General Review Article

PKM2抑制剂和激活剂在肿瘤中的应用进展

卷 31, 期 20, 2024

发表于: 07 September, 2023

页: [2955 - 2973] 页: 19

弟呕挨: 10.2174/0929867331666230714144851

价格: $65

Open Access Journals Promotions 2
摘要

细胞的代谢重编程,从正常的糖代谢模式称为糖酵解,是一个关键的特征迫在眉睫的癌细胞。丙酮酸激酶M2 (Pyruvate kinase M2, PKM2)是一种重要的酶,在糖酵解过程中催化最后的限速阶段,在许多类型的肿瘤中高度表达,有助于肿瘤细胞生存的有利条件的形成。越来越多的证据表明PKM2是创新药物发现的有希望的靶点之一,特别是抗肿瘤治疗的发展。在此,我们系统地总结了PKM2调节剂的最新进展,包括抑制剂和激活剂在癌症中的应用。本文还对哺乳动物中丙酮酸激酶的分类及PKM2的生物学功能进行了综述。我们希望这篇综述能够对目前PKM2调节剂的研究提供一个全面的了解,这可能有助于未来开发更有效的PKM2相关候选药物来治疗PKM2相关疾病,包括癌症。

关键词: PKM2,抑制剂,激活剂,抗肿瘤,生物医学应用,调节剂。

[1]
Chaneton, B.; Hillmann, P.; Zheng, L.; Martin, A.C.L.; Maddocks, O.D.K.; Chokkathukalam, A.; Coyle, J.E.; Jankevics, A.; Holding, F.P.; Vousden, K.H.; Frezza, C.; O’Reilly, M.; Gottlieb, E. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491(7424), 458-462.
[http://dx.doi.org/10.1038/nature11540] [PMID: 23064226]
[2]
Dayton, T.L.; Jacks, T.; Vander Heiden, M.G. PKM 2, cancer metabolism, and the road ahead. EMBO Rep., 2016, 17(12), 1721-1730.
[http://dx.doi.org/10.15252/embr.201643300] [PMID: 27856534]
[3]
Reiss, N.; Kanety, H.; Schlessinger, J. Five enzymes of the glycolytic pathway serve as substrates for purified epidermal-growth-factor-receptor kinase. Biochem. J., 1986, 239(3), 691-697.
[http://dx.doi.org/10.1042/bj2390691] [PMID: 3030270]
[4]
Sale, E.M.; White, M.F.; Kahn, C.R. Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase. J. Cell. Biochem., 1987, 33(1), 15-26.
[http://dx.doi.org/10.1002/jcb.240330103] [PMID: 2434517]
[5]
Xu, D.; Liang, J.; Lin, J.; Yu, C. PKM2: A potential regulator of rheumatoid arthritis via glycolytic and non-glycolytic pathways. Front. Immunol., 2019, 10, 2919.
[http://dx.doi.org/10.3389/fimmu.2019.02919] [PMID: 31921178]
[6]
Presek, P.; Reinacher, M.; Eigenbrodt, E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett., 1988, 242(1), 194-198.
[http://dx.doi.org/10.1016/0014-5793(88)81014-7] [PMID: 2462512]
[7]
Mazurek, S.; Grimm, H.; Boschek, C.B.; Vaupel, P.; Eigenbrodt, E. Pyruvate kinase type M2: A crossroad in the tumor metabolome. Br. J. Nutr., 2002, 87(S1), S23-S29.
[http://dx.doi.org/10.1079/BJN2001454] [PMID: 11895152]
[8]
Noguchi, T.; Yamada, K.; Inoue, H.; Matsuda, T.; Tanaka, T. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J. Biol. Chem., 1987, 262(29), 14366-14371.
[http://dx.doi.org/10.1016/S0021-9258(18)47947-1] [PMID: 3654663]
[9]
Lai, Y-J.; Chou, Y-C.; Lin, Y-J.; Yu, M-H.; Ou, Y-C.; Chu, P-W.; Wu, C-C.; Wang, Y-C.; Chao, T-K. Pyruvate kinase M2 expression: A potential metabolic biomarker to differentiate endometrial precancer and cancer that is associated with poor outcomes in endometrial carcinoma. Int. J. Environ. Res. Public Health, 2019, 16(23), 4589.
[http://dx.doi.org/10.3390/ijerph16234589] [PMID: 31756939]
[10]
Kang, Y.P.; Ward, N.P.; DeNicola, G.M. Recent advances in cancer metabolism: A technological perspective. Exp. Mol. Med., 2018, 50(4), 1-16.
[http://dx.doi.org/10.1038/s12276-018-0027-z] [PMID: 29657324]
[11]
Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1), 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[12]
Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; Kantarjian, H.M.; Collins, R.; Patel, M.R.; Frankel, A.E.; Stein, A.; Sekeres, M.A.; Swords, R.T.; Medeiros, B.C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R.D.; Yen, K.E.; Agresta, S.; de Botton, S.; Tallman, M.S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130(6), 722-731.
[http://dx.doi.org/10.1182/blood-2017-04-779405] [PMID: 28588020]
[13]
Li, J.; Li, S.; Guo, J.; Li, Q.; Long, J.; Ma, C.; Ding, Y.; Yan, C.; Li, L.; Wu, Z.; Zhu, H.; Li, K.K.; Wen, L.; Zhang, Q.; Xue, Q.; Zhao, C.; Liu, N.; Ivanov, I.; Luo, M.; Xi, R.; Long, H.; Wang, P.G.; Chen, Y. Natural Product Micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia. J. Med. Chem., 2018, 61(9), 4155-4164.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00241] [PMID: 29641204]
[14]
Ding, Y.; Xue, Q.; Liu, S.; Hu, K.; Wang, D.; Wang, T.; Li, Y.; Guo, H.; Hao, X.; Ge, W.; Zhang, Y.; Li, A.; Li, J.; Chen, Y.; Zhang, Q. Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo. J. Med. Chem., 2020, 63(4), 1597-1611.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01328] [PMID: 31977207]
[15]
Ma, Q.S.; Yao, Y.; Zheng, Y.C.; Feng, S.; Chang, J.; Yu, B.; Liu, H.M. Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors. Eur. J. Med. Chem., 2019, 162, 555-567.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.035] [PMID: 30472603]
[16]
Fang, Y.; Liao, G.; Yu, B. LSD1/KDM1A inhibitors in clinical trials: Advances and prospects. J. Hematol. Oncol., 2019, 12(1), 129.
[http://dx.doi.org/10.1186/s13045-019-0811-9] [PMID: 31801559]
[17]
Wu, G.; Zhao, T.; Kang, D.; Zhang, J.; Song, Y.; Namasivayam, V.; Kongsted, J.; Pannecouque, C.; De Clercq, E.; Poongavanam, V.; Liu, X.; Zhan, P. overview of recent strategic advances in medicinal chemistry. J. Med. Chem., 2019, 62(21), 9375-9414.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00359] [PMID: 31050421]
[18]
Ma, Y.; Frutos-Beltrán, E.; Kang, D.; Pannecouque, C.; De Clercq, E.; Menéndez-Arias, L.; Liu, X.; Zhan, P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev., 2021, 50(7), 4514-4540.
[http://dx.doi.org/10.1039/D0CS01084G] [PMID: 33595031]
[19]
Xiang, M.; Zhou, Q.; Shi, Z.; Wang, X.; Li, M.; Jia, Y.; Li, S.; Yang, F.; Wang, W.; Chen, T.; Xu, X.; Sharma, B.; Nie, Y.; Xiao, Q.; Gao, L. A review of light sources and enhanced targeting for photodynamic therapy. Curr. Med. Chem., 2021, 28(31), 6437-6457.
[http://dx.doi.org/10.2174/0929867328666210121122106] [PMID: 33475053]
[20]
Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front. Pharmacol., 2019, 9, 1534.
[http://dx.doi.org/10.3389/fphar.2018.01534] [PMID: 30687096]
[21]
Xiao, Q.; Mai, B.; Nie, Y.; Yuan, C.; Xiang, M.; Shi, Z.; Wu, J.; Leung, W.; Xu, C.; Yao, S.Q.; Wang, P.; Gao, L. In vitro and in vivo demonstration of ultraefficient and broad-spectrum antibacterial agents for photodynamic antibacterial chemotherapy. ACS Appl. Mater. Interfaces, 2021, 13(10), 11588-11596.
[http://dx.doi.org/10.1021/acsami.0c20837] [PMID: 33656316]
[22]
Xiao, Q.; Lin, H.; Wu, J.; Pang, X.; Zhou, Q.; Jiang, Y.; Wang, P.; Leung, W.; Lee, H.; Jiang, S.; Yao, S.Q.; Gao, L.; Liu, G.; Xu, C. Pyridine-embedded phenothiazinium dyes as lysosome-targeted photosensitizers for highly efficient photodynamic antitumor therapy. J. Med. Chem., 2020, 63(9), 4896-4907.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00280] [PMID: 32267685]
[23]
Sharma, B.; Xie, L.; Yang, F.; Wang, W.; Zhou, Q.; Xiang, M.; Zhou, S.; Lv, W.; Jia, Y.; Pokhrel, L.; Shen, J.; Xiao, Q.; Gao, L.; Deng, W. Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem., 2020, 199, 112376.
[http://dx.doi.org/10.1016/j.ejmech.2020.112376] [PMID: 32416458]
[24]
Gao, L.; Wang, W.; Wang, X.; Yang, F.; Xie, L.; Shen, J.; Brimble, M.A.; Xiao, Q.; Yao, S.Q. Fluorescent probes for bioimaging of potential biomarkers in Parkinson’s disease. Chem. Soc. Rev., 2021, 50(2), 1219-1250.
[http://dx.doi.org/10.1039/D0CS00115E] [PMID: 33284303]
[25]
Noguchi, T.; Inoue, H.; Tanaka, T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem., 1986, 261(29), 13807-13812.
[http://dx.doi.org/10.1016/S0021-9258(18)67091-7] [PMID: 3020052]
[26]
Takenaka, M.; Noguchi, T.; Sadahiro, S.; Hirai, H.; Yamada, K.; Matsuda, T.; Imai, E.; Tanaka, T. Isolation and characterization of the human pyruvate kinase M gene. Eur. J. Biochem., 1991, 198(1), 101-106.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb15991.x] [PMID: 2040271]
[27]
Imamura, K.; Tanaka, T. Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J. Biochem., 1972, 71(6), 1043-1051.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a129852] [PMID: 4342282]
[28]
Netzker, R.; Greiner, E.; Eigenbrodt, E.; Noguchi, T.; Tanaka, T.; Brand, K. Cell cycle-associated expression of M2-type isozyme of pyruvate kinase in proliferating rat thymocytes. J. Biol. Chem., 1992, 267(9), 6421-6424.
[http://dx.doi.org/10.1016/S0021-9258(18)42712-3] [PMID: 1556146]
[29]
Clower, C.V.; Chatterjee, D.; Wang, Z.; Cantley, L.C.; Vander Heiden, M.G.; Krainer, A.R. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci., 2010, 107(5), 1894-1899.
[http://dx.doi.org/10.1073/pnas.0914845107] [PMID: 20133837]
[30]
David, C.J.; Chen, M.; Assanah, M.; Canoll, P.; Manley, J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2010, 463(7279), 364-368.
[http://dx.doi.org/10.1038/nature08697] [PMID: 20010808]
[31]
Wang, Z.; Chatterjee, D.; Jeon, H.Y.; Akerman, M.; Vander Heiden, M.G.; Cantley, L.C.; Krainer, A.R. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J. Mol. Cell Biol., 2012, 4(2), 79-87.
[http://dx.doi.org/10.1093/jmcb/mjr030] [PMID: 22044881]
[32]
Chen, M.; David, C.J.; Manley, J.L. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nat. Struct. Mol. Biol., 2012, 19(3), 346-354.
[http://dx.doi.org/10.1038/nsmb.2219] [PMID: 22307054]
[33]
Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Function, regulation and role in cancer. Semin. Cell Dev. Biol., 2015, 43, 43-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.004] [PMID: 26277545]
[34]
Zhang, Z.; Deng, X.; Liu, Y.; Liu, Y.; Sun, L.; Chen, F. PKM2, function and expression and regulation. Cell Biosci., 2019, 9(1), 52.
[http://dx.doi.org/10.1186/s13578-019-0317-8] [PMID: 31391918]
[35]
Su, Q.; Luo, S.; Tan, Q.; Deng, J.; Zhou, S.; Peng, M.; Tao, T.; Yang, X. The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review). Oncol. Lett., 2019, 18(6), 5663-5672.
[http://dx.doi.org/10.3892/ol.2019.10948] [PMID: 31788038]
[36]
Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: The impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619.
[http://dx.doi.org/10.1038/nrd.2016.109] [PMID: 27417849]
[37]
Walsh, M.J.; Brimacombe, K.R.; Veith, H.; Bougie, J.M.; Daniel, T.; Leister, W.; Cantley, L.C.; Israelsen, W.J.; Vander Heiden, M.G.; Shen, M.; Auld, D.S.; Thomas, C.J.; Boxer, M.B. 2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett., 2011, 21(21), 6322-6327.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.114] [PMID: 21958545]
[38]
Guo, C.; Linton, A.; Jalaie, M.; Kephart, S.; Ornelas, M.; Pairish, M.; Greasley, S.; Richardson, P.; Maegley, K.; Hickey, M.; Li, J.; Wu, X.; Ji, X.; Xie, Z. Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg. Med. Chem. Lett., 2013, 23(11), 3358-3363.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.090] [PMID: 23622982]
[39]
Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem., 2013, 61(50), 12183-12199.
[http://dx.doi.org/10.1021/jf404439b] [PMID: 24295170]
[40]
Aslan, E.; Guler, C.; Adem, S. In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J. Enzyme Inhib. Med. Chem., 2016, 31(2), 314-317.
[http://dx.doi.org/10.3109/14756366.2015.1022173] [PMID: 25798688]
[41]
Aslan, E.; Adem, S. In vitro effects of some flavones on human pyruvate kinase isoenzyme M2. J. Biochem. Mol. Toxicol., 2015, 29(3), 109-113.
[http://dx.doi.org/10.1002/jbt.21673] [PMID: 25388478]
[42]
You, L.; Zhu, H.; Wang, C.; Wang, F.; Li, Y.; Li, Y.; Wang, Y.; He, B. Scutellarin inhibits Hela cell growth and glycolysis by inhibiting the activity of pyruvate kinase M2. Bioorg. Med. Chem. Lett., 2017, 27(24), 5404-5408.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.011] [PMID: 29157862]
[43]
Li, R.D.; Zhang, X.; Li, Q.Y.; Ge, Z.M.; Li, R.T. Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines. Bioorg. Med. Chem. Lett., 2011, 21(12), 3637-3640.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.096] [PMID: 21570843]
[44]
Duan, Y.C.; Zheng, Y.C.; Li, X.C.; Wang, M.M.; Ye, X.W.; Guan, Y.Y.; Liu, G.Z.; Zheng, J.X.; Liu, H.M. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole–dithiocarbamate–urea hybrids. Eur. J. Med. Chem., 2013, 64, 99-110.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.058] [PMID: 23644193]
[45]
Ning, X.; Qi, H.; Li, R.; Li, Y.; Jin, Y.; McNutt, M.A.; Liu, J.; Yin, Y. Discovery of novel naphthoquinone derivatives as inhibitors of the tumor cell specific M2 isoform of pyruvate kinase. Eur. J. Med. Chem., 2017, 138, 343-352.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.064] [PMID: 28688274]
[46]
Li, R.; Ning, X.; Zhou, S.; Lin, Z.; Wu, X.; Chen, H.; Bai, X.; Wang, X.; Ge, Z.; Li, R.; Yin, Y. Discovery and structure-activity relationship of novel 4-hydroxy-thiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators. Eur. J. Med. Chem., 2018, 143, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.023] [PMID: 29172082]
[47]
Anastasiou, D.; Yu, Y.; Israelsen, W.J.; Jiang, J.K.; Boxer, M.B.; Hong, B.S.; Tempel, W.; Dimov, S.; Shen, M.; Jha, A.; Yang, H.; Mattaini, K.R.; Metallo, C.M.; Fiske, B.P.; Courtney, K.D.; Malstrom, S.; Khan, T.M.; Kung, C.; Skoumbourdis, A.P.; Veith, H.; Southall, N.; Walsh, M.J.; Brimacombe, K.R.; Leister, W.; Lunt, S.Y.; Johnson, Z.R.; Yen, K.E.; Kunii, K.; Davidson, S.M.; Christofk, H.R.; Austin, C.P.; Inglese, J.; Harris, M.H.; Asara, J.M.; Stephanopoulos, G.; Salituro, F.G.; Jin, S.; Dang, L.; Auld, D.S.; Park, H.W.; Cantley, L.C.; Thomas, C.J.; Vander Heiden, M.G. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol., 2012, 8(10), 839-847.
[http://dx.doi.org/10.1038/nchembio.1060] [PMID: 22922757]
[48]
Matsui, Y.; Yasumatsu, I.; Asahi, T.; Kitamura, T.; Kanai, K.; Ubukata, O.; Hayasaka, H.; Takaishi, S.; Hanzawa, H.; Katakura, S. Discovery and structure-guided fragment-linking of 4-(2,3-dichlorobenzoyl)-1-methyl-pyrrole-2-carboxamide as a pyruvate kinase M2 activator. Bioorg. Med. Chem., 2017, 25(13), 3540-3546.
[http://dx.doi.org/10.1016/j.bmc.2017.05.004] [PMID: 28511909]
[49]
Zhang, Y.; Liu, B.; Wu, X.; Li, R.; Ning, X.; Liu, Y.; Liu, Z.; Ge, Z.; Li, R.; Yin, Y. New pyridin-3-ylmethyl carbamodithioic esters activate pyruvate kinase M2 and potential anticancer lead compounds. Bioorg. Med. Chem., 2015, 23(15), 4815-4823.
[http://dx.doi.org/10.1016/j.bmc.2015.05.041] [PMID: 26081759]
[50]
Liu, B.; Yuan, X.; Xu, B.; Zhang, H.; Li, R.; Wang, X.; Ge, Z.; Li, R. Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors. Eur. J. Med. Chem., 2019, 170, 1-15.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.003] [PMID: 30878825]
[51]
Simon, M.P.; Besmond, C.; Cottreau, D.; Weber, A.; Chaumet-Riffaud, P.; Dreyfus, J.C.; Trépat, J.S.; Marie, J.; Kahn, A. Molecular cloning of cDNA for rat L-type pyruvate kinase and aldolase B. J. Biol. Chem., 1983, 258(23), 14576-14584.
[http://dx.doi.org/10.1016/S0021-9258(17)43902-0] [PMID: 6689021]
[52]
Amin, S.; Yang, P.; Li, Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 331-341.
[http://dx.doi.org/10.1016/j.bbcan.2019.02.003] [PMID: 30826427]
[53]
Luo, W.; Semenza, G.L. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol. Metab., 2012, 23(11), 560-566.
[http://dx.doi.org/10.1016/j.tem.2012.06.010] [PMID: 22824010]
[54]
Gwangwa, M.V.; Joubert, A.M.; Visagie, M.H. Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis. Cell. Mol. Biol. Lett., 2018, 23(1), 20.
[http://dx.doi.org/10.1186/s11658-018-0088-y] [PMID: 29760743]
[55]
Eigenbrodt, E.; Reinacher, M.; Scheefers-Borchel, U.; Scheefers, H.; Friis, R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit. Rev. Oncog., 1992, 3(1-2), 91-115.
[PMID: 1532331]
[56]
Board, M.; Humm, S.; Newsholme, E.A. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem. J., 1990, 265(2), 503-509.
[http://dx.doi.org/10.1042/bj2650503] [PMID: 2302181]
[57]
Lunt, S.Y.; Muralidhar, V.; Hosios, A.M.; Israelsen, W.J.; Gui, D.Y.; Newhouse, L.; Ogrodzinski, M.; Hecht, V.; Xu, K.; Acevedo, P.N.M.; Hollern, D.P.; Bellinger, G.; Dayton, T.L.; Christen, S.; Elia, I.; Dinh, A.T.; Stephanopoulos, G.; Manalis, S.R.; Yaffe, M.B.; Andrechek, E.R.; Fendt, S.M.; Vander Heiden, M.G. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell, 2015, 57(1), 95-107.
[http://dx.doi.org/10.1016/j.molcel.2014.10.027] [PMID: 25482511]
[58]
Heinrich, R.; Rapoport, T.A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem., 1974, 42(1), 89-95.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03318.x] [PMID: 4830198]
[59]
Heinrich, R.; Rapoport, T.A. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur. J. Biochem., 1974, 42(1), 97-105.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03319.x] [PMID: 4830199]
[60]
Kacser, H.; Burns, J.A. The control of flux. Symp. Soc. Exp. Biol., 1973, 27, 65-104.
[PMID: 4148886]
[61]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[62]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[63]
Altenberg, B.; Greulich, K.O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 2004, 84(6), 1014-1020.
[http://dx.doi.org/10.1016/j.ygeno.2004.08.010] [PMID: 15533718]
[64]
Wong, N.; Ojo, D.; Yan, J.; Tang, D. PKM2 contributes to cancer metabolism. Cancer Lett., 2015, 356(2 Pt A), 184-191.
[http://dx.doi.org/10.1016/j.canlet.2014.01.031] [PMID: 24508027]
[65]
Lu, Z.; Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci., 2018, 43(4), 301-310.
[http://dx.doi.org/10.1016/j.tibs.2018.01.006] [PMID: 29463470]
[66]
Dayton, T.L.; Gocheva, V.; Miller, K.M.; Israelsen, W.J.; Bhutkar, A.; Clish, C.B.; Davidson, S.M.; Luengo, A.; Bronson, R.T.; Jacks, T.; Vander Heiden, M.G. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev., 2016, 30(9), 1020-1033.
[http://dx.doi.org/10.1101/gad.278549.116] [PMID: 27125672]
[67]
Hosios, A.M.; Fiske, B.P.; Gui, D.Y.; Vander Heiden, M.G. Lack of evidence for PKM2 protein kinase activity. Mol. Cell, 2015, 59(5), 850-857.
[http://dx.doi.org/10.1016/j.molcel.2015.07.013] [PMID: 26300261]
[68]
Luo, W.; Hu, H.; Chang, R.; Zhong, J.; Knabel, M.; O’Meally, R.; Cole, R.N.; Pandey, A.; Semenza, G.L. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 2011, 145(5), 732-744.
[http://dx.doi.org/10.1016/j.cell.2011.03.054] [PMID: 21620138]
[69]
Luo, W.; Semenza, G.L. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget, 2011, 2(7), 551-556.
[http://dx.doi.org/10.18632/oncotarget.299] [PMID: 21709315]
[70]
Zhao, R.; Li, L.; Yang, J. PKM2 affects the development of hepatocellular carcinoma. Int. J. Clin. Exp. Med., 2016, 9(6), 8.
[71]
Yang, W.; Xia, Y.; Hawke, D.; Li, X.; Liang, J.; Xing, D.; Aldape, K.; Hunter, T.; Alfred Yung, W.K.; Lu, Z. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 2012, 150(4), 685-696.
[http://dx.doi.org/10.1016/j.cell.2012.07.018] [PMID: 22901803]
[72]
Wang, H.J.; Hsieh, Y.J.; Cheng, W.C.; Lin, C.P.; Lin, Y.; Yang, S.F.; Chen, C.C.; Izumiya, Y.; Yu, J.S.; Kung, H.J.; Wang, W.C. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α–mediated glucose metabolism. Proc. Natl. Acad. Sci., 2014, 111(1), 279-284.
[http://dx.doi.org/10.1073/pnas.1311249111] [PMID: 24344305]
[73]
Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Lu, Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol., 2012, 14(12), 1295-1304.
[http://dx.doi.org/10.1038/ncb2629] [PMID: 23178880]
[74]
Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.024] [PMID: 25041845]
[75]
Yang, W.; Xia, Y.; Ji, H.; Zheng, Y.; Liang, J.; Huang, W.; Gao, X.; Aldape, K.; Lu, Z. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature, 2011, 480(7375), 118-122.
[http://dx.doi.org/10.1038/nature10598] [PMID: 22056988]
[76]
Lv, L.; Xu, Y.P.; Zhao, D.; Li, F.L.; Wang, W.; Sasaki, N.; Jiang, Y.; Zhou, X.; Li, T.T.; Guan, K.L.; Lei, Q.Y.; Xiong, Y. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell, 2013, 52(3), 340-352.
[http://dx.doi.org/10.1016/j.molcel.2013.09.004] [PMID: 24120661]
[77]
Dong, G.; Mao, Q.; Xia, W.; Xu, Y.; Wang, J.; Xu, L.; Jiang, F. PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol. Lett., 2016, 11(3), 1980-1986.
[http://dx.doi.org/10.3892/ol.2016.4168] [PMID: 26998110]
[78]
Zhu, H.; Wu, J.; Zhang, W.; Luo, H.; Shen, Z.; Cheng, H.; Zhu, X. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. Sci. Rep., 2016, 6(1), 30788.
[http://dx.doi.org/10.1038/srep30788] [PMID: 27492148]
[79]
Gordon, G.J.; Dong, L.; Yeap, B.Y.; Richards, W.G.; Glickman, J.N.; Edenfield, H.; Mani, M.; Colquitt, R.; Maulik, G.; Van Oss, B.; Sugarbaker, D.J.; Bueno, R. Four-gene expression ratio test for survival in patients undergoing surgery for mesothelioma. J. Natl. Cancer Inst., 2009, 101(9), 678-686.
[http://dx.doi.org/10.1093/jnci/djp061] [PMID: 19401544]
[80]
Zhou, H.; Chen, C.; Lan, J.; Liu, C.; Liu, X.; Jiang, L.; Wei, F.; Ma, Q.; Dang, G.; Liu, Z. Differential proteomic profiling of chordomas and analysis of prognostic factors. J. Surg. Oncol., 2010, 102(7), 720-727.
[http://dx.doi.org/10.1002/jso.21674] [PMID: 20721957]
[81]
Lim, J.Y.; Yoon, S.O.; Seol, S.Y.; Hong, S.W.; Kim, J.W.; Choi, S.H.; Cho, J.Y. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World J. Gastroenterol., 2012, 18(30), 4037-4043.
[http://dx.doi.org/10.3748/wjg.v18.i30.4037] [PMID: 22912555]
[82]
Li, J.; Yang, Z.; Zou, Q.; Yuan, Y.; Li, J.; Liang, L.; Zeng, G.; Chen, S. PKM2 and ACVR 1C are prognostic markers for poor prognosis of gallbladder cancer. Clin. Transl. Oncol., 2014, 16(2), 200-207.
[http://dx.doi.org/10.1007/s12094-013-1063-8] [PMID: 23793810]
[83]
Falkenius, J.; Lundeberg, J.; Johansson, H.; Tuominen, R.; Frostvik-Stolt, M.; Hansson, J.; Egyhazi Brage, S. High expression of glycolytic and pigment proteins is associated with worse clinical outcome in stage III melanoma. Melanoma Res., 2013, 23(6), 452-460.
[http://dx.doi.org/10.1097/CMR.0000000000000027] [PMID: 24128789]
[84]
Hjerpe, E.; Egyhazi Brage, S.; Carlson, J.; Frostvik Stolt, M.; Schedvins, K.; Johansson, H.; Shoshan, M.; Åvall-Lundqvist, E. Metabolic markers GAPDH, PKM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin. Pathol., 2013, 13(1), 30.
[http://dx.doi.org/10.1186/1472-6890-13-30] [PMID: 24252137]
[85]
Yuan, C.; Li, Z.; Wang, Y.; Qi, B.; Zhang, W.; Ye, J.; Wu, H.; Jiang, H.; Song, L.N.; Yang, J.; Cheng, J. Overexpression of metabolic markers PKM2 and LDH5 correlates with aggressive clinicopathological features and adverse patient prognosis in tongue cancer. Histopathology, 2014, 65(5), 595-605.
[http://dx.doi.org/10.1111/his.12441] [PMID: 24762230]
[86]
Liu, W.R.; Tian, M.X.; Yang, L.X.; Lin, Y.L.; Jin, L.; Ding, Z.B.; Shen, Y.H.; Peng, Y.F.; Gao, D.M.; Zhou, J.; Qiu, S.J.; Dai, Z.; He, R.; Fan, J.; Shi, Y.H. PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma. Oncotarget, 2015, 6(2), 846-861.
[http://dx.doi.org/10.18632/oncotarget.2749] [PMID: 25514599]
[87]
Chen, Z.; Lu, X.; Wang, Z.; Jin, G.; Wang, Q.; Chen, D.; Chen, T.; Li, J.; Fan, J.; Cong, W.; Gao, Q.; He, X. Co-expression of PKM2 and TRIM35 predicts survival and recurrence in hepatocellular carcinoma. Oncotarget, 2015, 6(4), 2539-2548.
[http://dx.doi.org/10.18632/oncotarget.2991] [PMID: 25576919]
[88]
Hu, W.; Lu, S.X.; Li, M.; Zhang, C.; Liu, L.L.; Fu, J.; Jin, J.T.; Luo, R.Z.; Zhang, C.Z.; Yun, J.P. Pyruvate kinase M2 prevents apoptosis via modulating bim stability and associates with poor outcome in hepatocellular carcinoma. Oncotarget, 2015, 6(9), 6570-6583.
[http://dx.doi.org/10.18632/oncotarget.3262] [PMID: 25788265]
[89]
Zhao, Y.; Shen, L.; Chen, X.; Qian, Y.; Zhou, Q.; Wang, Y.; Li, K.; Liu, M.; Zhang, S.; Huang, X. High expression of PKM2 as a poor prognosis indicator is associated with radiation resistance in cervical cancer. Histol. Histopathol., 2015, 30(11), 1313-1320.
[http://dx.doi.org/10.14670/HH-11-627] [PMID: 25936600]
[90]
Wang, Y.; Zhang, X.; Zhang, Y.; Zhu, Y.; Yuan, C.; Qi, B.; Zhang, W.; Wang, D.; Ding, X.; Wu, H.; Cheng, J. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol. Ther., 2015, 16(6), 839-845.
[http://dx.doi.org/10.1080/15384047.2015.1030551] [PMID: 25970228]
[91]
Ogawa, H.; Nagano, H.; Konno, M.; Eguchi, H.; Koseki, J.; Kawamoto, K.; Nishida, N.; Colvin, H.; Tomokuni, A.; Tomimaru, Y.; Hama, N.; Wada, H.; Marubashi, S.; Kobayashi, S.; Mori, M.; Doki, Y.; Ishii, H. The combination of the expression of hexokinase 2 and pyruvate kinase M2 is a prognostic marker in patients with pancreatic cancer. Mol. Clin. Oncol., 2015, 3(3), 563-571.
[http://dx.doi.org/10.3892/mco.2015.490] [PMID: 26137268]
[92]
Lin, Y.; Liu, F.; Fan, Y.; Qian, X.; Lang, R.; Gu, F.; Gu, J.; Fu, L. Both high expression of pyruvate kinase M2 and vascular endothelial growth factor-C predicts poorer prognosis in human breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(7), 8028-8037.
[PMID: 26339369]
[93]
Lockney, N.A.; Zhang, M.; Lu, Y.; Sopha, S.C.; Washington, M.K.; Merchant, N.; Zhao, Z.; Shyr, Y.; Chakravarthy, A.B.; Xia, F. Pyruvate Kinase Muscle Isoenzyme 2 (PKM2) expression is associated with overall survival in pancreatic ductal adenocarcinoma. J. Gastrointest. Cancer, 2015, 46(4), 390-398.
[http://dx.doi.org/10.1007/s12029-015-9764-6] [PMID: 26385349]
[94]
Gao, Y.; Xu, D.; Yu, G.; Liang, J. Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer. Int. J. Clin. Exp. Pathol., 2015, 8(8), 9264-9271.
[PMID: 26464675]
[95]
Yu, G.; Yu, W.; Jin, G.; Xu, D.; Chen, Y.; Xia, T.; Yu, A.; Fang, W.; Zhang, X.; Li, Z.; Xie, K. PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol. Cancer, 2015, 14(1), 193.
[http://dx.doi.org/10.1186/s12943-015-0462-6] [PMID: 26576639]
[96]
Cui, R.; Shi, X-Y. Expression of pyruvate kinase M2 in human colorectal cancer and its prognostic value. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11393-11399.
[PMID: 26617865]
[97]
Mohammad, G.H.; Olde Damink, S.W.M.; Malago, M.; Dhar, D.K.; Pereira, S.P. Pyruvate kinase M2 and lactate dehydrogenase A are overexpressed in pancreatic cancer and correlate with poor outcome. PLoS One, 2016, 11(3), e0151635.
[http://dx.doi.org/10.1371/journal.pone.0151635] [PMID: 26989901]
[98]
Lu, W.; Cao, Y.; Zhang, Y.; Li, S.; Gao, J.; Wang, X.A.; Mu, J.; Hu, Y.P.; Jiang, L.; Dong, P.; Gong, W.; Liu, Y. Up-regulation of PKM2 promote malignancy and related to adverse prognostic risk factor in human gallbladder cancer. Sci. Rep., 2016, 6(1), 26351.
[http://dx.doi.org/10.1038/srep26351] [PMID: 27283076]
[99]
Liu, Z.; Hong, L.; Fang, S.; Tan, G.; Huang, P.; Zeng, Z.; Xia, X.; Wang, X. Overexpression of pyruvate kinase M2 predicts a poor prognosis for patients with osteosarcoma. Tumour Biol., 2016, 37(11), 14923-14928.
[http://dx.doi.org/10.1007/s13277-016-5401-7] [PMID: 27644251]
[100]
Wang, C.; Jiang, J.; Ji, J.; Cai, Q.; Chen, X.; Yu, Y.; Zhu, Z.; Zhang, J. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci. Rep., 2017, 7(1), 2886.
[http://dx.doi.org/10.1038/s41598-017-03031-1] [PMID: 28588255]
[101]
Chao, T.K.; Huang, T.S.; Liao, Y.P.; Huang, R.L.; Su, P.H.; Shen, H.Y.; Lai, H.C.; Wang, Y.C. Pyruvate kinase M2 is a poor prognostic marker of and a therapeutic target in ovarian cancer. PLoS One, 2017, 12(7), e0182166.
[http://dx.doi.org/10.1371/journal.pone.0182166] [PMID: 28753677]
[102]
Li, W.; Xu, Z.; Hong, J.; Xu, Y. Expression patterns of three regulation enzymes in glycolysis in esophageal squamous cell carcinoma: Association with survival. Med. Oncol., 2014, 31(9), 118.
[http://dx.doi.org/10.1007/s12032-014-0118-1] [PMID: 25064730]
[103]
Goldberg, M.S.; Sharp, P.A. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J. Exp. Med., 2012, 209(2), 217-224.
[http://dx.doi.org/10.1084/jem.20111487] [PMID: 22271574]
[104]
Vander Heiden, M.G.; Christofk, H.R.; Schuman, E.; Subtelny, A.O.; Sharfi, H.; Harlow, E.E.; Xian, J.; Cantley, L.C. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol., 2010, 79(8), 1118-1124.
[http://dx.doi.org/10.1016/j.bcp.2009.12.003] [PMID: 20005212]
[105]
Varghese, B.; Swaminathan, G.; Plotnikov, A.; Tzimas, C.; Yang, N.; Rui, H.; Fuchs, S.Y. Prolactin inhibits activity of pyruvate kinase M2 to stimulate cell proliferation. Mol. Endocrinol., 2010, 24(12), 2356-2365.
[http://dx.doi.org/10.1210/me.2010-0219] [PMID: 20962042]
[106]
Zhao, X.; Zhu, Y.; Hu, J.; Jiang, L.; Li, L.; Jia, S.; Zen, K. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci. Rep., 2018, 8(1), 14517.
[http://dx.doi.org/10.1038/s41598-018-31615-y] [PMID: 30266938]
[107]
Liu, T.; Li, S.; Wu, L.; Yu, Q.; Li, J.; Feng, J.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Experimental study of hepatocellular carcinoma treatment by shikonin through regulating PKM2. J. Hepatocell. Carcinoma, 2020, 7, 19-31.
[http://dx.doi.org/10.2147/JHC.S237614] [PMID: 32110554]
[108]
Yang, W.; Liu, J.; Hou, L.; Chen, Q.; Liu, Y. Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line. Life Sci., 2021, 265, 118796.
[http://dx.doi.org/10.1016/j.lfs.2020.118796] [PMID: 33220292]
[109]
Chen, J.; Xie, J.; Jiang, Z.; Wang, B.; Wang, Y.; Hu, X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene, 2011, 30(42), 4297-4306.
[http://dx.doi.org/10.1038/onc.2011.137] [PMID: 21516121]
[110]
Ning, X.; Qi, H.; Li, R.; Jin, Y.; McNutt, M.A.; Yin, Y. Synthesis and antitumor activity of novel 2, 3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 126-129.
[http://dx.doi.org/10.1080/14756366.2017.1404591] [PMID: 29185365]
[111]
Shimada, N.; Takasawa, R.; Tanuma, S. Interdependence of GLO I and PKM2 in the metabolic shift to escape apoptosis in GLO I-dependent cancer cells. Arch. Biochem. Biophys., 2018, 638, 1-7.
[http://dx.doi.org/10.1016/j.abb.2017.12.008] [PMID: 29225125]
[112]
Shang, D.; Wu, J.; Guo, L.; Xu, Y.; Liu, L.; Lu, J. Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int. J. Oncol., 2017, 50(5), 1848-1856.
[http://dx.doi.org/10.3892/ijo.2017.3950] [PMID: 28393220]
[113]
Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008, 452(7184), 181-186.
[http://dx.doi.org/10.1038/nature06667] [PMID: 18337815]
[114]
Kefas, B.; Comeau, L.; Erdle, N.; Montgomery, E.; Amos, S.; Purow, B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro oncol., 2010, 12(11), 1102-1112.
[http://dx.doi.org/10.1093/neuonc/noq080] [PMID: 20667897]
[115]
Zhu, Z.; Tang, G.; Yan, J. MicroRNA-122 regulates docetaxel resistance of prostate cancer cells by regulating PKM2. Exp. Ther. Med., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/etm.2020.9377] [PMID: 33178345]
[116]
Wang, D.; Zhao, C.; Xu, F.; Zhang, A.; Jin, M.; Zhang, K.; Liu, L.; Hua, Q.; Zhao, J.; Liu, J.; Yang, H.; Huang, G. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics, 2021, 11(6), 2860-2875.
[http://dx.doi.org/10.7150/thno.51797] [PMID: 33456577]
[117]
Mazurek, S. Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol., 2011, 43(7), 969-980.
[http://dx.doi.org/10.1016/j.biocel.2010.02.005] [PMID: 20156581]
[118]
Chen, J.; Jiang, Z.; Wang, B.; Wang, Y.; Hu, X. Vitamin K3 and K5 are inhibitors of tumor pyruvate kinase M2. Cancer Lett., 2012, 316(2), 204-210.
[http://dx.doi.org/10.1016/j.canlet.2011.10.039] [PMID: 22154083]
[119]
Scicchitano, B.M.; Sorrentino, S.; Proietti, G.; Lama, G.; Dobrowolny, G.; Catizone, A.; Binda, E.; Larocca, L.M.; Sica, G. Levetiracetam enhances the temozolomide effect on glioblastoma stem cell proliferation and apoptosis. Cancer Cell Int., 2018, 18(1), 136.
[http://dx.doi.org/10.1186/s12935-018-0626-8] [PMID: 30214378]
[120]
Johnson, D.R.; O’Neill, B.P. Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol., 2012, 107(2), 359-364.
[http://dx.doi.org/10.1007/s11060-011-0749-4] [PMID: 22045118]
[121]
Chu, L.; Wang, A.; Ni, L.; Yan, X.; Song, Y.; Zhao, M.; Sun, K.; Mu, H.; Liu, S.; Wu, Z.; Zhang, C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv., 2018, 25(1), 1634-1641.
[http://dx.doi.org/10.1080/10717544.2018.1494226] [PMID: 30176744]
[122]
Hsieh, I.S.; Gopula, B.; Chou, C.C.; Wu, H.Y.; Chang, G.D.; Wu, W.J.; Chang, C.S.; Chu, P.C.; Chen, C.S. Development of novel irreversible pyruvate kinase M2 inhibitors. J. Med. Chem., 2019, 62(18), 8497-8510.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00763] [PMID: 31465224]
[123]
Kung, C.; Hixon, J.; Choe, S.; Marks, K.; Gross, S.; Murphy, E.; DeLaBarre, B.; Cianchetta, G.; Sethumadhavan, S.; Wang, X.; Yan, S.; Gao, Y.; Fang, C.; Wei, W.; Jiang, F.; Wang, S.; Qian, K.; Saunders, J.; Driggers, E.; Woo, H.K.; Kunii, K.; Murray, S.; Yang, H.; Yen, K.; Liu, W.; Cantley, L.C.; Vander Heiden, M.G.; Su, S.M.; Jin, S.; Salituro, F.G.; Dang, L. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol., 2012, 19(9), 1187-1198.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.021] [PMID: 22999886]
[124]
Parnell, K.M.; Foulks, J.M.; Nix, R.N.; Clifford, A.; Bullough, J.; Luo, B.; Senina, A.; Vollmer, D.; Liu, J.; McCarthy, V.; Xu, Y.; Saunders, M.; Liu, X.H.; Pearce, S.; Wright, K.; O’Reilly, M.; McCullar, M.V.; Ho, K.K.; Kanner, S.B. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol. Cancer Ther., 2013, 12(8), 1453-1460.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0026] [PMID: 23720766]
[125]
Xu, Y.; Liu, X.H.; Saunders, M.; Pearce, S.; Foulks, J.M.; Parnell, K.M.; Clifford, A.; Nix, R.N.; Bullough, J.; Hendrickson, T.F.; Wright, K.; McCullar, M.V.; Kanner, S.B.; Ho, K.K. Discovery of 3-(trifluoromethyl)-1H-pyrazole-5-carboxamide activators of the M2 isoform of pyruvate kinase (PKM2). Bioorg. Med. Chem. Lett., 2014, 24(2), 515-519.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.028] [PMID: 24374270]
[126]
Yacovan, A.; Ozeri, R.; Kehat, T.; Mirilashvili, S.; Sherman, D.; Aizikovich, A.; Shitrit, A.; Ben-Zeev, E.; Schutz, N.; Bohana-Kashtan, O.; Konson, A.; Behar, V.; Becker, O.M. 1-(sulfonyl)-5-(arylsulfonyl)indoline as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett., 2012, 22(20), 6460-6468.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.054] [PMID: 22963766]
[127]
Iansante, V.; Choy, P.M.; Fung, S.W.; Liu, Y.; Chai, J.G.; Dyson, J.; Del Rio, A.; D’Santos, C.; Williams, R.; Chokshi, S.; Anders, R.A.; Bubici, C.; Papa, S. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat. Commun., 2015, 6(1), 7882.
[http://dx.doi.org/10.1038/ncomms8882] [PMID: 26258887]
[128]
Rathod, B.; Chak, S.; Patel, S.; Shard, A. Tumor pyruvate kinase M2 modulators: A comprehensive account of activators and inhibitors as anticancer agents. RSC Med. Chem., 2021, 12(7), 1121-1141.
[http://dx.doi.org/10.1039/D1MD00045D] [PMID: 34355179]
[129]
Arora, S.; Joshi, G.; Chaturvedi, A.; Heuser, M.; Patil, S.; Kumar, R. A perspective on medicinal chemistry approaches for targeting pyruvate kinase M2. J. Med. Chem., 2022, 65(2), 1171-1205.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00981] [PMID: 34726055]
[130]
Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.F.; Fischer, P.D.; Coote, P.W.; Padmanabha Das, K.M.; Malets, Y.S.; Radchenko, D.S.; Moroz, Y.S.; Scott, D.A.; Fackeldey, K.; Hoffmann, M.; Iavniuk, I.; Wagner, G.; Arthanari, H. An open-source drug discovery platform enables ultra-large virtual screens. Nature, 2020, 580(7805), 663-668.
[http://dx.doi.org/10.1038/s41586-020-2117-z] [PMID: 32152607]
[131]
Li, Y.; De Luca, R.; Cazzamalli, S.; Pretto, F.; Bajic, D.; Scheuermann, J.; Neri, D. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nat. Chem., 2018, 10(4), 441-448.
[http://dx.doi.org/10.1038/s41557-018-0017-8] [PMID: 29556050]
[132]
Gura, T. DNA helps build molecular libraries for drug testing. Science, 2015, 350(6265), 1139-1140.
[http://dx.doi.org/10.1126/science.350.6265.1139] [PMID: 26785450]
[133]
Mullard, A. DNA tags help the hunt for drugs. Nature, 2016, 530(7590), 367-369.
[http://dx.doi.org/10.1038/530367a] [PMID: 26887498]
[134]
Jee, J.E.; Lim, J.; Ong, Y.S.; Oon, J.; Gao, L.; Choi, H.S.; Lee, S.S. An efficient strategy to enhance binding affinity and specificity of a known isozyme inhibitor. Org. Biomol. Chem., 2016, 14(28), 6833-6839.
[http://dx.doi.org/10.1039/C6OB01104G] [PMID: 27339902]
[135]
Ong, Y.S.; Gao, L.; Kalesh, K.A.; Yu, Z.; Wang, J.; Liu, C.; Li, Y.; Sun, H.; Lee, S.S. Recent advances in synthesis and identification of cyclic peptides for bioapplications. Curr. Top. Med. Chem., 2017, 17(20), 2302-2318.
[http://dx.doi.org/10.2174/1568026617666170224121658] [PMID: 28240181]
[136]
Zerfas, B.L.; Trader, D.J. Monitoring the immunoproteasome in live cells using an activity-based peptide–peptoid hybrid probe. J. Am. Chem. Soc., 2019, 141(13), 5252-5260.
[http://dx.doi.org/10.1021/jacs.8b12873] [PMID: 30862160]
[137]
Jiang, J.; Boxer, M.B.; Vander Heiden, M.G.; Shen, M.; Skoumbourdis, A.P.; Southall, N.; Veith, H.; Leister, W.; Austin, C.P.; Park, H.W.; Inglese, J.; Cantley, L.C.; Auld, D.S.; Thomas, C.J. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett., 2010, 20(11), 3387-3393.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.015] [PMID: 20451379]
[138]
Rihan, M.; Nalla, L.V.; Dharavath, A.; Patel, S.; Shard, A.; Khairnar, A. Boronic acid derivative activates pyruvate kinase M2 indispensable for redox metabolism in oral cancer cells. Bioorg. Med. Chem. Lett., 2022, 59, 128539.
[http://dx.doi.org/10.1016/j.bmcl.2022.128539] [PMID: 35007726]
[139]
Patel, S.; Shinde, S.; Patel, S.; Maheshwari, R.; Jariyal, H.; Srivastava, A. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg Med Chem Lett., 2021, 42, 128062.
[140]
Patel, S.; Globisch, C.; Pulugu, P.; Kumar, P.; Jain, A.; Shard, A. Novel imidazopyrimidines-based molecules induce tetramerization of tumor pyruvate kinase M2 and exhibit potent antiproliferative profile. Eur. J. Pharm. Sci., 2022, 170, 106112.
[http://dx.doi.org/10.1016/j.ejps.2021.106112] [PMID: 34971746]
[141]
Li, R.; Ning, X.; He, J.; Lin, Z.; Su, Y.; Li, R.; Yin, Y. Synthesis of novel sulfonamide derivatives containing pyridin-3-ylmethyl 4-(benzoyl)piperazine-1-carbodithioate moiety as potent PKM2 activators. Bioorg. Chem., 2021, 108, 104653.
[http://dx.doi.org/10.1016/j.bioorg.2021.104653] [PMID: 33517002]
[142]
Lin, H.; Han, H.; Yang, M.; Wen, Z.; Chen, Q.; Ma, Y.; Wang, X.; Wang, C.; Yin, T.; Wang, X.; Lu, G.; Chen, H.; Qi, J.; Yang, Y. PKM2/PDK1 dual-targeted shikonin derivatives restore the sensitivity of EGFR-mutated NSCLC cells to gefitinib by remodeling glucose metabolism. Eur. J. Med. Chem., 2023, 249(249), 115166.
[http://dx.doi.org/10.1016/j.ejmech.2023.115166] [PMID: 36731272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy