distribution analysis (VEDA): Scopes and limitations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 114, 220-230.
[http://dx.doi.org/10.1016/j.saa.2013.05.096] [PMID: 23778167]
[35]
Irikura, K.K.; Johnson, R.D., III; Kacker, R.N. Uncertainties in scaling factors for ab initio vibrational frequencies. J. Phys. Chem. A, 2005, 109(37), 8430-8437.
[http://dx.doi.org/10.1021/jp052793n] [PMID: 16834237]
[36]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[37]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[38]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[39]
Srimai, V.; Ramesh, M.; Satya Parameshwar, K.; Parthasarathy, T. Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Med. Chem. Res., 2013, 22(11), 5314-5323.
[http://dx.doi.org/10.1007/s00044-013-0532-5]
[40]
Paramashivam, S.K.; Elayaperumal, K.; Natarajan, B.; Ramamoorthy, M.; Balasubramanian, S.; Dhiraviam, K. In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 2015, 11(2), 73-84.
[http://dx.doi.org/10.6026/97320630011073] [PMID: 25848167]
[41]
Yang, C.; Li, Q.; Li, Y. Targeting nuclear receptors with marine natural products. Mar. Drugs, 2014, 12(2), 601-635.
[http://dx.doi.org/10.3390/md12020601] [PMID: 24473166]
[42]
Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 2013, 7(7), DTI.S12519.
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[43]
Levin, G.M. P-glycoprotein: Why this drug transporter may be clinically important. Curr. Psychiatr., 2012, 11, 38-40.
[44]
El-ajaily, M.M.; Sarangi, A.K.; Mohapatra, R.K.; Hassan, S.S.; Eldaghare, R.N.; Mohapatra, P.K.; Raval, M.K.; Das, D.; Mahal, A.; Cipurkovic, A.; Al-Noor, T.H. Transition metal complexes of (E)‐2((2‐hydroxybenzylidene) amino‐3‐mercaptopropanoic acid: XRD, anticancer, molecular modeling and molecular docking studies. ChemistrySelect, 2019, 4(34), 9999-10005.
[http://dx.doi.org/10.1002/slct.201902306]
[45]
Yousef, T.A.; Abu El-Reash, G.M.; El Morshedy, R.M. Quantum chemical calculations, experimental investigations and DNA studies on (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes. Polyhedron, 2012, 45(1), 71-85.
[http://dx.doi.org/10.1016/j.poly.2012.07.041]
[46]
Chermette, H. Chemical reactivity indexes in density functional theory. J. Comput. Chem., 1999, 20(1), 129-154.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A]
[47]
Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[48]
Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys., 1978, 68(8), 3801-3807.
[http://dx.doi.org/10.1063/1.436185]
[49]
Koopmans, T. On the assignment of wave functions and eigenvalues to the individual electrons of an atom. Physica, 1934, 1(1-6), 104-113.
[http://dx.doi.org/10.1016/S0031-8914(34)90011-2]
[50]
Domingo, L.R.; Pérez, P. The nucleophilicity N index in organic chemistry. Org. Biomol. Chem., 2011, 9(20), 7168-7175.
[http://dx.doi.org/10.1039/c1ob05856h] [PMID: 21842104]
[51]
Politzer, P.; Laurence, P.R.; Jayasuriya, K. Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena. Environ. Health Perspect., 1985, 61, 191-202.
[http://dx.doi.org/10.1289/ehp.8561191] [PMID: 2866089]
[52]
Murray, J.S.; Politzer, P. The electrostatic potential: An overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(2), 153-163.
[http://dx.doi.org/10.1002/wcms.19]
[53]
Gadre, S.R.; Suresh, C.H.; Mohan, N. Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules, 2021, 26(11), 3289.
[http://dx.doi.org/10.3390/molecules26113289] [PMID: 34072507]
[54]
Lakshminarayanan, S.; Jeyasingh, V.; Murugesan, K.; Selvapalam, N.; Dass, G. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions. J. Photochem. Photobiol., 2021, 6, 100022.
[http://dx.doi.org/10.1016/j.jpap.2021.100022]
[55]
Campanario, J.M.; Bronchalo, E.; Hidalgo, M.A. An effective approach for teaching intermolecular interactions. J. Chem. Educ., 1994, 71(9), 761.
[http://dx.doi.org/10.1021/ed071p761]
[56]
Khaoua, O.; Benbellat, N.; Zeroual, S.; Mouffouk, S.; Golhen, S.; Gouasmia, A.; Chermette, H.; Haba, H. Combined experimental, computational studies (synthesis, crystal structural, DFT calculations, spectral analysis) and biological evaluation of the new homonuclear complex Di-μ-benzoato-bis [benzoatodipyridine-cobalt (II)]. J. Mol. Struct., 2023, 1273, 134331.
[http://dx.doi.org/10.1016/j.molstruc.2022.134331]
[57]
Hiremath, S.M.; Khemalapure, S.S.; Hiremath, C.S.; Patil, A.S.; Basanagouda, M. Quantum chemical computational and spectroscopic (IR, Raman, NMR, and UV) studies on the 5-(5-methoxy-benzofuran-3-ylmethyl)-3H-[1, 3, 4] oxadiazole-2-thione. J. Mol. Struct., 2020, 1210, 128041.
[http://dx.doi.org/10.1016/j.molstruc.2020.128041]
[58]
Basha A, F.; Khan, F.L.A.; Muthu, S.; Raja, M. Elaborated molecular structure, molecular docking and vibrational spectroscopic investigation of N-((4-aminophenyl)sulfonyl)benzamide with Density functional theory. Chem. Data Collect., 2021, 31, 100609.
[http://dx.doi.org/10.1016/j.cdc.2020.100609]
[59]
Lipin, D.V.; Denisova, E.I.; Shipilovskikh, D.A.; Makhmudov, R.R.; Igidov, N.M.; Shipilovskikh, S.A. Synthesis, intramolecular cyclization, and anti-inflammatory activity of substituted 2-[2-(4-R-Benzoyl)hydrazinylidene]-4-oxobutanoic Acids. Russ. J. Org. Chem., 2022, 58(12), 1759-1768.
[http://dx.doi.org/10.1134/S1070428022120041]
[60]
Moosavinejad, S.M.; Madhoushi, M.; Vakili, M.; Rasouli, D. Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy. Maderas Cienc. Tecnol., 2019, 21(ahead), 0.
[http://dx.doi.org/10.4067/S0718-221X2019005000310]
[61]
Fatima, A.; Khanum, G.; Kumar Srivastava, S.; Verma, I.; Siddiqui, N.; Javed, S. Synthesis, computational, spectroscopic, hirshfeld surface, electronic state and molecular docking studies on diethyl-5-amino-3-methylthiophene-2,4-dicarboxylate. Chem. Phys. Lett., 2021, 784, 139103.
[http://dx.doi.org/10.1016/j.cplett.2021.139103]
[62]
Barnett, A.C.; Tsvetanov, S.; Gamage, N.; Martin, J.L.; Duggleby, R.G.; McManus, M.E. Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3. J. Biol. Chem., 2004, 279(18), 18799-18805.
[http://dx.doi.org/10.1074/jbc.M312253200] [PMID: 14871892]
[63]
Swann, J.; Murry, J.; Young, J.A.T. Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages. Virol. J., 2016, 13(1), 30.
[http://dx.doi.org/10.1186/s12985-016-0491-9] [PMID: 26906565]
[64]
Fätkenheuer, G.; Pozniak, A.L.; Johnson, M.A.; Plettenberg, A.; Staszewski, S.; Hoepelman, A.I.M.; Saag, M.S.; Goebel, F.D.; Rockstroh, J.K.; Dezube, B.J.; Jenkins, T.M.; Medhurst, C.; Sullivan, J.F.; Ridgway, C.; Abel, S.; James, I.T.; Youle, M.; van der Ryst, E. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat. Med., 2005, 11(11), 1170-1172.
[http://dx.doi.org/10.1038/nm1319] [PMID: 16205738]
[65]
Shapiro, R.; Vallee, B.L. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J. Cell. Biochem., 1991, 46, 179-185.
[66]
Kishimoto, K.; Liu, S.; Tsuji, T.; Olson, K.A.; Hu, G. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene, 2005, 24(3), 445-456.
[http://dx.doi.org/10.1038/sj.onc.1208223] [PMID: 15558023]
[67]
Wu, D.; Yu, W.; Kishikawa, H.; Folkerth, R.D.; Iafrate, A.J.; Shen, Y.; Xin, W.; Sims, K.; Hu, G. Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol., 2007, 62(6), 609-617.
[http://dx.doi.org/10.1002/ana.21221] [PMID: 17886298]
[68]
Zhang, Y.; Wang, Y.; Wei, Y.; Wu, J.; Zhang, P.; Shen, S. Structural insights into the catalytic mechanism of human angiogenin-ALS-causing mutants: A molecular dynamics simulation study. J. Mol. Graph. Model., 2020, 97, 107601.
[69]
Ganguly, T.C.; Krasnykh, V.; Falany, C.N. Bacterial expression and kinetic characterization of the human monoamine-sulfating form of phenol sulfotransferase. Drug Metab. Dispos., 1995, 23(9), 945-950.
[PMID: 8565785]
[70]
Reiter, C.; Mwaluko, G.; Dunnette, J.; Van Loon, J.; Weinshilboum, R. Thermolabile and thermostable human platelet phenol sulfotransferase. Naunyn Schmiedebergs Arch. Pharmacol., 1983, 324(2), 140-147.
[http://dx.doi.org/10.1007/BF00497020] [PMID: 6139755]
[71]
Raftogianis, R.B.; Wood, T.C.; Weinshilboum, R.M. Human phenol sulfotransferases SULT1A2 and SULT1A1. Biochem. Pharmacol., 1999, 58(4), 605-616.
[http://dx.doi.org/10.1016/S0006-2952(99)00145-8] [PMID: 10413297]
[72]
Ren, S.; Xiong, X.; You, H.; Shen, J.; Zhou, P. The combination of immune checkpoint blockade and angiogenesis inhibitors in the treatment of advanced non-small cell lung cancer. Front. Immunol., 2021, 12, 689132.
[http://dx.doi.org/10.3389/fimmu.2021.689132] [PMID: 34149730]
[73]
Rani, V.; Prabhu, A. Combining angiogenesis inhibitors with radiation: Advances and challenges in cancer treatment. Curr. Pharm. Des., 2021, 27(7), 919-931.
[http://dx.doi.org/10.2174/1381612826666201002145454] [PMID: 33006535]
[74]
Majnooni, M.B.; Fakhri, S.; Ghanadian, S.M.; Bahrami, G.; Mansouri, K.; Iranpanah, A.; Farzaei, M.H.; Mojarrab, M. Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways. Metabolites, 2023, 13(3), 323.
[http://dx.doi.org/10.3390/metabo13030323] [PMID: 36984763]
[75]
Kao, R.Y.T.; Jenkins, J.L.; Olson, K.A.; Key, M.E.; Fett, J.W.; Shapiro, R. A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proc. Natl. Acad. Sci., 2002, 99(15), 10066-10071.
[http://dx.doi.org/10.1073/pnas.152342999] [PMID: 12118120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy