Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Impact of Precision Nutrition on Microbiota and Obesity

Author(s): Giuseppe Merra*, Paola Gualtieri, Antonino De Lorenzo, Annunziata Capacci, Giulia Frank, Maria Dri, Laura Di Renzo and Marco Marchetti

Volume 20, Issue 5, 2024

Published on: 01 August, 2023

Page: [602 - 614] Pages: 13

DOI: 10.2174/1573401319666230724112531

Price: $65

Abstract

The human body is colonized by trillions of microbes, that contribute to our health and well-being. Many factors influence the composition and functions of the intestinal microbiota, including the host's eating habits, which seem to have a significant effect. A healthy intestinal microbiota is essential for proper metabolic function and homeostasis. Alterations in microbial composition could dramatically cause obesity and diabetes, modifying and influencing host metabolism, homeostasis, and central appetite mechanism. Brain reward signaling is mediated by the dopaminergic mesolimbic system and plays an important role in the development of obesity. Dysregulation of the energy balance causes obesity. Obesity is a serious health problem. The composition of the intestinal microbiota influences various aspects of energy metabolism: digestion, food intake from ingested foods, food components, and accumulation of excess fat. Therefore, the microbial community can contribute significantly to the progression of obesity and its complications. A "tailored nutritional approach" and more feasible and sustainable personalized nutritional strategies must be developed to optimize the gut microbiome and improve host response.

Keywords: Metabolism, microbiome, microbiota, obesity, precision nutrition, nutritional strategies.

Graphical Abstract
[1]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207-14.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[2]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[3]
Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science 2013; 341(6141): 1237439.
[http://dx.doi.org/10.1126/science.1237439] [PMID: 23828941]
[4]
Zhao L. The gut microbiota and obesity: From correlation to causality. Nat Rev Microbiol 2013; 11(9): 639-47.
[http://dx.doi.org/10.1038/nrmicro3089] [PMID: 23912213]
[5]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533.
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[6]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[7]
Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167(5): 1339-1353.e21.
[http://dx.doi.org/10.1016/j.cell.2016.10.043] [PMID: 27863247]
[8]
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529(7585): 212-5.
[http://dx.doi.org/10.1038/nature16504] [PMID: 26762459]
[9]
Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 2017; 10(4): 946-56.
[http://dx.doi.org/10.1038/mi.2016.114] [PMID: 27966553]
[10]
Kamiya T, Tang C, Kadoki M, et al. β-Glucans in food modify colonic microflora by inducing antimicrobial protein, calprotectin, in a Dectin-1-induced-IL-17F-dependent manner. Mucosal Immunol 2018; 11(3): 763-73.
[http://dx.doi.org/10.1038/mi.2017.86] [PMID: 29068000]
[11]
Reijnders D, Goossens GH, Hermes GDA, et al. effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: A randomized double-blind placebo-controlled trial. Cell Metab 2016; 24(1): 63-74.
[http://dx.doi.org/10.1016/j.cmet.2016.06.016] [PMID: 27411009]
[12]
Wheeler ML, Limon JJ, Bar AS, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 2016; 19(6): 865-73.
[http://dx.doi.org/10.1016/j.chom.2016.05.003] [PMID: 27237365]
[13]
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018; 67(1): 108-19.
[http://dx.doi.org/10.1136/gutjnl-2016-312135] [PMID: 27802154]
[14]
Maurice CF, CL Knowles S, Ladau J, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J 2015; 9(11): 2423-34.
[http://dx.doi.org/10.1038/ismej.2015.53] [PMID: 26023870]
[15]
Lu HP, Lai YC, Huang SW, Chen HC, Hsieh C, Yu HT. Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci Rep 2014; 4(1): 6185.
[http://dx.doi.org/10.1038/srep06185] [PMID: 25155166]
[16]
Allais L, Kerckhof FM, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol 2016; 18(5): 1352-63.
[http://dx.doi.org/10.1111/1462-2920.12934] [PMID: 26033517]
[17]
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut–muscle axis? Nutrients 2017; 9(12): 1303.
[http://dx.doi.org/10.3390/nu9121303] [PMID: 29189738]
[18]
Franzosa EA, Huang K, Meadow JF, et al. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci USA 2015; 112(22): E2930-8.
[http://dx.doi.org/10.1073/pnas.1423854112] [PMID: 25964341]
[19]
Fetissov SO. Role of the gut microbiota in host appetite control: Bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 2017; 13(1): 11-25.
[http://dx.doi.org/10.1038/nrendo.2016.150] [PMID: 27616451]
[20]
Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014; 158(4): 705-21.
[http://dx.doi.org/10.1016/j.cell.2014.05.052] [PMID: 25126780]
[21]
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl Res 2017; 179: 223-44.
[http://dx.doi.org/10.1016/j.trsl.2016.10.002] [PMID: 27832936]
[22]
Schellekens H, Dinan TG, Cryan JF. Lean mean fat reducing “ghrelin” machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology 2010; 58(1): 2-16.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.024] [PMID: 19573543]
[23]
Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res 2005; 1044(1): 127-31.
[http://dx.doi.org/10.1016/j.brainres.2005.03.011] [PMID: 15862798]
[24]
Hao Z, Townsend RL, Mumphrey MB, Patterson LM, Ye J, Berthoud HR. Vagal innervation of intestine contributes to weight loss After Roux-en-Y gastric bypass surgery in rats. Obes Surg 2014; 24(12): 2145-51.
[http://dx.doi.org/10.1007/s11695-014-1338-3] [PMID: 24972684]
[25]
Bodenlos JS, Schneider KL, Oleski J, Gordon K, Rothschild AJ, Pagoto SL. Vagus nerve stimulation and food intake: Effect of body mass index. J Diabetes Sci Technol 2014; 8(3): 590-5.
[http://dx.doi.org/10.1177/1932296814525188] [PMID: 24876624]
[26]
Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord 2014; 15(3): 189-96.
[http://dx.doi.org/10.1007/s11154-014-9288-6] [PMID: 24789701]
[27]
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr Neurosci 2015; 18(2): 49-65.
[http://dx.doi.org/10.1179/1476830513Y.0000000099] [PMID: 24621068]
[28]
Cani PD. The gut microbiota manages host metabolism. Nat Rev Endocrinol 2014; 10(2): 74-6.
[http://dx.doi.org/10.1038/nrendo.2013.240] [PMID: 24322652]
[29]
Nøhr MK, Pedersen MH, Gille A, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013; 154(10): 3552-64.
[http://dx.doi.org/10.1210/en.2013-1142] [PMID: 23885020]
[30]
Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5(1): 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[31]
Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 2016; 534(7606): 213-7.
[http://dx.doi.org/10.1038/nature18309] [PMID: 27279214]
[32]
Duca FA, Covasa M. Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. Br J Nutr 2012; 108(5): 778-93.
[http://dx.doi.org/10.1017/S0007114512000529] [PMID: 22409929]
[33]
Calvo SSC, Egan JM. The endocrinology of taste receptors. Nat Rev Endocrinol 2015; 11(4): 213-27.
[http://dx.doi.org/10.1038/nrendo.2015.7] [PMID: 25707779]
[34]
Swartz TD, Duca FA, de Wouters T, Sakar Y, Covasa M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br J Nutr 2012; 107(5): 621-30.
[http://dx.doi.org/10.1017/S0007114511003412] [PMID: 21781379]
[35]
Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 2014; 817: 221-39.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_10] [PMID: 24997036]
[36]
Jin DC, Cao HL, Xu MQ, et al. Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome. World J Gastroenterol 2016; 22(36): 8137-48.
[http://dx.doi.org/10.3748/wjg.v22.i36.8137] [PMID: 27688655]
[37]
Delgado TC. Glutamate and GABA in appetite regulation. Front Endocrinol 2013; 4: 103.
[http://dx.doi.org/10.3389/fendo.2013.00103] [PMID: 23966982]
[38]
Heisler LK, Jobst EE, Sutton GM, et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 2006; 51(2): 239-49.
[http://dx.doi.org/10.1016/j.neuron.2006.06.004] [PMID: 16846858]
[39]
Xu H, Qin S, Carrasco GA, et al. Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus. Neuroscience 2009; 158(4): 1599-607.
[http://dx.doi.org/10.1016/j.neuroscience.2008.11.028] [PMID: 19095043]
[40]
Cani PD, Plovier H, Van Hul M, et al. Endocannabinoids - at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12(3): 133-43.
[http://dx.doi.org/10.1038/nrendo.2015.211] [PMID: 26678807]
[41]
Jager G, Witkamp RF. The endocannabinoid system and appetite: Relevance for food reward. Nutr Res Rev 2014; 27(1): 172-85.
[http://dx.doi.org/10.1017/S0954422414000080] [PMID: 24933167]
[42]
Byrne ML, Whittle S, Allen NB. The role of brain structure and function in the association between inflammation and depressive symptoms. Psychosom Med 2016; 78(4): 389-400.
[http://dx.doi.org/10.1097/PSY.0000000000000311] [PMID: 26910795]
[43]
Dinan TG, Cryan JF. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595(2): 489-503.
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[44]
Collins SM, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: Experimental evidence and clinical implications. Curr Opin Microbiol 2013; 16(3): 240-5.
[http://dx.doi.org/10.1016/j.mib.2013.06.004] [PMID: 23845749]
[45]
Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 2015; 77(7): 607-15.
[http://dx.doi.org/10.1016/j.biopsych.2014.07.012] [PMID: 25173628]
[46]
Burokas A, Arboleya S, Moloney RD, et al. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 2017; 82(7): 472-87.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.031] [PMID: 28242013]
[47]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[48]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[49]
Stokes A, Preston SH. How Dangerous Is Obesity? Issues in Measurement and Interpretation. Popul Dev Rev 2016; 42(4): 595-614.
[http://dx.doi.org/10.1111/padr.12015] [PMID: 28701804]
[50]
Yang L, Drake BF, Colditz GA. Obesity and other cancers. J Clin Oncol 2016; 34(35): 4231-7.
[http://dx.doi.org/10.1200/JCO.2016.68.4837] [PMID: 27903157]
[51]
Nowak MA, Sigmund K. Evolutionary dynamics of biological games. Science 2004; 303(5659): 793-9.
[http://dx.doi.org/10.1126/science.1093411] [PMID: 14764867]
[52]
Del Vicario M, Bessi A, Zollo F, et al. The spreading of misinformation online. Proc Natl Acad Sci USA 2016; 113(3): 554-9.
[http://dx.doi.org/10.1073/pnas.1517441113] [PMID: 26729863]
[53]
Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med 2007; 357(4): 370-9.
[http://dx.doi.org/10.1056/NEJMsa066082] [PMID: 17652652]
[54]
Campbell D. Economic rationality in choosing between short-term bad-health choices and longer-term good-health choices. Int J Environ Res Public Health 2013; 10(11): 5971-88.
[http://dx.doi.org/10.3390/ijerph10115971] [PMID: 24217181]
[55]
Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C R Biol 2017; 340(2): 87-108.
[http://dx.doi.org/10.1016/j.crvi.2016.11.007] [PMID: 28089486]
[56]
Naseer M, Bibi F, Alqahtani M, et al. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer’s disease. CNS Neurol Disord Drug Targets 2014; 13(2): 305-11.
[http://dx.doi.org/10.2174/18715273113126660147] [PMID: 24059313]
[57]
Everard A, Lazarevic V, Gaïa N, et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 2014; 8(10): 2116-30.
[http://dx.doi.org/10.1038/ismej.2014.45] [PMID: 24694712]
[58]
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102(31): 11070-5.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[59]
Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 2009; 4(9): e7125.
[http://dx.doi.org/10.1371/journal.pone.0007125] [PMID: 19774074]
[60]
Angelakis E, Bastelica D, Ben Amara A, et al. An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice. Microb Pathog 2012; 52(1): 61-8.
[http://dx.doi.org/10.1016/j.micpath.2011.10.004] [PMID: 22020311]
[61]
Kalliomäki M, Salminen S, Isolauri E. Positive interactions with the microbiota: Probiotics. Adv Exp Med Biol 2008; 635: 57-66.
[http://dx.doi.org/10.1007/978-0-387-09550-9_5] [PMID: 18841703]
[62]
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol 2008; 8(1): 232.
[http://dx.doi.org/10.1186/1471-2180-8-232] [PMID: 19102766]
[63]
Million M, Angelakis E, Maraninchi M, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes 2013; 37(11): 1460-6.
[http://dx.doi.org/10.1038/ijo.2013.20] [PMID: 23459324]
[64]
Beaumont M, Goodrich JK, Jackson MA, et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol 2016; 17(1): 189.
[http://dx.doi.org/10.1186/s13059-016-1052-7] [PMID: 27666579]
[65]
Zhang M, Yang XJ. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J Gastroenterol 2016; 22(40): 8905-9.
[http://dx.doi.org/10.3748/wjg.v22.i40.8905] [PMID: 27833381]
[66]
Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 2015; 26(9): 493-501.
[http://dx.doi.org/10.1016/j.tem.2015.07.002] [PMID: 26257300]
[67]
Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett 2008; 582(1): 81-9.
[http://dx.doi.org/10.1016/j.febslet.2007.11.018] [PMID: 18022388]
[68]
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9(11): 799-809.
[http://dx.doi.org/10.1038/nri2653] [PMID: 19855405]
[69]
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489(7415): 242-9.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[70]
Mujico JR, Baccan GC, Gheorghe A, Díaz LE, Marcos A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr 2013; 110(4): 711-20.
[http://dx.doi.org/10.1017/S0007114512005612] [PMID: 23302605]
[71]
Graf D, Di Cagno R, Fåk F, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015; 26(0): 26164.
[http://dx.doi.org/10.3402/mehd.v26.26164] [PMID: 25656825]
[72]
Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012; 9(10): 577-89.
[http://dx.doi.org/10.1038/nrgastro.2012.156] [PMID: 22945443]
[73]
Shanahan F. Therapeutic implications of manipulating and mining the microbiota. J Physiol 2009; 587(17): 4175-9.
[http://dx.doi.org/10.1113/jphysiol.2009.174649] [PMID: 19505978]
[74]
Kong LC, Holmes BA, Cotillard A, et al. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One 2014; 9(10): e109434.
[http://dx.doi.org/10.1371/journal.pone.0109434] [PMID: 25330000]
[75]
Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63(12): 1913-20.
[http://dx.doi.org/10.1136/gutjnl-2013-306541] [PMID: 25021423]
[76]
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541-6.
[http://dx.doi.org/10.1038/nature12506] [PMID: 23985870]
[77]
Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015; 22(4): 658-68.
[http://dx.doi.org/10.1016/j.cmet.2015.07.026] [PMID: 26321659]
[78]
Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 2013; 27(1): 73-83.
[http://dx.doi.org/10.1016/j.bpg.2013.03.007] [PMID: 23768554]
[79]
Carmody RN, Gerber GK, Luevano JM Jr, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015; 17(1): 72-84.
[http://dx.doi.org/10.1016/j.chom.2014.11.010] [PMID: 25532804]
[80]
Smith CCR, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 2015; 9(11): 2515-26.
[http://dx.doi.org/10.1038/ismej.2015.64] [PMID: 25909977]
[81]
Hu S, Wang Y, Lichtenstein L, et al. Regional differences in colonic mucosa-associated microbiota determine the physiological expression of host heat shock proteins. Am J Physiol Gastrointest Liver Physiol 2010; 299(6): G1266-75.
[http://dx.doi.org/10.1152/ajpgi.00357.2010] [PMID: 20864653]
[82]
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718-23.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[83]
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761-72.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[84]
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341(6150): 1241214.
[http://dx.doi.org/10.1126/science.1241214] [PMID: 24009397]
[85]
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555(7695): 210-5.
[http://dx.doi.org/10.1038/nature25973] [PMID: 29489753]
[86]
Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome variation. Science 2016; 352(6285): 560-4.
[http://dx.doi.org/10.1126/science.aad3503] [PMID: 27126039]
[87]
O’Keefe SJD, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015; 6(1): 6342.
[http://dx.doi.org/10.1038/ncomms7342] [PMID: 25919227]
[88]
Korem T, Zeevi D, Zmora N, et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 2017; 25(6): 1243-1253.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.05.002] [PMID: 28591632]
[89]
Sanz Y, Romaní-Perez M, Benítez-Páez A, et al. Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clin Nutr 2018; 37(6): 2191-7.
[http://dx.doi.org/10.1016/j.clnu.2018.07.007] [PMID: 30033172]
[90]
Parks BW, Nam E, Org E, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 2013; 17(1): 141-52.
[http://dx.doi.org/10.1016/j.cmet.2012.12.007] [PMID: 23312289]
[91]
Wolters M, Ahrens J, Romaní-Pérez M, et al. Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clin Nutr 2019; 38(6): 2504-20.
[http://dx.doi.org/10.1016/j.clnu.2018.12.024] [PMID: 30655101]
[92]
Wan Y, Wang F, Yuan J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 2019; 68(8): 1417-29.
[http://dx.doi.org/10.1136/gutjnl-2018-317609] [PMID: 30782617]
[93]
Watson H, Mitra S, Croden FC, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018; 67(11): 1974-83.
[http://dx.doi.org/10.1136/gutjnl-2017-314968] [PMID: 28951525]
[94]
Lang JM, Pan C, Cantor RM, et al. Impact of individual traits, saturated fat, and protein source on the gut microbiome. MBio 2018; 9(6): e01604-18.
[http://dx.doi.org/10.1128/mBio.01604-18] [PMID: 30538180]
[95]
Zhu Y, Lin X, Zhao F, et al. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 2015; 5(1): 15220.
[http://dx.doi.org/10.1038/srep15220] [PMID: 26463271]
[96]
Dominika Ś, Arjan N, Karyn RP, Henryk K. The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol 2011; 145(1): 267-72.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.002] [PMID: 21276631]
[97]
Dostal Webster A, Staley C, Hamilton MJ, et al. Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria. Gut Microbes 2019; 10(4): 447-57.
[http://dx.doi.org/10.1080/19490976.2018.1559682] [PMID: 30810441]
[98]
Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5(1): 3654.
[http://dx.doi.org/10.1038/ncomms4654] [PMID: 24736369]
[99]
Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5(2): 220-30.
[http://dx.doi.org/10.1038/ismej.2010.118] [PMID: 20686513]
[100]
Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 2010; 5(11): e15046.
[http://dx.doi.org/10.1371/journal.pone.0015046] [PMID: 21151493]
[101]
Salonen A, de Vos WM. Impact of diet on human intestinal microbiota and health. Annu Rev Food Sci Technol 2014; 5(1): 239-62.
[http://dx.doi.org/10.1146/annurev-food-030212-182554] [PMID: 24387608]
[102]
Korpela K, Flint HJ, Johnstone AM, et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One 2014; 9(3): e90702.
[http://dx.doi.org/10.1371/journal.pone.0090702] [PMID: 24603757]
[103]
McOrist AL, Miller RB, Bird AR, et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 2011; 141(5): 883-9.
[http://dx.doi.org/10.3945/jn.110.128504] [PMID: 21430242]
[104]
Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585-8.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[105]
Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr 2018; 119(2): 176-89.
[http://dx.doi.org/10.1017/S0007114517003440] [PMID: 29307330]
[106]
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519(7541): 92-6.
[http://dx.doi.org/10.1038/nature14232] [PMID: 25731162]
[107]
Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier–induced low-grade inflammation promotes colon carcinogenesis. Cancer Res 2017; 77(1): 27-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1359] [PMID: 27821485]
[108]
Ruiz-Ojeda FJ, Plaza-Díaz J, Sáez-Lara MJ, Gil A. Effects of sweeteners on the gut microbiota: A review of experimental studies and clinical trials. Adv Nutr 2019; 10 (Suppl. 1): S31-48.
[http://dx.doi.org/10.1093/advances/nmy037] [PMID: 30721958]
[109]
Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One 2017; 12(6): e0178426.
[http://dx.doi.org/10.1371/journal.pone.0178426] [PMID: 28594855]
[110]
Uebanso T, Kano S, Yoshimoto A, et al. Effects of consuming xylitol on gut microbiota and lipid metabolism in mice. Nutrients 2017; 9(7): 756.
[http://dx.doi.org/10.3390/nu9070756] [PMID: 28708089]
[111]
Rodriguez-Palacios A, Harding A, Menghini P, et al. The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in crohn’s disease–like ileitis. Inflamm Bowel Dis 2018; 24(5): 1005-20.
[http://dx.doi.org/10.1093/ibd/izy060] [PMID: 29554272]
[112]
Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514(7521): 181-6.
[http://dx.doi.org/10.1038/nature13793] [PMID: 25231862]
[113]
Ferrario C, Taverniti V, Milani C, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr 2014; 144(11): 1787-96.
[http://dx.doi.org/10.3945/jn.114.197723] [PMID: 25332478]
[114]
Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: A systematic review of randomized controlled trials. Genome Med 2016; 8(1): 52.
[http://dx.doi.org/10.1186/s13073-016-0300-5] [PMID: 27159972]
[115]
Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and Gut Microbes. Front Microbiol 2017; 8: 356.
[http://dx.doi.org/10.3389/fmicb.2017.00356] [PMID: 28321211]
[116]
Maldonado-Gómez MX, Martínez I, Bottacini F, et al. Stable engraftment of bifidobacterium longum ah1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 2016; 20(4): 515-26.
[http://dx.doi.org/10.1016/j.chom.2016.09.001] [PMID: 27693307]
[117]
Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079-94.
[http://dx.doi.org/10.1016/j.cell.2015.11.001] [PMID: 26590418]
[118]
Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 2015; 22(6): 971-82.
[http://dx.doi.org/10.1016/j.cmet.2015.10.001] [PMID: 26552345]
[119]
Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016; 65(3): 426-36.
[http://dx.doi.org/10.1136/gutjnl-2014-308778] [PMID: 26100928]
[120]
Mendes-Soares H, Raveh-Sadka T, Azulay S, et al. Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am J Clin Nutr 2019; 110(1): 63-75.
[http://dx.doi.org/10.1093/ajcn/nqz028] [PMID: 31095300]
[121]
Berry EM. Sustainable food systems and the mediterranean diet. Nutrients 2019; 11(9): 2229.
[http://dx.doi.org/10.3390/nu11092229] [PMID: 31527411]
[122]
Kolodziejczyk AA, Zheng D, Elinav E. Diet–microbiota interactions and personalized nutrition. Nat Rev Microbiol 2019; 17(12): 742-53.
[http://dx.doi.org/10.1038/s41579-019-0256-8] [PMID: 31541197]
[123]
Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J 2016; 92(1087): 286-300.
[http://dx.doi.org/10.1136/postgradmedj-2015-133285] [PMID: 26912499]
[124]
De Lorenzo A, Bernardini S, Gualtieri P, et al. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: A randomized controlled trial for nutrigenomic approach in cardiometabolic risk. Acta Diabetol 2017; 54(2): 141-9.
[http://dx.doi.org/10.1007/s00592-016-0917-2] [PMID: 27709360]
[125]
De Lorenzo A, Costacurta M, Merra G, et al. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med 2017; 15(1): 135.
[http://dx.doi.org/10.1186/s12967-017-1236-2] [PMID: 28601084]
[126]
Merra G, Noce A, Marrone G, et al. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020; 13(1): 7.
[http://dx.doi.org/10.3390/nu13010007] [PMID: 33375042]
[127]
Avolio E, Gualtieri P, Romano L, et al. Obesity and Body Composition in Man and Woman: Associated Diseases and the New Role of Gut Microbiota. Curr Med Chem 2020; 27(2): 216-29.
[http://dx.doi.org/10.2174/0929867326666190326113607] [PMID: 30914014]
[128]
Marchetti M, Savorra M, Cenname G, Ceravolo I, Merra G. Childhood obesity: Right diagnosis and treatment, a current challenge. Eur Rev Med Pharmacol Sci 2020; 24(4): 1591-2.
[http://dx.doi.org/10.26355/eurrev_202002_20331] [PMID: 32141524]
[129]
Marchetti M, Gualtieri P, Romano L, Merra G. What is the importance of saving lean mass in the treatment of obesity and related diseases? Eur Rev Med Pharmacol Sci 2019; 23(2): 431-2.
[http://dx.doi.org/10.26355/eurrev_201901_16851] [PMID: 30720147]
[130]
Gualtieri P, Marchetti M, Cioccoloni G, et al. Psychobiotics Regulate the Anxiety Symptoms in Carriers of Allele A of IL-1 β Gene: A Randomized, Placebo-Controlled Clinical Trial. Mediators Inflamm 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/2346126] [PMID: 32377159]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy