Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Titanium (IV) μ-Oxo Complex Supported by Phenoxyimine Ligand: Synthesis, Crystal Structure Characterisation, DFT and Molecular Docking Studies

Author(s): Vinodkumar P. Sajjan, Prabhuodeyara M. Gurubasavaraj*, Vikram Pujari, Sanjeev R. Inamdar and Nobendu Mukerjee

Volume 21, Issue 12, 2024

Published on: 06 October, 2023

Page: [2384 - 2395] Pages: 12

DOI: 10.2174/1570180820666230714141927

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Most of the transition elements in the 3d series (first row transition metals) have been discovered to be extremely significant and practical in biological systems. Naturally, many of the enzymes that are present in the human body system act as catalysts for biological processes and are made of coordination compounds or complexes.

Objective: The complex has been characterised by various spectroscopic and analytic techniques. A suitable crystal analysed by X-ray diffraction establishes the formation of a stable binuclear μ-oxo-complex with a hexacoordinate titanium centre.

Methods: A new crystalline complex [Ti{La}] has been synthesised in the reaction of titanium butoxide with a phenoxyimine ligand in a 1:1 stoichiometry in toluene at room temperature under a nitrogen atmosphere. The newly synthesised Ti complex has undergone density functional theory and docking study.

Results: The crystal shows a monoclinic system with space group C 1 2/c 1. X-ray crystal structure analysis reveals that this complex has a rhomboidal Ti-O-Ti core and exhibits a C2 symmetric conformation with distorted octahedral geometry. Density Functional Theory (DFT) calculations giving insights into the frontier orbitals and mulliken charge analysis, which showed good correlation with the experimental findings. Additionally, in silico molecular docking of ligand and complex was carried out against the HER2 inhibitor kinase.

Conclusion: This complex exhibits a higher binding energy of ΔGb = -19.7 kcal/mol with the active pocket of HER2 (PDB:7JXH) than the ligand ΔGb = -8.5 kcal/mol.

Keywords: Titanium complex, phenoxyimine ligand, DFT calculation, docking study, crystalline complex, X-ray.

Graphical Abstract
[1]
Decortes, A.; Castilla, A.M.; Kleij, A.W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed., 2010, 49(51), 9822-9837.
[http://dx.doi.org/10.1002/anie.201002087] [PMID: 20957709]
[2]
Cozzi, P.G. Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev., 2004, 33(7), 410-421.
[http://dx.doi.org/10.1039/B307853C] [PMID: 15354222]
[3]
Ganot, N.; Briaitbard, O.; Gammal, A.; Tam, J.; Hochman, J.; Tshuva, E.Y. In vivo anticancer activity of a nontoxic inert phenolato titanium complex: high efficacy on solid tumors alone and combined with platinum drugs. ChemMedChem, 2018, 13(21), 2290-2296.
[http://dx.doi.org/10.1002/cmdc.201800551] [PMID: 30203598]
[4]
Kostova, Irena Titanium and vanadium complexes as anticancer agents. Anticancer. Agents Med. Chem., 2009, 9(8), 827-842.
[http://dx.doi.org/10.2174/187152009789124646] [PMID: 19538167]
[5]
Darensbourg, D.J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev., 2007, 107(6), 2388-2410.
[http://dx.doi.org/10.1021/cr068363q] [PMID: 17447821]
[6]
Gupta, K.C.; Sutar, A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev., 2008, 252(12-14), 1420-1450.
[http://dx.doi.org/10.1016/j.ccr.2007.09.005]
[7]
Maher, K.A.; Mohammed, S.R. Metal complexes of Schiff base derived from salicylaldehyde-A review. Int. J. Curr. Res. Rev., 2015, 7(2), 6.
[8]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[9]
Han, J.; Liu, Y.; Tang, C.; Shen, Y.; Lu, J.; Zhang, Y.; Jia, D. Thioarsenate anions acting as ligands: Solvothermal syntheses, crystal structures and characterizations of transition metal complexes of thioarsenate and polyethyleneamine ligands. Inorg. Chim. Acta, 2016, 444, 36-42.
[http://dx.doi.org/10.1016/j.ica.2016.01.027]
[10]
Ali, O.A.M.; El-Medani, S.M.; Abu Serea, M.R.; Sayed, A.S.S. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 651-660.
[http://dx.doi.org/10.1016/j.saa.2014.09.079] [PMID: 25448965 ]
[11]
Olanrewaju, A.A.; Ibeji, C.U.; Oyeneyin, O.E. Biological evaluation and molecular docking of some newly synthesized 3d-series metal(II) mixed-ligand complexes of fluoro-naphthyl diketone and dithiocarbamate. SN Appl. Sci., 2020, 2(4), 678.
[http://dx.doi.org/10.1007/s42452-020-2482-0]
[12]
Hung, W.C.; Lin, C.C. Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate Schiff-base ligands. Inorg. Chem., 2009, 48(2), 728-734.
[http://dx.doi.org/10.1021/ic801397t] [PMID: 19072296]
[13]
Siji, V.L.; Kumar, M.R.S.; Suma, S.; Kurup, M.R.P. Synthesis, characterization and physiochemical information, along with antimicrobial studies of some metal complexes derived from an ON donor semicarbazone ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(1), 22-28.
[http://dx.doi.org/10.1016/j.saa.2010.02.035] [PMID: 20347382]
[14]
Piszczek, P.; Radtke, A.; Muzioł, T.; Richert, M.; Chojnacki, J. The conversion of multinuclear μ-oxo titanium(iv) species in the reaction of Ti(OiBu)4 with branched organic acids; Results of structural and spectroscopic studies. Dalton Trans., 2012, 41(27), 8261-8269.
[http://dx.doi.org/10.1039/c2dt12338j] [PMID: 22622189]
[15]
Rozes, L.; Sanchez, C. Titanium oxo-clusters: Precursors for a Lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev., 2011, 40(2), 1006-1030.
[http://dx.doi.org/10.1039/c0cs00137f] [PMID: 21218224]
[16]
Boyle, T.J.; Guerrero, F.; Alam, T.M.; Dunnigan, K.A.; Sears, J.M.; Wheeler, D.R. Trapped intermediate of a meerwein–pondorf–verley reduction of hydroxy benzaldehyde to a dialkoxide by titanium alkoxides. Inorg. Chem., 2020, 59(1), 880-890.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03134] [PMID: 31840987]
[17]
Jacobsen, E.N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res., 2000, 33(6), 421-431.
[http://dx.doi.org/10.1021/ar960061v] [PMID: 10891060]
[18]
Gurubasavaraj, P.M.; Mandal, S.K.; Roesky, H.W.; Oswald, R.B.; Pal, A.; Noltemeyer, M. Synthesis, structural characterization, catalytic properties, and theoretical study of compounds containing an Al-O-M (M = Ti, Hf) core. Inorg. Chem., 2007, 46(4), 1056-1061.
[http://dx.doi.org/10.1021/ic060538r] [PMID: 17291107]
[19]
Gurubasavaraj, P.M.; Roesky, H.W.; Sharma, P.M.V.; Oswald, R.B.; Dolle, V.; Herbst-Irmer, R.; Pal, A. Oxygen effect in heterobimetallic catalysis: The Zr−O−Ti system as an excellent example for olefin polymerization. Organometallics, 2007, 26(14), 3346-3351.
[http://dx.doi.org/10.1021/om070235k]
[20]
Stenta, M.; Dal Peraro, M. An introduction to quantum chemical methods applied to drug design. Front. Biosci. (Elite Ed.), 2011, 3(3), 1061-1078.
[PMID: 21622114]
[21]
Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys., 1955, 23(10), 1833-1840.
[http://dx.doi.org/10.1063/1.1740588]
[22]
Arrouvel, C.; Parker, S.C.; Islam, M.S. Lithium insertion and transport in the TiO2− B anode material: A computational study. Chem. Mater., 2009, 21(20), 4778-4783.
[http://dx.doi.org/10.1021/cm900373u]
[23]
Daude, N.; Gout, C.; Jouanin, C. Electronic band structure of titanium dioxide. Phys. Rev., B, Solid State, 1977, 15(6), 3229-3235.
[http://dx.doi.org/10.1103/PhysRevB.15.3229]
[24]
Azam, M.; Wabaidur, S.M.; Alam, M.; Khan, Z.; Alanazi, I.O.; Al-Resayes, S.I.; Moon, I.S. Rajendra, Synthesis, characterization, cytotoxicity, and molecular docking studies of ampyrone-based transition metal complexes. Trans. Met. Chem. (Weinh.), 2021, 46(1), 65-71.
[http://dx.doi.org/10.1007/s11243-020-00422-8]
[25]
Raja, G.; Butcher, R.J.; Jayabalakrishnan, C. Studies on synthesis, characterization, DNA interaction and cytotoxicity of ruthenium(II) Schiff base complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 94, 210-215.
[http://dx.doi.org/10.1016/j.saa.2012.03.035] [PMID: 22522297]
[26]
Studio, D. Dassault systemes BIOVIA, Discovery studio modelling environment, Release 4.5; Accelrys Softw Inc,, 2015, pp. 98-104.
[27]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx.Chemical biology; Humana Press: New York, NY,, 2015, pp. 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[28]
Williams, D.B.G.; Lawton, M. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem., 2010, 75(24), 8351-8354.
[http://dx.doi.org/10.1021/jo101589h] [PMID: 20945830]
[29]
Sheldrick, G.M. SHELXL, Version 2014/3; University of Göttingen: Germany, 2014.
[30]
Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G.; Spagna, R. SIR2011: A new package for crystal structure determination and refinement. J. Appl. Cryst., 2012, 45(2), 357-361.
[http://dx.doi.org/10.1107/S0021889812001124]
[31]
GaussView 6.1.1 Release Notes. Expanding the Limits of Computational Chemistry, 2016. Available from: https://gaussian.com/gv611rn/
[32]
Bonvino, N.P.; Liang, J.; McCord, E.D.; Zafiris, E.; Benetti, N.; Ray, N.B.; Hung, A.; Boskou, D.; Karagiannis, T.C. OliveNet™: A comprehensive library of compounds from Olea europaea. Database (Oxford), 2018, 2018, 2018.
[http://dx.doi.org/10.1093/database/bay016] [PMID: 29688352]
[33]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[34]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[35]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[36]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[37]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[38]
Sajjan, V.P.; Anigol, L.B.; Gurubasavaraj, P.M.; Kotresha, D.; Pradhan, S.S.; Venkatesh, S.; Patil, D. Synthesis, characterization and molecular docking studies of phenoxyimine based ligands: Cytotoxicity, hemolytic activity and antioxidant assessment. J. Mol. Struct., 2022, 1265, 133457.
[http://dx.doi.org/10.1016/j.molstruc.2022.133457]
[39]
Al-Qaisi, F.; Streng, E.; Tsarev, A.; Nieger, M.; Repo, T. Titanium alkoxide complexes as catalysts for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Eur. J. Inorg. Chem., 2015, 2015(32), 5363-5367.
[http://dx.doi.org/10.1002/ejic.201500760]
[40]
Liu, J.; Iwasa, N.; Nomura, K. Synthesis of Al complexes containing phenoxy-imine ligands and their use as the catalyst precursors for efficient living ring-opening polymerisation of ε-caprolactone. Dalton Trans., 2008, 30(30), 3978-3988.
[http://dx.doi.org/10.1039/b801561a] [PMID: 18648701]
[41]
Ma, Y.; Lobkovsky, E.B.; Coates, G.W. Titanium(IV) catalysts with ancillary imino-spiroketonato ligands: synthesis, structure and olefin polymerization. Dalton Trans., 2015, 44(27), 12265-12272.
[http://dx.doi.org/10.1039/C5DT01104C] [PMID: 25984908]
[42]
Schmid, M.; Guillaume, S.M.; Roesky, P.W. β-Diketiminate rare earth borohydride complexes: synthesis, structure, and catalytic activity in the ring-opening polymerization of ε-caprolactone and trimethylene carbonate. Organometallics, 2014, 33(19), 5392-5401.
[http://dx.doi.org/10.1021/om500708x]
[43]
Białek, M.; Fryga, J.; Spaleniak, G.; Dziuk, B. Ring opening polymerization of ε-caprolactone initiated by titanium and vanadium complexes of ONO-type schiff base ligand. J. Polym. Res., 2021, 28(3), 79.
[http://dx.doi.org/10.1007/s10965-021-02419-y]
[44]
Miller, M.; Tshuva, E.Y. Synthesis of pure enantiomers of titanium (IV) complexes with chiral diaminobis (phenolato) ligands and their biological reactivity. Sci. Rep., 2018, 8(1), 9705.
[http://dx.doi.org/10.1038/s41598-018-27735-0] [PMID: 29946136]
[45]
Durr, C.B.; Williams, C.K. New coordination modes for modified schiff base Ti(IV) complexes and their control over lactone ring-opening polymerization activity. Inorg. Chem., 2018, 57(22), 14240-14248.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02271] [PMID: 30376308]
[46]
Matsuo, T.; Kawaguchi, H.; Sakai, M. Synthesis and structures of Ti(iii) and Ti(iv) complexes supported by a tridentate aryloxide ligand. J. Chem. Soc., Dalton Trans., 2002, 12(12), 2536-2540.
[http://dx.doi.org/10.1039/b111362c]
[47]
Hao, S.; Feghali, K.; Gambarotta, S. Preparation and characterization of a diamagnetic and dinuclear titanium(III) formamidinate complex. evidence for the existence of a Ti−Ti bond? Inorg. Chem., 1997, 36(9), 1745-1748.
[http://dx.doi.org/10.1021/ic961358s] [PMID: 11669774]
[48]
Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO 2 anatase surfaces. Phys. Rev. B Condens. Matter, 2001, 63(15), 155409.
[http://dx.doi.org/10.1103/PhysRevB.63.155409]
[49]
Brennan, B.J.; Chen, J.; Rudshteyn, B.; Chaudhuri, S.; Mercado, B.Q.; Batista, V.S.; Crabtree, R.H.; Brudvig, G.W. Molecular titanium–hydroxamate complexes as models for TiO 2 surface binding. Chem. Commun. (Camb.), 2016, 52(14), 2972-2975.
[http://dx.doi.org/10.1039/C5CC09857B] [PMID: 26781247]
[50]
Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Munawar, K.S.; Ashfaq, M.; Tahir, M.N. Titanium(IV) complex containing ONO-tridentate Schiff base ligand: Synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies. J. Mol. Struct., 2021, 1241, 130653.
[http://dx.doi.org/10.1016/j.molstruc.2021.130653]
[51]
Silawanich, A.; Muangpil, S.; Kungwan, N.; Meepowpan, P.; Punyodom, W.; Lawan, N. Theoretical study of efficiency comparison of Ti (IV) alkoxides as initiators for ring-opening polymerization of ε-caprolactone. Comput. Theor. Chem., 2016, 1090, 17-22.
[http://dx.doi.org/10.1016/j.comptc.2016.05.017]
[52]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy