Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Curcumin-Enclosed Nanoparticles for Cancer Therapy

Author(s): Shivam Rajput, Pramod Kumar Sharma, Rishabha Malviya* and Niranjan Kaushik

Volume 20, Issue 5, 2024

Published on: 07 August, 2023

Page: [615 - 635] Pages: 21

DOI: 10.2174/1573401319666230721105040

Price: $65

Abstract

Cancer is the greatest cause of mortality worldwide, and it is distinguished by the unrestrained proliferation of a group of aberrant cells, the random division of cells, and the invasiveness of genetically organized cells. At present, there are various strategies for curing of cancer-based on the type & severity. In the earlier two decades, curcumin has received huge attention in pharmacological, biological, and nutraceutical research. In addition to triggering apoptosis in cancer cells, curcumin also inhibits cancer cell invasion and proliferation by stifling cellular signaling pathways. The lower water solubility of curcumin decreases the oral bioavailability, absorption into the systemic circulation, and chemical stability and finally bound the activity of curcumin as an anticancer agent. The pharmacology of curcumin, as well as its derivatives with relation to its anticancer potential, primary modes of action, & cellular target, has been summarised in this article along with a list of the numerous curcumin enclosing nanoformulations. Multiple methods of administration have been developed for curcumin to boost its specificity. Encapsulation and other formulation processing techniques have been found to enhance both the solubility and bioavailability of curcumin. The nanoparticles' size, shape, surface characteristics, and targeting ligand are all factors that nanoformulation designers must think about when working to increase the efficacy and cellular targeting of anticancer treatments.

Keywords: Curcumin, cancer, gene, cell, nanoformulation, structural analogous.

Graphical Abstract
[1]
Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun 2018; 9(1): 3490.
[http://dx.doi.org/10.1038/s41467-018-05467-z] [PMID: 30154431]
[2]
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm 2019; 16(1): 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[3]
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25(1): 107-25.
[http://dx.doi.org/10.1016/j.drudis.2019.09.017] [PMID: 31586642]
[4]
Wei J, Long Y, Guo R, et al. Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Acta Pharm Sin B 2019; 9(4): 819-31.
[http://dx.doi.org/10.1016/j.apsb.2019.01.018] [PMID: 31384541]
[5]
Abelson JS, Chait A, Shen MJ, Charlson M, Dickerman A, Yeo H. Coping strategies among colorectal cancer patients undergoing surgery and the role of the surgeon in mitigating distress: A qualitative study. Surgery 2019; 165(2): 461-8.
[http://dx.doi.org/10.1016/j.surg.2018.06.005] [PMID: 30316575]
[6]
Zhang Q, Liu J, Ao N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 2020; 10(1): 1220.
[http://dx.doi.org/10.1038/s41598-020-58134-z] [PMID: 31988348]
[7]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011; 61(4): 250-81.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[8]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[9]
Williams PA, Cao S, Yang D, Jennelle RL. Patient-reported outcomes of the relative severity of side effects from cancer radiotherapy. Support Care Cancer 2020; 28(1): 309-16.
[http://dx.doi.org/10.1007/s00520-019-04820-2] [PMID: 31044307]
[10]
Kurkjian N, Tucker P, Ostermeyer B, Valentine A. Chemotherapy, immunotherapy, and psychotropic use in cancer patients: A review of psychiatric side effects. Psychiatr Ann 2017; 47(4): 200-5.
[http://dx.doi.org/10.3928/00485713-20170313-01]
[11]
Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2018; 54(2): 407-19.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[12]
Wang Y, Gao F, Jiang X, et al. Co-delivery of gemcitabine and Mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer. J Biomed Nanotechnol 2019; 15(5): 966-78.
[http://dx.doi.org/10.1166/jbn.2019.2762] [PMID: 30890228]
[13]
Nanni O, Amadori D, De Censi A, et al. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial. Breast Cancer Res Treat 2019; 174(2): 433-42.
[http://dx.doi.org/10.1007/s10549-018-05070-2] [PMID: 30536182]
[14]
Naghizadeh S, Mohammadi A, Baradaran B, Mansoori B. Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy. Gene 2019; 714: 143972.
[http://dx.doi.org/10.1016/j.gene.2019.143972] [PMID: 31301483]
[15]
Shi K, Xue B, Jia Y, et al. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Res 2019; 12(6): 1389-99.
[http://dx.doi.org/10.1007/s12274-019-2342-7]
[16]
Dei Cas M, Ghidoni R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 2019; 11(9): 2147.
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[17]
Gupta P. 2 - Targeted cancer therapy with bioactive foods and their products. In: Functional Foods in Cancer Prevention and Therapy. Academic Press 2020; pp. 33-46.
[http://dx.doi.org/10.1016/B978-0-12-816151-7.00002-8]
[18]
de Souza JF, da Silva Pontes K, Alves TFR, et al. Structural comparison, physicochemical properties, and In vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J Mol Liq 2020; 306: 112861.
[http://dx.doi.org/10.1016/j.molliq.2020.112861]
[19]
Doktorovova S, Souto EB, Silva AM. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol 2018; 23(1): 96-105.
[http://dx.doi.org/10.1080/10837450.2017.1384491] [PMID: 28949267]
[20]
Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids Surf B Biointerfaces 2010; 81(1): 263-73.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.020] [PMID: 20688493]
[21]
Santos IS, Ponte BM, Boonme P, Silva AM, Souto EB. Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer. Biotechnol Adv 2013; 31(5): 514-23.
[http://dx.doi.org/10.1016/j.biotechadv.2012.08.005] [PMID: 22940401]
[22]
Souto EB, Severino P, Basso R, Santana MH. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Oxidative Stress and Nanotechnology 2013; pp. 37-46.
[http://dx.doi.org/10.1007/978-1-62703-475-3_3]
[23]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6): 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[24]
Daliu P, Santini A, Novellino E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev Clin Pharmacol 2019; 12(1): 1-7.
[http://dx.doi.org/10.1080/17512433.2019.1552135] [PMID: 30484336]
[25]
Polyphenols NE. ExtracTable and Non-extracTable polyphenols: An overview. In: Non-ExtracTable Polyphenols and Carotenoids: Importance in Human Nutrition and Health. RSC publishing 2018; pp. 37-45.
[26]
Durazzo A, Lucarini M. A current shot and re-thinking of antioxidant research strategy. Br J Anal Chem 2019; 5(20): 9-11.
[http://dx.doi.org/10.30744/brjac.2179-3425.2018.5.20.9-11]
[27]
Durazzo A, Lucarini M. ExtracTable and non-extracTable antioxidants. Molecules 2019; 24(10): 1933.
[http://dx.doi.org/10.3390/molecules24101933] [PMID: 31137464]
[28]
Durazzo A, D’Addezio L, Camilli E, et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018; 23(8): 1844.
[http://dx.doi.org/10.3390/molecules23081844] [PMID: 30042375]
[29]
Durazzo A, Lucarini M, Kiefer J, Mahesar SA. State-of-the-art infrared applications in drugs, dietary supplements, and nutraceuticals. J Spectrosc 2020; 2020: 1397275.
[http://dx.doi.org/10.1155/2020/1397275]
[30]
Santini A, Novellino E. Nutraceuticals: Beyond the diet before the drugs. Curr Bioact Compd 2014; 10(1): 1-12.
[http://dx.doi.org/10.2174/157340721001140724145924]
[31]
Santini A, Novellino E, Armini V, Ritieni A. State of the art of ready-to-use therapeutic food: A tool for nutraceuticals addition to foodstuff. Food Chem 2013; 140(4): 843-9.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.098] [PMID: 23692774]
[32]
Santini A, Novellino E. Nutraceuticals - shedding light on the grey area between pharmaceuticals and food. Expert Rev Clin Pharmacol 2018; 11(6): 545-7.
[http://dx.doi.org/10.1080/17512433.2018.1464911] [PMID: 29667442]
[33]
Santini A, Tenore GC, Novellino E. Nutraceuticals: A paradigm of proactive medicine. Eur J Pharm Sci 2017; 96: 53-61.
[http://dx.doi.org/10.1016/j.ejps.2016.09.003] [PMID: 27613382]
[34]
Santini A, Cammarata SM, Capone G, et al. Nutraceuticals: Opening the debate for a regulatory framework. Br J Clin Pharmacol 2018; 84(4): 659-72.
[http://dx.doi.org/10.1111/bcp.13496] [PMID: 29433155]
[35]
Daliu P, Santini A, Novellino E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin Ther Pat 2018; 28(12): 875-82.
[http://dx.doi.org/10.1080/13543776.2018.1552260] [PMID: 30484340]
[36]
Durazzo A, Camilli E, D’Addezio L, et al. Development of dietary supplement label database in Italy: Focus of FoodEx2 coding. Nutrients 2019; 12(1): 89.
[http://dx.doi.org/10.3390/nu12010089] [PMID: 31892267]
[37]
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46(1): 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[38]
López-Malo D, Villarón-Casares CA, Alarcón-Jiménez J, et al. Curcumin as a therapeutic option in retinal diseases. Antioxidants 2020; 9(1): 48.
[http://dx.doi.org/10.3390/antiox9010048] [PMID: 31935797]
[39]
Basnet P, Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16(6): 4567-98.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[40]
Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern Med Rev 2009; 14(2): 141-53.
[PMID: 19594223]
[41]
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and colorectal cancer: From basic to clinical evidences. Int J Mol Sci 2020; 21(7): 2364.
[http://dx.doi.org/10.3390/ijms21072364] [PMID: 32235371]
[42]
Khan MM, Madni A, Tahir N, et al. Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. Int J Nanomed 2020; 15: 2207-17.
[http://dx.doi.org/10.2147/IJN.S247893] [PMID: 32280215]
[43]
Kádasi A, Sirotkin AV, Maruniaková N, Kolesárová A, Bulla J, Grossmann R. The effect of curcumin on secretory activity, proliferation and apoptosis of the porcine ovarian granulosa cells. J Microbiol Biotechnol Food Sci 2021; 2021: 349-57.
[44]
Oglah MK, Mustafa YF, Bashir MK, Jasim MH, Mustafa YF. Curcumin and its derivatives: A review of their biological activities. Syst Rev Pharm 2020; 11(3): 472-81.
[45]
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin I: Evidence from In vitro studies. Nutrients 2020; 12(1): 118.
[http://dx.doi.org/10.3390/nu12010118] [PMID: 31906278]
[46]
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin II: Evidence from in vivo studies. Nutrients 2019; 12(1): 58.
[http://dx.doi.org/10.3390/nu12010058] [PMID: 31881654]
[47]
Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012; 35(11): 2121-7.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[48]
Khudhayer Oglah M, Fakri Mustafa Y. Curcumin analogs: Synthesis and biological activities. Med Chem Res 2020; 29(3): 479-86.
[http://dx.doi.org/10.1007/s00044-019-02497-0]
[49]
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124: 182-91.
[http://dx.doi.org/10.1016/j.fct.2018.12.002] [PMID: 30529260]
[50]
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: From chemistry to medicine. Compr Rev Food Sci Food Saf 2014; 13(1): 62-77.
[http://dx.doi.org/10.1111/1541-4337.12047] [PMID: 33412694]
[51]
Hu RW, Carey EJ, Lindor KD, Tabibian JH. Curcumin in hepatobiliary disease: Pharmacotherapeutic properties and emerging potential clinical applications. Ann Hepatol 2017; 16(6): 835-41.
[http://dx.doi.org/10.5604/01.3001.0010.5273] [PMID: 29055920]
[52]
Sirisidthi K, Kosai P, Jiraungkoorskul K, Jiraungkoorskul W. Antithrombotic activity of turmeric Curcuma longa: A review. Indian J Agric Res 2016; 50(2): 101-6.
[http://dx.doi.org/10.18805/ijare.v50i2.9586]
[53]
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2020; 60(6): 887-939.
[http://dx.doi.org/10.1080/10408398.2018.1552244] [PMID: 30632782]
[54]
Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur J Nutr 2020; 59(2): 477-83.
[http://dx.doi.org/10.1007/s00394-019-01916-7] [PMID: 30796508]
[55]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 2019; 11(10): 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[56]
Barchitta M, Maugeri A, Favara G, et al. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin. Int J Mol Sci 2019; 20(5): 1119.
[http://dx.doi.org/10.3390/ijms20051119] [PMID: 30841550]
[57]
Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. In: Aggarwal BB, Surh YJ, Shishodia S, Eds. The molecular targets and therapeutic uses of curcumin in health and disease.Boston, MA: Springer 2007; 595: pp. 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8]
[58]
Yan FS, Sun JL, Xie WH, Shen L, Ji HF. Neuroprotective effects and mechanisms of curcumin–Cu (II) and–Zn (II) complexes systems and their pharmacological implications. Nutrients 2017; 10(1): 28.
[http://dx.doi.org/10.3390/nu10010028] [PMID: 29283372]
[59]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[60]
Yang C, Zhu K, Yuan X, Zhang X, Qian Y, Cheng T. Curcumin has immunomodulatory effects on RANKL-stimulated osteoclastogenesis In vitro and titanium nanoparticle-induced bone loss in vivo. J Cell Mol Med 2020; 24(2): 1553-67.
[http://dx.doi.org/10.1111/jcmm.14842] [PMID: 31845532]
[61]
Abo-Zaid MA, Shaheen ES, Ismail AH. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. J Food Biochem 2020; 44(6): e13219.
[http://dx.doi.org/10.1111/jfbc.13219] [PMID: 32215945]
[62]
Bimonte S, Barbieri A, Leongito M, et al. Curcumin anticancer studies in pancreatic cancer. Nutrients 2016; 8(7): 433.
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[63]
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363-98.
[PMID: 12680238]
[64]
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv 2014; 32(6): 1053-64.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[65]
Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFÎşB activation, and IL-2 signaling. J Surg Res 2004; 121(2): 171-7.
[http://dx.doi.org/10.1016/j.jss.2004.04.004] [PMID: 15501456]
[66]
Guneydas G, Topcul MR. Antiproliferative effects of curcumin different types of breast cancer. Asian Pac J Cancer Prev 2022; 23(3): 911-7.
[http://dx.doi.org/10.31557/APJCP.2022.23.3.911] [PMID: 35345363]
[67]
Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr 2010; 5(1): 61-74.
[http://dx.doi.org/10.1007/s12263-009-0152-3] [PMID: 19806380]
[68]
Niedzwiecki A, Roomi M, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016; 8(9): 552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[69]
Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 1997; 8(5): 470-81.
[http://dx.doi.org/10.1097/00001813-199706000-00010] [PMID: 9215611]
[70]
Cho M, Jung Y, Moon Y, et al. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett 2006; 103(2): 159-66.
[http://dx.doi.org/10.1016/j.imlet.2005.10.020] [PMID: 16368150]
[71]
Balar H, Shah T. Rheumatoid arthritis: Conjugating basics with drug delivery. Curr Rheumatol Rev 2011; 7(3): 253-62.
[http://dx.doi.org/10.2174/157339711796320547]
[72]
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa MC. Curcumin and Health. Molecules 2016; 21(3): 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[73]
Hour TC, Chen J, Huang CY, Guan JY, Lu SH, Pu YS. Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21WAF1/CIP1 and C/EBP? expressions and suppressing NF-?B activation. Prostate 2002; 51(3): 211-8.
[http://dx.doi.org/10.1002/pros.10089] [PMID: 11967955]
[74]
Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. Curr Probl Cancer 2007; 31(4): 243-305.
[http://dx.doi.org/10.1016/j.currproblcancer.2007.04.001] [PMID: 17645940]
[75]
Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers. Molecules 2019; 24(23): 4386.
[http://dx.doi.org/10.3390/molecules24234386] [PMID: 31801262]
[76]
Kasi PD, Tamilselvam R, Skalicka-WoĹşniak K, et al. Molecular targets of curcumin for cancer therapy: An updated review. Tumour Biol 2016; 37(10): 13017-28.
[http://dx.doi.org/10.1007/s13277-016-5183-y] [PMID: 27468716]
[77]
Qadir MI, Naqvi ST, Muhammad SA, Qadir M, Naqvi ST. Curcumin: A polyphenol with molecular targets for cancer control. Asian Pac J Cancer Prev 2016; 17(6): 2735-9.
[PMID: 27356682]
[78]
Baldi A, De Luca A, Maiorano P, D’Angelo C, Giordano A. Curcumin as an anticancer agent in malignant mesothelioma: A review. Int J Mol Sci 2020; 21(5): 1839.
[http://dx.doi.org/10.3390/ijms21051839] [PMID: 32155978]
[79]
Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174(11): 1325-48.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[80]
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008; 267(1): 133-64.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025] [PMID: 18462866]
[81]
Nagahama K, Utsumi T, Kumano T, Maekawa S, Oyama N, Kawakami J. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci Rep 2016; 6(1): 30962.
[http://dx.doi.org/10.1038/srep30962] [PMID: 27476814]
[82]
Rodrigues FC, Anil Kumar NV, Thakur G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur J Med Chem 2019; 177: 76-104.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.058] [PMID: 31129455]
[83]
Bolat ZB, Islek Z, Demir BN, Yilmaz EN, Sahin F, Ucisik MH. Curcumin-and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front Bioeng Biotechnol 2020; 8: 50.
[http://dx.doi.org/10.3389/fbioe.2020.00050] [PMID: 32117930]
[84]
Fiori C, Checcucci E, Amparore D, Cattaneo G, Manfredi M, Porpiglia F. Adrenal tumours: Open surgery versus minimally invasive surgery. Curr Opin Oncol 2020; 32(1): 27-34.
[http://dx.doi.org/10.1097/CCO.0000000000000594] [PMID: 31644473]
[85]
Babazadeh A, Tabibiazar M, Hamishehkar H, Shi B. Zein-CMC-PEG multiple nanocolloidal systems as a novel approach for nutra-pharmaceutical applications. Adv Pharm Bull 2019; 9(2): 262-70.
[http://dx.doi.org/10.15171/apb.2019.030] [PMID: 31380252]
[86]
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol 2019; 47(1): 1476-87.
[http://dx.doi.org/10.1080/21691401.2019.1601104] [PMID: 31070063]
[87]
Lin YL, Liu YK, Tsai NM, et al. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine 2012; 8(3): 318-27.
[http://dx.doi.org/10.1016/j.nano.2011.06.011] [PMID: 21704596]
[88]
Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 2012; 60(21): 5373-9.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[89]
Kharat M, Du Z, Zhang G, McClements DJ. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J Agric Food Chem 2017; 65(8): 1525-32.
[http://dx.doi.org/10.1021/acs.jafc.6b04815] [PMID: 27935709]
[90]
Zhang Z, Zhang R, Zou L, et al. Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocoll 2016; 58: 160-70.
[http://dx.doi.org/10.1016/j.foodhyd.2016.02.036]
[91]
Yang X, Li Z, Wang N, et al. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer In vitro and in vivo. Sci Rep 2015; 5(1): 10322.
[http://dx.doi.org/10.1038/srep10322] [PMID: 25980982]
[92]
Bisht S, Mizuma M, Feldmann G, et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 2010; 9(8): 2255-64.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0172] [PMID: 20647339]
[93]
Kakkar V, Mishra AK, Chuttani K, Kaur IP. Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain. Int J Pharm 2013; 448(2): 354-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.046] [PMID: 23558314]
[94]
Wu Q, Gao H, Vriesekoop F, Liu Z, He J, Liang H. Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Mater Sci Eng C 2020; 115: 111094.
[http://dx.doi.org/10.1016/j.msec.2020.111094] [PMID: 32600698]
[95]
Perera WPTD, Dissanayake RK, Ranatunga UI, et al. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv 2020; 10(51): 30785-95.
[http://dx.doi.org/10.1039/D0RA05755J] [PMID: 35516060]
[96]
Kumari P, Paul M, Bobde Y, et al. Albumin-based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine 2020; 15(29): 2851-69.
[http://dx.doi.org/10.2217/nnm-2020-0232] [PMID: 33275041]
[97]
Maghari S, Ghassempour A. Evaluation of protein corona formation and anticancer efficiency of curcumin-loaded zwitterionic silica nanoparticles. Nanomed J 2020; 7(2): 149-57.
[98]
Sebastiammal S, Lesly Fathima AS, Devanesan S, et al. Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: A perspective of nano-based drug delivery. J Drug Deliv Sci Technol 2020; 57: 101752.
[http://dx.doi.org/10.1016/j.jddst.2020.101752]
[99]
Sampath M, Pichaimani A, Kumpati P, Sengottuvelan B. The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells. Int J Biol Macromol 2020; 162: 748-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.188] [PMID: 32585267]
[100]
Sufi SA, Hoda M, Pajaniradje S, Mukherjee V, Coumar SM, Rajagopalan R. Enhanced drug retention, sustained release, and anti-cancer potential of curcumin and indole-curcumin analog-loaded polysorbate 80-stabilizied PLGA nanoparticles in colon cancer cell line SW480. Int J Pharm 2020; 588: 119738.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119738] [PMID: 32777534]
[101]
Khan S, Setua S, Kumari S, et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019; 208: 83-97.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.005] [PMID: 30999154]
[102]
Xie X, Wang H, Williams GR, et al. Erythrocyte membrane Cloaked Curcumin-Loaded nanoparticles for enhanced chemotherapy. Pharmaceutics 2019; 11(9): 429.
[http://dx.doi.org/10.3390/pharmaceutics11090429] [PMID: 31450749]
[103]
Bomb K, Srivastava R, Bandyopadhyaya R. Dual drug delivery of curcumin and niclosamide using PLGA nanoparticles for improved therapeutic effect on breast cancer cells. J Polym Res 2020; 27(5): 1-3.
[104]
Elbialy NS, Aboushoushah SF, Sofi BF, Noorwali A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous Mesoporous Mater 2020; 291: 109540.
[http://dx.doi.org/10.1016/j.micromeso.2019.06.002]
[105]
Mokhtari S, Solati-Hashjin M, Khosrowpour Z, Gholipourmalekabadi M. Layered double hydroxide-galactose as an excellent nanocarrier for targeted delivery of curcumin to hepatocellular carcinoma cells. Appl Clay Sci 2021; 200: 105891.
[http://dx.doi.org/10.1016/j.clay.2020.105891]
[106]
Curcio M, Cirillo G, Tucci P, et al. Dextran-curcumin nanoparticles as a methotrexate delivery vehicle: A step forward in breast cancer combination therapy. Pharmaceuticals 2019; 13(1): 2.
[http://dx.doi.org/10.3390/ph13010002] [PMID: 31881645]
[107]
Hu Y, He Y, Ji J, Zheng S, Cheng Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int J Nanomed 2020; 15: 1239-52.
[http://dx.doi.org/10.2147/IJN.S232777] [PMID: 32110020]
[108]
Yang QQ, Farha AK, Kim G, Gul K, Gan RY, Corke H. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci Technol 2020; 97: 341-54.
[http://dx.doi.org/10.1016/j.tifs.2020.01.023]
[109]
Chen Y, Chen C, Zhang X, et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm Sin B 2020; 10(6): 1106-21.
[http://dx.doi.org/10.1016/j.apsb.2019.10.011] [PMID: 32642416]
[110]
Saeed SM, Mirzadeh H, Zandi M, Barzin J. Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog Biomater 2017; 6(1-2): 39-48.
[http://dx.doi.org/10.1007/s40204-017-0062-1] [PMID: 28155217]
[111]
Bechnak L, Khalil C, Kurdi RE, Khnayzer RS, Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: Colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem Photobiol Sci 2020; 19(8): 1088-98.
[http://dx.doi.org/10.1039/d0pp00032a] [PMID: 32638825]
[112]
Arvapalli DM, Sheardy AT, Allado K, Chevva H, Yin Z, Wei J. Design of curcumin loaded carbon nanodots delivery system: Enhanced bioavailability, release kinetics, and anticancer activity. ACS Appl Bio Mater 2020; 3(12): 8776-85.
[http://dx.doi.org/10.1021/acsabm.0c01144] [PMID: 35019553]
[113]
Razaghi M, Ramazani A, Khoobi M, Mortezazadeh T, Aksoy EA, Küçükkılınç TT. Highly fluorinated graphene oxide nanosheets for anticancer linoleic-curcumin conjugate delivery and T2-Weighted magnetic resonance imaging: In vitro and in vivo studies. J Drug Deliv Sci Technol 2020; 60: 101967.
[http://dx.doi.org/10.1016/j.jddst.2020.101967]
[114]
Hong SC, Park KM, Hong CR, et al. Microfluidic assembly of liposomes dual-loaded with catechin and curcumin for enhancing bioavailability. Colloids Surf A Physicochem Eng Asp 2020; 594: 124670.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124670]
[115]
Roozbehi S, Dadashzadeh S, Mirshahi M, Sadeghizadeh M, Sajedi RH. Targeted anticancer prodrug therapy using dextran mediated enzyme–antibody conjugate and β-cyclodextrin-curcumin inclusion complex. Int J Biol Macromol 2020; 160: 1029-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.225] [PMID: 32479931]
[116]
Gupta AP, Khan S, Manzoor MM, et al. Chapter 10 - Anticancer curcumin: Natural analogues and structure-activity relationship. In: Studies in Natural Products Chemistry. Elsevier 2017; 54: pp. 355-401.
[http://dx.doi.org/10.1016/B978-0-444-63929-5.00010-3]
[117]
Chen WF, Deng SL, Zhou B, Yang L, Liu ZL. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med 2006; 40(3): 526-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.008] [PMID: 16443168]
[118]
Ohtsu H, Xiao Z, Ishida J, et al. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J Med Chem 2002; 45(23): 5037-42.
[http://dx.doi.org/10.1021/jm020200g] [PMID: 12408714]
[119]
Banuppriya G, Shakambari G, Sribalan R, Varalakshmi P, Padmini V. Evaluation of anticancer activity of water-soluble curcumin through the induction of apoptosis by p53 and p21 modulation. ChemistrySelect 2018; 3(11): 2976-81.
[http://dx.doi.org/10.1002/slct.201800217]
[120]
Hsieh MT, Chang LC, Hung HY, et al. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer In vitro and in vivo. Eur J Med Chem 2017; 131: 141-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.006] [PMID: 28319780]
[121]
Elmegeed GA, Yahya SMM, Abd-Elhalim MM, Mohamed MS, Mohareb RM, Elsayed GH. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells. Steroids 2016; 115: 80-9.
[http://dx.doi.org/10.1016/j.steroids.2016.08.014] [PMID: 27553725]
[122]
Sahu PK, Sahu PK, Sahu PL, Agarwal DD. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives. Bioorg Med Chem Lett 2016; 26(4): 1342-7.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.013] [PMID: 26810315]
[123]
Lien JC, Hung CM, Lin YJ, et al. Pculin02H, a curcumin derivative, inhibits proliferation and clinical drug resistance of HER2-overexpressing cancer cells. Chem Biol Interact 2015; 235: 17-26.
[http://dx.doi.org/10.1016/j.cbi.2015.04.005] [PMID: 25866362]
[124]
Puneeth HR, Ananda H, Kumar KSS, Rangappa KS, Sharada AC. Synthesis and antiproliferative studies of curcumin pyrazole derivatives. Med Chem Res 2016; 25(9): 1842-51.
[http://dx.doi.org/10.1007/s00044-016-1628-5]
[125]
Hackler L Jr, Ózsvári B, Gyuris M, et al. The curcumin analog C-150, influencing NF-κB, UPR and Akt/Notch pathways has potent anticancer activity in vitro and in vivo. PLoS One 2016; 11(3): e0149832.
[http://dx.doi.org/10.1371/journal.pone.0149832] [PMID: 26943907]
[126]
Nagy LI, Fehér LZ, Szebeni GJ, et al. Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. BioMed Res Int 2015; 2015: 968981.
[http://dx.doi.org/10.1155/2015/968981] [PMID: 26075279]
[127]
Gyuris M, Hackler L Jr, Nagy LI, et al. Mannich curcuminoids as potent anticancer agents. Arch Pharm 2017; 350(7): e1700005.
[http://dx.doi.org/10.1002/ardp.201700005] [PMID: 28547897]
[128]
de Freitas Silva M, Coelho LF, Guirelli IM, et al. Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells. Toxicol In vitro 2018; 50: 75-85.
[http://dx.doi.org/10.1016/j.tiv.2018.02.020] [PMID: 29501629]
[129]
Khwaja S, Fatima K, Hasanain M, et al. Antiproliferative efficacy of curcumin mimics through microtubule destabilization. Eur J Med Chem 2018; 151: 51-61.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.063] [PMID: 29605808]
[130]
Bhullar KS, Jha A, Rupasinghe HPV. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact 2015; 242: 107-22.
[http://dx.doi.org/10.1016/j.cbi.2015.09.020] [PMID: 26409325]
[131]
Hussin Y, Aziz M, Che Rahim N, et al. DK1 induces apoptosis via mitochondria-dependent signaling pathway in human colon carcinoma cell lines in vitro. Int J Mol Sci 2018; 19(4): 1151.
[http://dx.doi.org/10.3390/ijms19041151] [PMID: 29641445]
[132]
Zhang J, Feng Z, Wang C, et al. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis. Am J Cancer Res 2017; 7(2): 275-88.
[PMID: 28337376]
[133]
Zhang X, Chen M, Zou P, et al. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells. BMC Cancer 2015; 15(1): 866.
[http://dx.doi.org/10.1186/s12885-015-1851-3] [PMID: 26546056]
[134]
Zou P, Zhang J, Xia Y, et al. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget 2015; 6(8): 5860-76.
[http://dx.doi.org/10.18632/oncotarget.3333] [PMID: 25714022]
[135]
Weng Q, Fu L, Chen G, et al. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin. Eur J Med Chem 2015; 103: 44-55.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.036] [PMID: 26318057]
[136]
Dai F, Liu GY, Li Y, et al. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids. Free Radic Biol Med 2015; 85: 127-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.017] [PMID: 25912482]
[137]
Li Q, Chen J, Luo S, Xu J, Huang Q, Liu T. Synthesis and assessment of the antioxidant and antitumor properties of asymmetric curcumin analogues. Eur J Med Chem 2015; 93: 461-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.005] [PMID: 25728027]
[138]
Xue J, Luo Y. Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: A comprehensive review on preparation methods and encapsulation mechanisms. J Future Foods 2023; 3(2): 99-114.
[http://dx.doi.org/10.1016/j.jfutfo.2022.12.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy