Review Article

铁中毒引起的心脏毒性和抗肿瘤药物

卷 31, 期 31, 2024

发表于: 07 August, 2023

页: [4935 - 4957] 页: 23

弟呕挨: 10.2174/0929867331666230719124453

价格: $65

conference banner
摘要

诱导肿瘤中受调节的细胞死亡铁下垂正在成为一种有趣的癌症治疗策略。许多抗肿瘤药物(如阿霉素、依托泊苷、酪氨酸激酶抑制剂、曲妥珠单抗、三氧化二砷、5-氟尿嘧啶)可诱导铁下垂。虽然这种作用机制在对抗肿瘤方面很有趣,但诱导铁下垂的药物的临床应用受到心脏毒性的阻碍。此外,在癌细胞中,化疗药物诱导的铁下垂也可能发生在心肌细胞中,这是抗肿瘤治疗的一个重要缺陷。通过开发较少或没有心脏毒性的抗肿瘤药物或通过发现心脏保护剂(例如,小檗碱,异丙酚,非塞汀,红柳苷,褪黑素,表没食子儿茶素- 3没食子酸酯,白藜芦醇)与传统化疗药物联合使用,解决了这一不便。本文简要综述了铁下垂的分子机制,并描述了铁下垂依赖于癌症患者在接受某些化疗后产生心脏毒性的机制。此外,最近提出的潜在预防这种不便的药理学策略也被考虑在内。

关键词: 下垂铁,铁,心脏毒性,心肌细胞,心脏保护剂,活性氧。

Next »
[1]
Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; Patel, A.; DeCara, J.; Mitchell, J.; Harrison, E.; Moslehi, J.; Witteles, R.; Calabro, M.G.; Orecchia, R.; de Azambuja, E.; Zamorano, J.L.; Krone, R.; Iakobishvili, Z.; Carver, J.; Armenian, S.; Ky, B.; Cardinale, D.; Cipolla, C.M.; Dent, S.; Jordan, K. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol., 2020, 31(2), 171-190.
[http://dx.doi.org/10.1016/j.annonc.2019.10.023] [PMID: 31959335]
[2]
Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; Lopez Fernandez, T.; Mohty, D.; Piepoli, M.F.; Tamargo, J.; Torbicki, A.; Suter, T.M. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J., 2016, 37(36), 2768-2801.
[http://dx.doi.org/10.1093/eurheartj/ehw211] [PMID: 27567406]
[3]
Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Pandini, C.; Sandri, M.T.; Cipolla, C.M. Cardio-oncology: A new medical issue. Ecancermedicalscience, 2009, 3, 126.
[http://dx.doi.org/10.3332/ecancer.2008.126] [PMID: 22275992]
[4]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[5]
Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364.
[http://dx.doi.org/10.1038/s41422-019-0164-5] [PMID: 30948788]
[6]
Pandey, S.S.; Singh, S.; Pathak, C.; Tiwari, B.S. “Programmed cell death: A process of death for survival” – How far terminology pertinent for cell death in unicellular organisms. J. Cell Death, 2018, 11
[http://dx.doi.org/10.1177/1179066018790259] [PMID: 30116103]
[7]
Mishra, P.K.; Adameova, A.; Hill, J.A.; Baines, C.P.; Kang, P.M.; Downey, J.M.; Narula, J.; Takahashi, M.; Abbate, A.; Piristine, H.C.; Kar, S.; Su, S.; Higa, J.K.; Kawasaki, N.K.; Matsui, T. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(5), H891-H922.
[http://dx.doi.org/10.1152/ajpheart.00259.2019] [PMID: 31418596]
[8]
Baker, L.H.; Boonstra, P.S.; Reinke, D.K.; Antalis, E.J.P.; Zebrack, B.J.; Weinberg, R.L. Burden of chronic diseases among sarcoma survivors treated with anthracycline chemotherapy: results from an observational study. J Cancer Metastasis Treat., 2020, 6, 24.
[http://dx.doi.org/10.20517/2394-4722.2020.36]
[9]
Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 2022, 22(7), 381-396.
[http://dx.doi.org/10.1038/s41568-022-00459-0] [PMID: 35338310]
[10]
Friedmann Angeli, J.P.; Krysko, D.V.; Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer, 2019, 19(7), 405-414.
[http://dx.doi.org/10.1038/s41568-019-0149-1] [PMID: 31101865]
[11]
Torti, S.V.; Torti, F.M. Winning the war with iron. Nat. Nanotechnol., 2019, 14(6), 499-500.
[http://dx.doi.org/10.1038/s41565-019-0419-9] [PMID: 30911165]
[12]
Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23.
[http://dx.doi.org/10.1038/s41569-022-00735-4] [PMID: 35788564]
[13]
Komai, K.; Kawasaki, N.K.; Higa, J.K.; Matsui, T. The role of ferroptosis in adverse left ventricular remodeling following acute myocardial infarction. Cells, 2022, 11(9), 1399.
[http://dx.doi.org/10.3390/cells11091399] [PMID: 35563704]
[14]
Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; López-Fernández, T.; Fradley, M.G.; Ganatra, S.; Curigliano, G.; Mitchell, J.D.; Minotti, G.; Lang, N.N.; Liu, J.E.; Neilan, T.G.; Nohria, A.; O’Quinn, R.; Pusic, I.; Porter, C.; Reynolds, K.L.; Ruddy, K.J.; Thavendiranathan, P.; Valent, P. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J., 2022, 43(4), 280-299.
[http://dx.doi.org/10.1093/eurheartj/ehab674] [PMID: 34904661]
[15]
Dent, S.F.; Kikuchi, R.; Kondapalli, L.; Ismail-Khan, R.; Brezden-Masley, C.; Barac, A.; Fradley, M. Optimizing cardiovascular health in patients with cancer: A practical review of risk assessment, monitoring, and prevention of cancer treatment–related cardiovascular toxicity. Am. Soc. Clin. Oncol. Educ. Book, 2020, 40(40), 501-515.
[http://dx.doi.org/10.1200/EDBK_286019] [PMID: 32213102]
[16]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[17]
Berghe, T.V.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.J.; Brunk, U.T.; Declercq, W.; Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ., 2010, 17(6), 922-930.
[http://dx.doi.org/10.1038/cdd.2009.184] [PMID: 20010783]
[18]
Lei, P.; Bai, T.; Sun, Y. Mechanisms of ferroptosis and relations with regulated cell death: A review. Front. Physiol., 2019, 10, 139.
[http://dx.doi.org/10.3389/fphys.2019.00139] [PMID: 30863316]
[19]
Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197.
[http://dx.doi.org/10.1002/adma.201904197] [PMID: 31595562]
[20]
Trujillo-Alonso, V.; Pratt, E.C.; Zong, H.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M.O.; Longo, V.; Becker, M.W.; Roboz, G.J.; Grimm, J.; Guzman, M.L. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol., 2019, 14(6), 616-622.
[http://dx.doi.org/10.1038/s41565-019-0406-1] [PMID: 30911166]
[21]
Tang, M.; Chen, Z.; Wu, D.; Chen, L. Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases. J. Cell. Physiol., 2018, 233(12), 9179-9190.
[http://dx.doi.org/10.1002/jcp.26954] [PMID: 30076709]
[22]
Mancias, J.D.; Wang, X.; Gygi, S.P.; Harper, J.W.; Kimmelman, A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature, 2014, 509(7498), 105-109.
[http://dx.doi.org/10.1038/nature13148] [PMID: 24695223]
[23]
Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245.
[http://dx.doi.org/10.1016/j.chembiol.2008.02.010] [PMID: 18355723]
[24]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[25]
Doll, S.; Conrad, M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 2017, 69(6), 423-434.
[http://dx.doi.org/10.1002/iub.1616] [PMID: 28276141]
[26]
Jennis, M.; Kung, C.P.; Basu, S.; Budina-Kolomets, A.; Leu, J.I.J.; Khaku, S.; Scott, J.P.; Cai, K.Q.; Campbell, M.R.; Porter, D.K.; Wang, X.; Bell, D.A.; Li, X.; Garlick, D.S.; Liu, Q.; Hollstein, M.; George, D.L.; Murphy, M.E. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev., 2016, 30(8), 918-930.
[http://dx.doi.org/10.1101/gad.275891.115] [PMID: 27034505]
[27]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[28]
Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; Zhuang, L.; Chen, G.; Xiao, Z.D.; Hung, M.C.; Chen, J.; Huang, P.; Li, W.; Gan, B. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol., 2018, 20(10), 1181-1192.
[http://dx.doi.org/10.1038/s41556-018-0178-0] [PMID: 30202049]
[29]
Ou, Y.; Wang, S.J.; Li, D.; Chu, B.; Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci., 2016, 113(44), E6806-E6812.
[http://dx.doi.org/10.1073/pnas.1607152113] [PMID: 27698118]
[30]
Shah, R.; Margison, K.; Pratt, D.A. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death. ACS Chem. Biol., 2017, 12(10), 2538-2545.
[http://dx.doi.org/10.1021/acschembio.7b00730] [PMID: 28837769]
[31]
D’Herde, K.; Krysko, D.V. Oxidized PEs trigger death. Nat. Chem. Biol., 2017, 13(1), 4-5.
[http://dx.doi.org/10.1038/nchembio.2261] [PMID: 27842067]
[32]
Lin, L.S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.; Tang, W.; Niu, G.; Yang, H.H.; Chen, X. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed., 2018, 57(18), 4902-4906.
[http://dx.doi.org/10.1002/anie.201712027] [PMID: 29488312]
[33]
Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci., 2016, 113(34), E4966-E4975.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[34]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.124] [PMID: 27565726]
[35]
Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[36]
Feng, H.; Stockwell, B.R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol., 2018, 16(5), e2006203.
[http://dx.doi.org/10.1371/journal.pbio.2006203] [PMID: 29795546]
[37]
Wenzel, S.E.; Tyurina, Y.Y.; Zhao, J.; St Croix, C.M.; Dar, H.H.; Mao, G.; Tyurin, V.A.; Anthonymuthu, T.S.; Kapralov, A.A.; Amoscato, A.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Kenny, E.M.; Yang, Q.; Rosenbaum, J.C.; Sparvero, L.J.; Emlet, D.R.; Wen, X.; Minami, Y.; Qu, F.; Watkins, S.C.; Holman, T.R.; VanDemark, A.P.; Kellum, J.A.; Bahar, I.; Bayır, H.; Kagan, V.E. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell, 2017, 171(3), 628-641.e26.
[http://dx.doi.org/10.1016/j.cell.2017.09.044] [PMID: 29053969]
[38]
Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.014] [PMID: 30219704]
[39]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[40]
Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[http://dx.doi.org/10.1038/s41586-019-1707-0]
[41]
Bersuker, K.; Hendricks, J.M; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[42]
Ma, W.; Wei, S.; Zhang, B.; Li, W. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol., 2020, 8, 434.
[http://dx.doi.org/10.3389/fcell.2020.00434]
[43]
Narayan, V.; Ky, b.; Cerra, M.C.; Angelone, T. Common cardiovascular complications of cancer therapy: epidemiology, risk prediction, and prevention. Annu Rev Med., 2018, 69(15), 97-111.
[44]
Rocca, C.; Pasqua, T.; Cerra, M.C.; Angelone, T. Cardiac damage in anthracyclines therapy: Focus on oxidative stress and inflammation. Antioxid. Redox Signal., 2020, 32(15), 1081-1097.
[http://dx.doi.org/10.1089/ars.2020.8016] [PMID: 31928066]
[45]
Kitakata, H.; Endo, J.; Ikura, H.; Moriyama, H.; Shirakawa, K.; Katsumata, Y.; Sano, M. Therapeutic targets for dox-induced cardiomyopathy: role of apoptosis vs. ferroptosis. Int. J. Mol. Sci., 2022, 23(3), 1414.
[http://dx.doi.org/10.3390/ijms23031414] [PMID: 35163335]
[46]
Vejpongsa, P.; Yeh, E.T.H. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol., 2014, 64(9), 938-945.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1167] [PMID: 25169180]
[47]
Wu, X.; Li, Y.; Zhang, S.; Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 2021, 11(7), 3052-3059.
[http://dx.doi.org/10.7150/thno.54113] [PMID: 33537073]
[48]
Zhai, Z.; Zou, P.; Liu, F.; Xia, Z.; Li, J. Ferroptosis is a potential novel diagnostic and therapeutic target for patients with cardiomyopathy. Front. Cell Dev. Biol., 2021, 9, 649045.
[http://dx.doi.org/10.3389/fcell.2021.649045] [PMID: 33869204]
[49]
Zhang, H.; Wang, Z.; Liu, Z.; Du, K.; Lu, X. Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front. Cardiovasc. Med., 2021, 8, 685434.
[http://dx.doi.org/10.3389/fcvm.2021.685434] [PMID: 34336950]
[50]
Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; Cheng, Q.; Zhang, P.; Dai, W.; Chen, J.; Yang, F.; Yang, H.T.; Linkermann, A.; Gu, W.; Min, J.; Wang, F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci., 2019, 116(7), 2672-2680.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[51]
Finn, N.A.; Findley, H.W.; Kemp, M.L. A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLOS Comput. Biol., 2011, 7(9), e1002151.
[http://dx.doi.org/10.1371/journal.pcbi.1002151] [PMID: 21935349]
[52]
Lewandowski, M.; Gwozdzinski, K. Nitroxides as antioxidants and anticancer drugs. Int. J. Mol. Sci., 2017, 18(11), 2490.
[http://dx.doi.org/10.3390/ijms18112490] [PMID: 29165366]
[53]
Zhao, L.; Qi, Y.; Xu, L.; Tao, X.; Han, X.; Yin, L.; Peng, J. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol., 2018, 15, 284-296.
[http://dx.doi.org/10.1016/j.redox.2017.12.013] [PMID: 29304479]
[54]
Sunitha, M.C.; Dhanyakrishnan, R.; PrakashKumar, B.; Nevin, K.G. p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomed. Pharmacother., 2018, 102, 823-832.
[http://dx.doi.org/10.1016/j.biopha.2018.03.089] [PMID: 29605770]
[55]
He, L.; Yang, Y.; Chen, J.; Zou, P.; Li, J. Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin-induced toxicity. Mol. Med. Rep., 2021, 24(3), 668.
[http://dx.doi.org/10.3892/mmr.2021.12307] [PMID: 34296293]
[56]
Mordente, A.; Meucci, E.; Silvestrini, A.; Martorana, G.; Giardina, B. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem., 2009, 16(13), 1656-1672.
[http://dx.doi.org/10.2174/092986709788186228] [PMID: 19442138]
[57]
Stewart, D.J.; Grewaal, D.; Green, R.M.; Mikhael, N.; Goel, R.; Montpetit, V.A.; Redmond, M.D. Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res., 1993, 13(6A), 1945-1952.
[PMID: 8297100]
[58]
Xu, X.; Persson, H.L.; Richardson, D.R. Molecular pharmacology of the interaction of anthracyclines with iron. Mol. Pharmacol., 2005, 68(2), 261-271.
[http://dx.doi.org/10.1124/mol.105.013383] [PMID: 15883202]
[59]
Zhou, Y.J.; Duan, D.Q.; Lu, L.Q.; Tang, L.J.; Zhang, X.J.; Luo, X.J.; Peng, J. The SPATA2/CYLD pathway contributes to doxorubicin-induced cardiomyocyte ferroptosis via enhancing ferritinophagy. Chem. Biol. Interact., 2022, 368, 110205.
[http://dx.doi.org/10.1016/j.cbi.2022.110205] [PMID: 36195186]
[60]
Zhu, X.; Wang, X.; Zhu, B.; Ding, S.; Shi, H.; Yang, X. Disruption of histamine/H1R-STAT3-SLC7A11 axis exacerbates doxorubicin-induced cardiac ferroptosis. Free Radic. Biol. Med., 2022, 192, 98-114.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.09.012] [PMID: 36165929]
[61]
Qian, J.; Wan, W.; Fan, M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen. Thorac. Cardiovasc. Surg., 2022, 71(5), 280-290.
[http://dx.doi.org/10.1007/s11748-022-01867-7]
[62]
Li, X.; Liang, J.; Qu, L.; Liu, S.; Qin, A.; Liu, H.; Wang, T.; Li, W.; Zou, W. Exploring the role of ferroptosis in the doxorubicin-induced chronic cardiotoxicity using a murine model. Chem. Biol. Interact., 2022, 363, 110008.
[http://dx.doi.org/10.1016/j.cbi.2022.110008] [PMID: 35667395]
[63]
Wang, Y.; Yan, S.; Liu, X.; Deng, F.; Wang, P.; Yang, L.; Hu, L.; Huang, K.; He, J. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ., 2022, 29(10), 1982-1995.
[http://dx.doi.org/10.1038/s41418-022-00990-5] [PMID: 35383293]
[64]
Hou, K.; Shen, J.; Yan, J.; Zhai, C.; Zhang, J.; Pan, J.A.; Zhang, Y.; Jiang, Y.; Wang, Y.; Lin, R.Z.; Cong, H.; Gao, S.; Zong, W.X. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine, 2021, 69, 103456.
[http://dx.doi.org/10.1016/j.ebiom.2021.103456] [PMID: 34233258]
[65]
Liu, Y.; Zeng, L.; Yang, Y.; Chen, C.; Wang, D.; Wang, H. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis., 2020, 11(9), 756.
[http://dx.doi.org/10.1038/s41419-020-02948-2] [PMID: 32934217]
[66]
Nemade, H.; Chaudhari, U.; Acharya, A.; Hescheler, J.; Hengstler, J.G.; Papadopoulos, S.; Sachinidis, A. Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol., 2018, 92(4), 1507-1524.
[http://dx.doi.org/10.1007/s00204-018-2170-7]
[67]
Li, Y.; Yan, J.; Zhao, Q.; Zhang, Y.; Zhang, Y. ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front. Pharmacol., 2022, 13, 904314.
[http://dx.doi.org/10.3389/fphar.2022.904314] [PMID: 36210815]
[68]
Jiang, H.; Wang, C.; Zhang, A.; Li, Y.; Li, J.; Li, Z.; Yang, X.; Hou, Y. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomed. Pharmacother., 2022, 153, 113280.
[http://dx.doi.org/10.1016/j.biopha.2022.113280] [PMID: 35724508]
[69]
Zhang, S.; Xu, X.; Li, Z.; Yi, T.; Ma, J.; Zhang, Y.; Li, Y. Analysis and validation of differentially expressed ferroptosis-related genes in regorafenib-induced cardiotoxicity. Oxid. Med. Cell Longev., 2022, 2022, 2513263.
[http://dx.doi.org/10.1155/2022/2513263]
[70]
Song, C.; Li, D.; Zhang, J.; Zhao, X. Role of ferroptosis in promoting cardiotoxicity induced by Imatinib Mesylate via down-regulating Nrf2 pathways in vitro and in vivo. Toxicol. Appl. Pharmacol., 2022, 435, 115852.
[http://dx.doi.org/10.1016/j.taap.2021.115852]
[71]
Sun, L.; Wang, H.; Xu, D.; Yu, S.; Zhang, L.; Li, X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered., 2022, 13(1), 48-60.
[http://dx.doi.org/10.1080/21655979.2021.2004980]
[72]
Sun, L.; Wang, H.; Yu, S.; Zhang, L.; Jiang, J.; Zhou, Q. Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int. J. Mol. Med., 2022, 49(2), 17.
[http://dx.doi.org/10.3892/ijmm.2021.5072]
[73]
Wang, L.; Liu, S.; Gao, C.; Chen, H.; Li, J.; Lu, J.; Yuan, Y.; Zheng, X.; He, H.; Zhang, X.; Zhang, R.; Zhang, Y.; Wu, Y.; Lin, W.; Zheng, H. Arsenic trioxide-induced cardiotoxicity triggers ferroptosis in cardiomyoblast cells. Hum. Exp. Toxicol., 2022, 41, 9603271211064537.
[http://dx.doi.org/10.1177/09603271211064537]
[74]
Li, D.; Song, C.; Zhang, J.; Zhao, X. ROS and iron homeostasis dependent ferroptosis play a vital role in 5-Fluorouracil induced cardiotoxicity in vitro and in vivo. Toxicology., 2022, 468, 153113.
[http://dx.doi.org/10.1016/j.tox.2022.153113]
[75]
Liu, X.; Chen, C.; Han, D.; Zhou, W.; Cui, Y.; Tang, X.; Xiao, C.; Wang, Y.; Gao, Y. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid. Med. Cell Longev., 2022, 2022, 3192607.
[http://dx.doi.org/10.1155/2022/3192607]
[76]
Li, X.R.; Cheng, X.H.; Zhang, G.N.; Wang, X.X.; Huang, J.M. Cardiac safety analysis of first-line chemotherapy drug pegylated liposomal doxorubicin in ovarian cancer. J. Ovarian Res., 2022, 15(1), 96.
[http://dx.doi.org/10.1186/s13048-022-01029-6] [PMID: 35971131]
[77]
Chen, Y.; Shi, S.; Dai, Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed. Pharmacother., 2022, 156, 113903.
[http://dx.doi.org/10.1016/j.biopha.2022.113903] [PMID: 36279722]
[78]
Li, N.; Wang, W.; Zhou, H.; Wu, Q.; Duan, M.; Liu, C.; Wu, H.; Deng, W.; Shen, D.; Tang, Q. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic. Biol. Med., 2020, 160, 303-318.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.009]
[79]
Yang, K.T.; Chao, T.H.; Wang, I.C.; Luo, Y.P.; Ting, P.C.; Lin, J.H.; Chang, J.C. Berberine protects cardiac cells against ferroptosis. Tzu Chi. Med. J., 2022, 34(3), 310-317.
[http://dx.doi.org/10.4103/tcmj.tcmj_236_21]
[80]
Song, C.; Li, D.; Zhang, J.; Zhao, X. Berberine hydrochloride alleviates imatinib mesylate - induced cardiotoxicity through the inhibition of Nrf2-dependent ferroptosis. Food Funct., 2023, 14(2), 1087-1098.
[http://dx.doi.org/10.1039/D2FO03331C]
[81]
Wang, W.; Zhong, X.; Fang, Z.; Li, J.; Li, H.; Liu, X.; Yuan, X.; Huang, W.; Huang, Z. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem. Biol. Interact., 2023, 2023, 110469.
[http://dx.doi.org/10.1016/j.cbi.2023.110469]
[82]
Yu, Y.; Wu, T.; Lu, Y.; Zhao, W; Zhang, J.; Chen, Q.; Ge, G.; Hua, Y.; Chen, K.; Ullah, I.; Zhang, F. Exosomal thioredoxin-1 from hypoxic human umbilical cord mesenchymal stem cells inhibits ferroptosis in doxorubicin-induced cardiotoxicity via mTORC1 signaling. Free Radic. Biol. Med., 2022, 193(Pt 1), 108-121.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.268]
[83]
Warpechowski, P.; dos Santos, A.T.L.; Pereira, P.J.I.; de Lima, G.G. Effects of propofol on the cardiac conduction system. Rev. Bras. Anestesiol., 2010, 60(4), 438-444.
[http://dx.doi.org/10.1016/S0034-7094(10)70054-4] [PMID: 20659617]
[84]
Barajas, M.B.; Wang, A.; Griffiths, K.K.; Sun, L.; Yang, G.; Levy, R.J. Modeling propofol-induced cardiotoxicity in the isolated-perfused newborn mouse heart. Physiol. Rep., 2022, 10(15), e15402.
[http://dx.doi.org/10.14814/phy2.15402] [PMID: 35923108]
[85]
Lu, Z.; Liu, Z.; Fang, B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered., 2022, 13(4), 9145-9155.
[http://dx.doi.org/10.1080/21655979.2022.2036895]
[86]
Li, D.; Liu, X.; Pi, W.; Zhang, Y.; Yu, L.; Xu, C.; Sun, Z.; Jiang, J. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol., 2022, 12, 808480.
[http://dx.doi.org/10.3389/fphar.2021.808480]
[87]
Ma, T.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L. Fisetin, a plant flavonoid ameliorates doxorubicin-induced cardiotoxicity in experimental rats: the decisive role of caspase-3, COX-II, cTn-I, iNOs and TNF-α. Mol Biol Rep., 2019, 46(1), 105-118.
[http://dx.doi.org/10.1007/s11033-018-4450-y]
[88]
Zhang, H.; Shen, W.; Gao, C.; Deng, L.; Shen, D. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R D., 2012, 12(2), 101-106.
[http://dx.doi.org/10.2165/11632530-000000000-00000] [PMID: 22770377]
[89]
Wang, X.L.; Wang, X.; Xiong, L.L.; Zhu, Y.; Chen, H.L.; Chen, J.X.; Wang, X.X.; Li, R.L.; Guo, Z.Y.; Li, P.; Jiang, W. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. J. Cardiovasc. Pharmacol., 2013, 62(6), 512-523.
[http://dx.doi.org/10.1097/FJC.0000000000000009]
[90]
Yan, F.; Liu, R.; Zhuang, X.; Li, R.; Shi, H.; Gao, X. Salidroside attenuates doxorubicin-induced cardiac dysfunction partially through activation of QKI/FoxO1 pathway. J. Cardiovasc. Transl. Res., 2021, 14(2), 355-364.
[http://dx.doi.org/10.1007/s12265-020-10056-x]
[91]
Chen, H.; Zhu, J.; Le, Y.; Pan, J.; Liu, Y.; Wang, C.; Dou, X.; Lu, D. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine., 2022, 99, 153964.
[http://dx.doi.org/10.1016/j.phymed.2022.153964]
[92]
Zhang, Y.; Wang, Y.; Xu, J.; Tian, F.; Hu, S.; Chen, Y.; Fu, Z. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J. Pineal Res., 2019, 66(2), e12542.
[http://dx.doi.org/10.1111/jpi.12542] [PMID: 30516280]
[93]
Yu, L.M.; Dong, X.; Xue, X.D.; Xu, S.; Zhang, X.; Xu, Y.L.; Wang, Z.S.; Wang, Y.; Gao, H.; Liang, Y.X.; Yang, Y.; Wang, H.S. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. J. Pineal Res., 2021, 70(1), e12698.
[http://dx.doi.org/10.1111/jpi.12698] [PMID: 33016468]
[94]
Zhai, M.; Li, B.; Duan, W.; Jing, L.; Zhang, B.; Zhang, M.; Yu, L.; Liu, Z.; Yu, B.; Ren, K.; Gao, E.; Yang, Y.; Liang, H.; Jin, Z.; Yu, S. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J. Pineal Res., 2017, 63(2), e12419.
[http://dx.doi.org/10.1111/jpi.12419] [PMID: 28500761]
[95]
Liu, D.; Ma, Z.; Di, S.; Yang, Y.; Yang, J.; Xu, L.; Reiter, R.J.; Qiao, S.; Yuan, J. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic. Biol. Med., 2022, 129, 59-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.032]
[96]
Sun, X.; Sun, P.; Zhen, D.; Xu, X.; Yang, J.; Yang, L.; Fu, D.; Wei, D.; Niu, X.; Tian, J.; Li, H. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol. Appl. Pharmacol., 2022, 437, 115902.
[http://dx.doi.org/10.1016/j.taap.2022.115902]
[97]
Hanna, M.; Seddiek, H.; Aboulhoda, B.E.; Morcos, G.N.B.; Akabawy, A.M.A.; Elbaset, M.A.; Ibrahim, A.A.; Khalifa, M.M.; Khalifah, I.M.; Fadel, M.S.; Shoukry, T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front. Physiol., 2022, 13, 1050598.
[http://dx.doi.org/10.3389/fphys.2022.1050598] [PMID: 36531171]
[98]
Yao, Y.F.; Liu, X.; Li, W.J.; Shi, Z.W.; Yan, Y.X.; Wang, L.F.; Chen, M.; Xie, M.Y. (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci., 2017, 180, 151-159.
[http://dx.doi.org/10.1016/j.lfs.2016.12.004] [PMID: 27956351]
[99]
Sun, T.L.; Liu, Z.; Qi, Z.J.; Huang, Y.P.; Gao, X.Q.; Zhang, Y.Y. (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats. Food Chem. Toxicol., 2016, 93, 102-110.
[http://dx.doi.org/10.1016/j.fct.2016.05.004] [PMID: 27170490]
[100]
Saeed, N.M.; El-Naga, R.N.; El-Bakly, W.M.; Abdel-Rahman, H.M.; Salah ElDin, R.A.; El-Demerdash, E. Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: A mechanistic study. Biochem. Pharmacol., 2015, 95(3), 145-155.
[http://dx.doi.org/10.1016/j.bcp.2015.02.006] [PMID: 25701654]
[101]
Li, W.; Nie, S.; Xie, M.; Chen, Y.; Li, C.; Zhang, H. A major green tea component, (-)-epigallocatechin-3-gallate, ameliorates doxorubicin-mediated cardiotoxicity in cardiomyocytes of neonatal rats. J. Agric. Food Chem., 2010, 58(16), 8977-8982.
[http://dx.doi.org/10.1021/jf101277t] [PMID: 20666448]
[102]
He, H.; Wang, L.; Qiao, Y.; Yang, B.; Yin, D.; He, M. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy. Redox Biol., 2021, 48, 102185.
[http://dx.doi.org/10.1016/j.redox.2021.102185]
[103]
Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; Botti, G.; Maurea, N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol., 2021, 20(1), 150.
[http://dx.doi.org/10.1186/s12933-021-01346-y]
[104]
Min, J.; Wu, L.; Liu, Y.; Song, G.; Deng, Q.; Jin, W.; Yu, W.; Abudureyimu, M.; Pei, Z.; Ren, J. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis. Life Sci., 2022, 312, 121207.
[http://dx.doi.org/10.1016/j.lfs.2022.121207]
[105]
Sabatino, J.; De Rosa, S.; Tammè, L.; Iaconetti, C.; Sorrentino, S.; Polimeni, A.; Mignogna, C.; Amorosi, A.; Spaccarotella, C.; Yasuda, M.; Indolfi, C. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc. Diabetol., 2020, 19(1), 66.
[http://dx.doi.org/10.1186/s12933-020-01040-5] [PMID: 32414364]
[106]
Barış, V.Ö.; Dinçsoy, A.B.; Gedikli, E.; Zırh, S.; Müftüoğlu, S.; Erdem, A. Empagliflozin significantly prevents the doxorubicin-induced acute cardiotoxicity via non-antioxidant pathways. Cardiovasc. Toxicol., 2021, 21(9), 747-758.
[http://dx.doi.org/10.1007/s12012-021-09665-y] [PMID: 34089496]
[107]
Eliaa, S.G.; Al-Karmalawy, A.A.; Saleh, R.M.; Elshal, M.F. Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mtor pathway and inhibition of calmodulin: In vitro and molecular docking studies. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1330-1338.
[http://dx.doi.org/10.1021/acsptsci.0c00144] [PMID: 33344906]
[108]
Ren, C.; Sun, K.; Zhang, Y.; Hu, Y.; Hu, B.; Zhao, J.; He, Z.; Ding, R.; Wang, W.; Liang, C. Sodium-Glucose CoTransporter-2 Inhibitor Empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front Pharmacol., 2021, 12, 664181.
[http://dx.doi.org/10.3389/fphar.2021.664181]
[109]
Martín-Garcia, A.; López-Fernández, T.; Mitroi, C.; Chaparro-Muñoz, M.; Moliner, P.; Martin-Garcia, A.C.; Martinez-Monzonis, A.; Castro, A.; Lopez-Sendon, J.L.; Sanchez, P.L. Effectiveness of sacubitril-valsartan in cancer patients with heart failure. ESC Heart Fail., 2020, 7(2), 763-767.
[http://dx.doi.org/10.1002/ehf2.12627]
[110]
Miyoshi, T.; Nakamura, K.; Amioka, N.; Hatipoglu, O.F.; Yonezawa, T.; Saito, Y.; Yoshida, M.; Akagi, S.; Ito, H. LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats. Sci. Rep., 2022, 12(1), 4930.
[http://dx.doi.org/10.1038/s41598-022-09094-z] [PMID: 35322164]
[111]
Xia, Y.; Chen, Z.; Chen, A.; Fu, M.; Dong, Z.; Hu, K.; Yang, X.; Zou, Y.; Sun, A.; Qian, J.; Ge, J. LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J. Mol. Cell. Cardiol., 2017, 108, 138-148.
[http://dx.doi.org/10.1016/j.yjmcc.2017.06.003] [PMID: 28623750]
[112]
Sobiborowicz-Sadowska, A.M.; Kamińska, K.; Cudnoch-Jędrzejewska, A. Neprilysin inhibition in the prevention of anthracycline-induced cardiotoxicity. Cancers (Basel), 2023, 15(1), 312.
[http://dx.doi.org/10.3390/cancers15010312] [PMID: 36612307]
[113]
Dankowski, R.; Sacharczuk, W.; Łojko-Dankowska, A.; Nowicka, A.; Szałek-Goralewska, A.; Szyszka, A. Sacubitril/valsartan as first-line therapy in anthracycline-induced cardiotoxicity. Kardiol. Pol., 2021, 79(9), 1040-1041.
[http://dx.doi.org/10.33963/KP.a2021.0052] [PMID: 34227674]
[114]
Sheppard, C.E.; Anwar, M. The use of sacubitril/valsartan in anthracycline-induced cardiomyopathy: A mini case series. J. Oncol. Pharm. Pract., 2019, 25(5), 1231-1234.
[http://dx.doi.org/10.1177/1078155218783238] [PMID: 29945530]
[115]
Wu, Z.; Chen, H.; Lin, L.; Lu, J.; Zhao, Q.; Dong, Z.; Hai, X. Sacubitril/valsartan protects against arsenic trioxide induced cardiotoxicity in vivo and in vitro. Toxicol. Res., 2022, 11(3), 451-459.
[http://dx.doi.org/10.1093/toxres/tfac018] [PMID: 35782642]
[116]
Liu, X.; Li, D.; Pi, W.; Wang, B.; Xu, S.; Yu, L.; Yao, L.; Sun, Z.; Jiang, J.; Mi, Y. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int. Immunopharmacol., 2022, 113(Pt A), 109379.
[http://dx.doi.org/10.1016/j.intimp.2022.109379]
[117]
Abe, K.; Ikeda, M.; Ide, T.; Tadokoro, T.; Miyamoto, H.D.; Furusawa, S.; Tsutsui, Y.; Miyake, R.; Ishimaru, K.; Watanabe, M.; Matsushima, S.; Koumura, T.; Yamada, K.I.; Imai, H.; Tsutsui, H. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci. Signal., 2022, 15(758), eabn8017.
[http://dx.doi.org/10.1126/scisignal.abn8017]
[118]
Pinelli, A.; Trivulzio, S.; Brenna, S.; Rossoni, G. Plasma cardiac necrosis markers C-troponin I and creatine kinase, associated with increased malondialdehyde levels, induced in rabbits by means of 5-aminolevulinic acid injection. Pharmacology., 2019, 84(5), 314-321.
[http://dx.doi.org/10.1159/000248216]
[119]
Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of red wine consumption on cardiovascular health. Curr. Med. Chem., 2019, 26(19), 3542-3566.
[http://dx.doi.org/10.2174/0929867324666170518100606]
[120]
Zaffaroni, N.; Beretta, G.L. Resveratrol and prostate cancer: The power of phytochemicals. Curr. Med. Chem., 2021, 28(24), 4845-4862.
[http://dx.doi.org/10.2174/1875533XMTEyhNzIfw] [PMID: 33371831]
[121]
Zeng, Y.; Cao, G.; Lin, L.; Zhang, Y.; Luo, X.; Ma, X.; Aiyisake, A.; Cheng, Q. Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J. Invest. Surg., 2023, 36(1), 2157521.
[http://dx.doi.org/10.1080/08941939.2022.2157521] [PMID: 36576230]
[122]
Yu, W.; Chen, C.; Xu, C.; Xie, D.; Wang, Q.; Liu, W.; Zhao, H.; He, F.; Chen, B.; Xi, Y.; Yan, Y.; Yu, L.; Cheng, J. Activation of p62-NRF2 axis protects against doxorubicin-induced ferroptosis in cardiomyocytes: A novel role and molecular mechanism of resveratrol. Am. J. Chin. Med., 2022, 50(8), 2103-2123.
[http://dx.doi.org/10.1142/S0192415X22500902]
[123]
Li, D.; Song, C.; Zhang, J.; Zhao, X. Resveratrol alleviated 5-FU-induced cardiotoxicity by attenuating GPX4 dependent ferroptosis. J. Nutr. Biochem., 2023, 112, 109241.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109241]
[124]
Tadokoro, T.; Ikeda, M.; Abe, K.; Ide, T.; Miyamoto, H.D.; Furusawa, S.; Ishimaru, K.; Watanabe, M.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.I.; Imai, H.; Tsutsui, H. Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J. Cardiovasc. Pharmacol., 2022, 80(5), 690-699.
[http://dx.doi.org/10.1097/FJC.0000000000001328]
[125]
Tang, X.G.; Lin, K.; Guo, S.W.; Rong, Y.; Chen, D.; Chen, Z.S.; Ping, F.F.; Wang, J.Q. The synergistic effect of ruthenium complex ∆-Ru1 and doxorubicin in a mouse breast cancer model. Recent Pat. Anticancer Drug Discov., 2022, 18(2), 174-186.
[http://dx.doi.org/10.2174/1574892817666220629105543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy