Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Research of Active Compounds from Allii Macrostemonis Bulbus and Potential Targets against Non-Hodgkin’s Lymphoma Based on Network Pharmacology

Author(s): Xiuliang Qiu, QiuLing Zhao, Hongqiang Qiu, Yu Cheng, WenBin Liu and Lin Yang*

Volume 20, Issue 3, 2024

Published on: 19 July, 2023

Page: [291 - 302] Pages: 12

DOI: 10.2174/1573409919666230712144041

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Non-Hodgkin’s Lymphoma (NHL) is a series of lymphoid malignancies in some aggressive subtypes with unsatisfactory treatment effects. Allii Macrostemonis Bulbus (Xie Bai) is a traditional Chinese medicine with anti-cancer activities, which may potentially suppress aggressive NHL.

Objective: This study tries to discover active components and targets of Xie Bai in treating NHL by network pharmacology-based approaches.

Methods: Compounds and related targets of Xie Bai were collected from the Traditional Chinese Medicine Database and Analysis Platform. Target genes associated with NHL were searched by GeneCards and DisGeNET, then the overlapped targets were further analyzed by STRING tool, GO, and KEGG pathway enrichment analysis. Molecular docking was employed to verify the interaction between compounds and targets.

Results: 11 bioactive compounds were successfully identified, with 30 targets that were screened out for the treatment of NHL. Functional enrichment analysis suggested that Xie Bai exerted its potential effects against NHL via pathways in cancer, such as PI3K/ AKT, p53, and MAPK signaling pathways. Molecular docking results showed that 3 active compounds (quercetin, betasitosterol, and naringenin) had good affinity with selected 6 targets (TP53, AKT1, CASP3, CCND1, HPK1, and NLRP3).

Conclusion: Identifying six potential genes could accurately be docked with Xie Bai and had close interactions with NHL, which may provide insight into further research and new treatment strategy.

Keywords: Allii Macrostemonis Bulbus, non-hodgkin’s lymphoma, network pharmacology, targets, mechanism, molecular docking.

Graphical Abstract
[1]
Mangal, N.; Salem, A.H.; Li, M.; Menon, R.; Freise, K.J. Relationship between response rates and median progression-free survival in non-Hodgkin’s lymphoma: A meta-analysis of published clinical trials. Hematol. Oncol., 2018, 36(1), 37-43.
[http://dx.doi.org/10.1002/hon.2463] [PMID: 28707346]
[2]
Wang, Y.W.; Zhang, S.D.; Xue, W.J.; Zhu, M.L.; Zheng, L.Z. SHMT1 C1420T polymorphism contributes to the risk of non-Hodgkin lymphoma: Evidence from 7309 patients. Chin. J. Cancer, 2015, 34(3), 60.
[http://dx.doi.org/10.1186/s40880-015-0065-z] [PMID: 26666829]
[3]
Ribeiro, M.L.; Reyes-Garau, D.; Vinyoles, M.; Profitós Pelejà, N.; Santos, J.C.; Armengol, M.; Fernández-Serrano, M.; Sedó Mor, A.; Bech-Serra, J.J.; Blecua, P.; Musulen, E.; De La Torre, C.; Miskin, H.; Esteller, M.; Bosch, F.; Menéndez, P.; Normant, E.; Roué, G. Antitumor activity of the novel BTK inhibitor TG-1701 Is associated with disruption of ikaros signaling in patients with B-cell non-hodgkin lymphoma. Clin. Cancer Res., 2021, 27(23), 6591-6601.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1067] [PMID: 34551904]
[4]
Ji, J.; Liu, Z.; Kuang, P.; Dong, T.; Chen, X.; Li, J.; Zhang, C.; Liu, J.; Zhang, L.; Shen, K.; Liu, T. A new conditioning regimen with chidamide, cladribine, gemcitabine and busulfan significantly improve the outcome of high‐risk or relapsed/refractory NON‐HODGKIN's lymphomas. Int. J. Cancer, 2021, 149(12), 2075-2082.
[http://dx.doi.org/10.1002/ijc.33761] [PMID: 34398971]
[5]
Yoneshima, Y.; Morita, S.; Ando, M.; Nakamura, A.; Iwasawa, S.; Yoshioka, H.; Goto, Y.; Takeshita, M.; Harada, T.; Hirano, K.; Oguri, T.; Kondo, M.; Miura, S.; Hosomi, Y.; Kato, T.; Kubo, T.; Kishimoto, J.; Yamamoto, N.; Nakanishi, Y.; Okamoto, I. Phase 3 Trial comparing nanoparticle albumin-bound paclitaxel With docetaxel for previously treated advanced NSCLC. J. Thorac. Oncol., 2021, 16(9), 1523-1532.
[http://dx.doi.org/10.1016/j.jtho.2021.03.027] [PMID: 33915251]
[6]
Lassaletta, A.; Scheinemann, K.; Zelcer, S.M.; Hukin, J.; Wilson, B.A.; Jabado, N.; Carret, A.S.; Lafay-Cousin, L.; Larouche, V.; Hawkins, C.E.; Pond, G.R.; Poskitt, K.; Keene, D.; Johnston, D.L.; Eisenstat, D.D.; Krishnatry, R.; Mistry, M.; Arnoldo, A.; Ramaswamy, V.; Huang, A.; Bartels, U.; Tabori, U.; Bouffet, E. Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: A canadian pediatric brain tumor consortium study. J. Clin. Oncol., 2016, 34(29), 3537-3543.
[http://dx.doi.org/10.1200/JCO.2016.68.1585] [PMID: 27573663]
[7]
Yang, W.; Cai, J.; Shen, S.; Gao, J.; Yu, J.; Hu, S.; Jiang, H.; Fang, Y.; Liang, C.; Ju, X.; Wu, X.; Zhai, X.; Tian, X.; Wang, N.; Liu, A.; Jiang, H.; Jin, R.; Sun, L.; Yang, M.; Leung, A.W.K.; Pan, K.; Zhang, Y.; Chen, J.; Zhu, Y.; Zhang, H.; Li, C.; Yang, J.J.; Cheng, C.; Li, C.K.; Tang, J.; Zhu, X.; Pui, C.H. Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): An open-label, multicentre, randomised, phase 3, non-inferiority trial. Lancet Oncol., 2021, 22(9), 1322-1332.
[http://dx.doi.org/10.1016/S1470-2045(21)00328-4] [PMID: 34329606]
[8]
Yao, Z.H.; Qin, Z.F.; Dai, Y.; Yao, X.S. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin. J. Nat. Med., 2016, 14(7), 481-498.
[http://dx.doi.org/10.1016/S1875-5364(16)30058-9] [PMID: 27507199]
[9]
Lai, Q.K.; Tao, R.L.; Zhao, Y.J.; Zi, R.F.; He, Q. Advances in study of anticancer properties of Allii Macrostemonis Bulbus. Zhongguo Zhongyao Zazhi, 2015, 40(24), 4811-4816.
[PMID: 27245027]
[10]
Leung, E.L.; Cao, Z.W.; Jiang, Z.H.; Zhou, H.; Liu, L. Network-based drug discovery by integrating systems biology and computational technologies. Brief. Bioinform., 2013, 14(4), 491-505.
[http://dx.doi.org/10.1093/bib/bbs043] [PMID: 22877768]
[11]
Zhao, S.; Iyengar, R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 505-521.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134520] [PMID: 22235860]
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[13]
Lv, X.; Xu, Z.; Xu, G.; Li, H.; Wang, C.; Chen, J.; Sun, J. Investigation of the active components and mechanisms of Schisandra chinensis in the treatment of asthma based on a network pharmacology approach and experimental validation. Food Funct., 2020, 11(4), 3032-3042.
[http://dx.doi.org/10.1039/D0FO00087F] [PMID: 32186565]
[14]
Consortium, U.P. The UniProt consortium: Reorganizing the protein space at the universal protein resource (UniProt). Nucleic Acids Res., 2012, (D1), D1.
[15]
Stelzer, G; Rosen, N; Plaschkes, I; Zimmerman, S; Twik, M; Fishilevich, S The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54, 1.30.1-1.30.33.
[16]
Bauer-Mehren, A.; Rautschka, M.; Sanz, F.; Furlong, L.I. DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks. Bioinformatics, 2010, 26(22), 2924-2926.
[http://dx.doi.org/10.1093/bioinformatics/btq538] [PMID: 20861032]
[17]
Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol., 2011, 696, 291-303.
[http://dx.doi.org/10.1007/978-1-60761-987-1_18] [PMID: 21063955]
[18]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[19]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[20]
Liu, Y; Grimm, M; Dai, WT; Hou, MC Cao, Y CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 2019, 41(Suppl 14)
[21]
Chua, G.T.; Rosa Duque, J.S.; Cheuk, D.K.L.; Leung, A.W.K.; Wong, W.H.S.; Liu, A.P.Y.; Lee, P.P.W.; Ha, S.Y.; Chiang, A.K.S.; Ho, M.H.K.; Chu, W.K.; Chan, Y.S.; Luk, C.W.; Ling, A.S.C.; Kwan, M.Y.W.; Yiu, O.K.F.; Wong, I.C.K.; Lau, Y.L.; Li, C.K.; Leung, W.H.; Chan, G.C.F.; Ip, P.; Kwok, J. HLA alleles associated with asparaginase hypersensitivity in Chinese children. J. Hematol. Oncol., 2021, 14(1), 182.
[http://dx.doi.org/10.1186/s13045-021-01201-3] [PMID: 34717720]
[22]
Zhi-Min, W.; Qi-Fan, Z.; Ying-Wei, X.; Da, P. Apoptosis of human gastric cancer cells induced by bulbus allii macrostemi volatile oil. Zhongguo Linchuang Kangfu, 2006, 10(19), 115-117.
[23]
Luo, T.; Shi, M.Q.; Liu, X. Effect of total saponin from allium macrostemon bunge on proliferation and apoptosis of cervix cancer HeLa cells. Chinese J. Diff. Compl. Cases., 2012, 11(10), 762-765.
[24]
Wang, Y.; Tang, Q.; Jiang, S.; Li, M.; Wang, X. Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochem. Biophys. Res. Commun., 2013, 441(4), 825-830.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.148] [PMID: 24211203]
[25]
Chen, H.; Wang, G.; Wang, N.; Yang, M.; Wang, Z.; Wang, X.; Yao, X. New furostanol saponins from the bulbs of Allium macrostemon Bunge and their cytotoxic activity. Pharmazie, 2007, 62(7), 544-548.
[PMID: 17718198]
[26]
Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front. Pharmacol., 2019, 10, 123.
[http://dx.doi.org/10.3389/fphar.2019.00123] [PMID: 30846939]
[27]
Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H.Z.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 2013, 8(4), e62839.
[http://dx.doi.org/10.1371/journal.pone.0062839] [PMID: 23638153]
[28]
Hernandez Borrero, L.; Dicker, D.T.; Santiago, J.; Sanders, J.; Tian, X.; Ahsan, N.; Lev, A.; Zhou, L.; El-Deiry, W.S. A subset of CB002 xanthine analogs bypass p53-signaling to restore a p53 transcriptome and target an S-phase cell cycle checkpoint in tumors with mutated-p53. eLife, 2021, 10, e70429.
[http://dx.doi.org/10.7554/eLife.70429] [PMID: 34324416]
[29]
Tenbaum, S.P. Ordóñez-Morán, P.; Puig, I.; Chicote, I.; Arqués, O.; Landolfi, S.; Fernández, Y.; Herance, J.R.; Gispert, J.D.; Mendizabal, L.; Aguilar, S.; Cajal, S.R.; Schwartz, S., Jr; Vivancos, A.; Espín, E.; Rojas, S.; Baselga, J.; Tabernero, J.; Muñoz, A.; Palmer, H.G. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat. Med., 2012, 18(6), 892-901.
[http://dx.doi.org/10.1038/nm.2772] [PMID: 22610277]
[30]
Wang, Y.; Hou, H.; Liang, Z.; Chen, X.; Lian, X.; Yang, J.; Zhu, Z.; Luo, H.; Su, H.; Gong, Q. P38 MAPK/AKT signalling is involved in IL-33-mediated anti-apoptosis in childhood acute lymphoblastic leukaemia blast cells. Ann. Med., 2021, 53(1), 1464-1472.
[http://dx.doi.org/10.1080/07853890.2021.1970217] [PMID: 34435521]
[31]
Koh, Y.W.; Han, J.H.; Yoon, D.H.; Suh, C.; Huh, J. Epstein-Barr virus positivity is associated with angiogenesis in, and poorer survival of, patients receiving standard treatment for classical Hodgkin’s lymphoma. Hematol. Oncol., 2018, 36(1), 182-188.
[http://dx.doi.org/10.1002/hon.2468] [PMID: 28744882]
[32]
Mawson, A.R.; Majumdar, S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt’s lymphoma. Int. J. Cancer, 2017, 141(9), 1849-1855.
[http://dx.doi.org/10.1002/ijc.30885] [PMID: 28707393]
[33]
Forlani, G.; Shallak, M.; Tedeschi, A.; Cavallari, I.; Marçais, A.; Hermine, O.; Accolla, R.S. Dual cytoplasmic and nuclear localization of HTLV-1-encoded HBZ protein is a unique feature of adult T-cell leukemia. Haematologica, 2021, 106(8), 2076-2085.
[http://dx.doi.org/10.3324/haematol.2020.272468] [PMID: 33626865]
[34]
Mitobe, Y.; Yasunaga, J.; Furuta, R.; Matsuoka, M. HTLV-1 bZIP factor RNA and protein impart distinct functions on T-cell proliferation and survival. Cancer Res., 2015, 75(19), 4143-4152.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0942] [PMID: 26383166]
[35]
Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270.
[http://dx.doi.org/10.3390/molecules22081270] [PMID: 28758919]
[36]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[37]
Li, H.; Chen, F.J.; Yang, W.L.; Qiao, H.Z.; Zhang, S.J. Quercetin improves cognitive disorder in aging mice by inhibiting NLRP3 inflammasome activation. Food Funct., 2021, 12(2), 717-725.
[http://dx.doi.org/10.1039/D0FO01900C] [PMID: 33338087]
[38]
Vargas, A.J.; Burd, R. Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr. Rev., 2010, 68(7), 418-428.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00301.x] [PMID: 20591109]
[39]
Bin Sayeed, M.S.; Ameen, S.S. Beta-Sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr. Cancer, 2015, 67(8), 1216-1222.
[http://dx.doi.org/10.1080/01635581.2015.1087042] [PMID: 26473555]
[40]
Park, C.; Moon, D.O.; Rhu, C.H.; Choi, B.T.; Lee, W.H.; Kim, G.Y.; Choi, Y.H. Beta-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol. Pharm. Bull., 2007, 30(7), 1317-1323.
[http://dx.doi.org/10.1248/bpb.30.1317] [PMID: 17603173]
[41]
Awad, A.B. Chinnam, M.; Fink, C.S.; Bradford, P.G. β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine, 2007, 14(11), 747-754.
[http://dx.doi.org/10.1016/j.phymed.2007.01.003] [PMID: 17350814]
[42]
Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res., 2018, 135, 122-126.
[http://dx.doi.org/10.1016/j.phrs.2018.08.002] [PMID: 30081177]
[43]
Chen, Y.Y.; Chang, Y.M.; Wang, K.Y.; Chen, P.N.; Hseu, Y.C.; Chen, K.M.; Yeh, K.T.; Chen, C.J.; Hsu, L.S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol., 2019, 34(3), 233-239.
[http://dx.doi.org/10.1002/tox.22677] [PMID: 30431227]
[44]
Park, S.; Lim, W.; Bazer, F.W.; Song, G. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. Phytomedicine, 2018, 50, 238-246.
[http://dx.doi.org/10.1016/j.phymed.2017.08.026] [PMID: 30466984]
[45]
Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J. Cell. Biochem., 2017, 118(5), 1118-1131.
[http://dx.doi.org/10.1002/jcb.25729] [PMID: 27606834]
[46]
Curylova, L.; Ramos, H.; Saraiva, L.; Skoda, J. Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett., 2022, 525, 131-145.
[http://dx.doi.org/10.1016/j.canlet.2021.10.037] [PMID: 34742870]
[47]
Chen, J.; Ge, X.; Zhang, W.; Ding, P.; Du, Y.; Wang, Q.; Li, L.; Fang, L.; Sun, Y.; Zhang, P.; Zhou, Y.; Zhang, L.; Lv, X.; Li, L.; Zhang, X.; Zhang, Q.; Xue, K.; Gu, H.; Lei, Q.; Wong, J.; Hu, W. PI3K/AKT inhibition reverses R-CHOP resistance by destabilizing SOX2 in diffuse large B cell lymphoma. Theranostics, 2020, 10(7), 3151-3163.
[http://dx.doi.org/10.7150/thno.41362] [PMID: 32194860]
[48]
Vera-Lozada, G.; Segges, P.; Stefanoff, C.G.; Barros, M.H.M.; Niedobitek, G.; Hassan, R. Pathway-focused gene expression profiles and immunohistochemistry detection identify contrasting association of caspase 3 (CASP3) expression with prognosis in pediatric classical Hodgkin lymphoma. Hematol. Oncol., 2018, 36(4), 663-670.
[http://dx.doi.org/10.1002/hon.2523] [PMID: 29901224]
[49]
Mohanty, A.; Sandoval, N.; Phan, A.; Nguyen, T.V.; Chen, R.W.; Budde, E.; Mei, M.; Popplewell, L.; Pham, L.V.; Kwak, L.W.; Weisenburger, D.D.; Rosen, S.T.; Chan, W.C.; Müschen, M.; Ngo, V.N. Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood, 2019, 133(4), 306-318.
[http://dx.doi.org/10.1182/blood-2018-05-851667] [PMID: 30530749]
[50]
Si, J.; Shi, X.; Sun, S.; Zou, B.; Li, Y.; An, D.; Lin, X.; Gao, Y.; Long, F.; Pang, B.; Liu, X.; Liu, T.; Chi, W.; Chen, L.; Dimitrov, D.S.; Sun, Y.; Du, X.; Yin, W.; Gao, G.; Min, J.; Wei, L.; Liao, X. Hematopoietic progenitor kinase 1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell, 2020, 38(4), 551-566.e11.
[http://dx.doi.org/10.1016/j.ccell.2020.08.001] [PMID: 32860752]
[51]
Lu, F.; Zhao, Y.; Pang, Y.; Ji, M.; Sun, Y.; Wang, H.; Zou, J.; Wang, Y.; Li, G.; Sun, T.; Li, J.; Ma, D.; Ye, J.; Ji, C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett., 2021, 497, 178-189.
[http://dx.doi.org/10.1016/j.canlet.2020.10.024] [PMID: 33091534]
[52]
Lin, Y.; Hui, W.; Winter, B.; Chang-Cheng, S.; Hong-Qiang, Q. Yu, C Pharmacokinetics and pharmacogenetics of high-dose methotrexate in Chinese adult patients with non-Hodgkin lymphoma: A population analysis. Cancer chemotherapy and pharmacology, 2020, 85(5), 881-897.
[53]
Yang, L.; Wu, H.; Gelder, T.; Matic, M.; Ruan, J.S.; Han, Y.; Xie, R.X. SLCO1B1 rs4149056 genetic polymorphism predicting methotrexate toxicity in Chinese patients with non-Hodgkin lymphoma. Pharmacogenomics, 2017, 18(17), 1557-1562.
[http://dx.doi.org/10.2217/pgs-2017-0110] [PMID: 29095107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy