Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Perspective

Protein Folding and Molecular Basis of Memory: Molecular Vibrations and Quantum Entanglement as Basis of Consciousness

Author(s): Atta-ur-Rahman*

Volume 31, Issue 3, 2024

Published on: 12 July, 2023

Page: [258 - 265] Pages: 8

DOI: 10.2174/0929867331666230707123345

Open Access Journals Promotions 2
[1]
Donald, A. Models of Human Memory; Elsevier: Norman, 2013.
[2]
Marx, G.; Gilon, C. The molecular basis of memory. ACS Chem. Neurosci., 2012, 3(8), 633-642.
[http://dx.doi.org/10.1021/cn300097b] [PMID: 23050060]
[3]
Keogh, R.; Pearson, J. Mental imagery and visual working memory. PLoS One, 2011, 6(12), e29221.
[http://dx.doi.org/10.1371/journal.pone.0029221] [PMID: 22195024]
[4]
Gallistel, C.R.; King, A.P. Memory and the Computational Brain; Wiley Blackwell: New York, 2009.
[http://dx.doi.org/10.1002/9781444310498]
[5]
Frey, S.; Frey, J.U. ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog. Brain Res., 2008, 169, 117-143.
[http://dx.doi.org/10.1016/S0079-6123(07)00007-6] [PMID: 18394471]
[6]
Routtenberg, A. Long-lasting memory from evanescent networks. Eur. J. Pharmacol., 2008, 585(1), 60-63.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.047] [PMID: 18367168]
[7]
Tzvetanov, T.; Womelsdorf, T. Predicting human perceptual decisions by decoding neuronal information profiles. Biol. Cybern., 2008, 98(5), 397-411.
[http://dx.doi.org/10.1007/s00422-008-0226-0] [PMID: 18373103]
[8]
Hernandez, P.J.; Abel, T. The role of protein synthesis in memory consolidation: Progress amid decades of debate. Neurobiol. Learn. Mem., 2008, 89(3), 293-311.
[http://dx.doi.org/10.1016/j.nlm.2007.09.010] [PMID: 18053752]
[9]
Tsien, J.Z. Real-time neural coding of memory. Prog. Brain Res., 2007, 165, 105-122.
[http://dx.doi.org/10.1016/S0079-6123(06)65007-3] [PMID: 17925242]
[10]
Kandel, E.R. In Search of Memory; Norton & Co: New York, 2006.
[11]
Miller, P.; Wang, X.J. Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos, 2006, 16(2), 026109.
[http://dx.doi.org/10.1063/1.2208923] [PMID: 16822041]
[12]
Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol., 2004, 55(1), 51-86.
[http://dx.doi.org/10.1146/annurev.psych.55.090902.142050] [PMID: 14744210]
[13]
McGaugh, J.L. Memory--a century of consolidation. Science, 2000, 287(5451), 248-251.
[http://dx.doi.org/10.1126/science.287.5451.248] [PMID: 10634773]
[14]
Weng, F.J.; Garcia, R.I.; Lutzu, S.; Alviña, K.; Zhang, Y.; Dushko, M.; Ku, T.; Zemoura, K.; Rich, D.; Garcia-Dominguez, D.; Hung, M.; Yelhekar, T.D.; Sørensen, A.T.; Xu, W.; Chung, K.; Castillo, P.E.; Lin, Y. Npas4 is a critical regulator of learning-induced plasticity at mossy fiber-CA3 synapses during contextual memory formation. Neuron, 2018, 97(5), 1137-1152.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.01.026] [PMID: 29429933]
[15]
Asok, A.; Leroy, F.; Rayman, J.B.; Kandel, E.R. Molecular mechanisms of the memory trace. Trends Neurosci., 2019, 42(1), 14-22.
[http://dx.doi.org/10.1016/j.tins.2018.10.005] [PMID: 30391015]
[16]
Bailey, C.H.; Kandel, E.R.; Harris, K.M. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol., 2015, 7(7), a021758.
[http://dx.doi.org/10.1101/cshperspect.a021758] [PMID: 26134321]
[17]
Alberini, C.M.; Kandel, E.R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a021741.
[http://dx.doi.org/10.1101/cshperspect.a021741] [PMID: 25475090]
[18]
Wang, D.O.; Kim, S.M.; Zhao, Y.; Hwang, H.; Miura, S.K.; Sossin, W.S.; Martin, K.C. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science, 2009, 324(5934), 1536-1540.
[http://dx.doi.org/10.1126/science.1173205] [PMID: 19443737]
[19]
Richter, J.D.; Klann, E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev., 2009, 23(1), 1-11.
[http://dx.doi.org/10.1101/gad.1735809] [PMID: 19136621]
[20]
Holt, C.E.; Martin, K.C.; Schuman, E.M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol., 2019, 26(7), 557-566.
[http://dx.doi.org/10.1038/s41594-019-0263-5] [PMID: 31270476]
[21]
Holt, C.E.; Schuman, E.M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron, 2013, 80(3), 648-657.
[http://dx.doi.org/10.1016/j.neuron.2013.10.036] [PMID: 24183017]
[22]
Kelleher, R.J., III; Govindarajan, A.; Tonegawa, S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 2004, 44(1), 59-73.
[http://dx.doi.org/10.1016/j.neuron.2004.09.013] [PMID: 15450160]
[23]
Shrestha, P.; Klann, E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci., 2022, 45(4), 297-311.
[http://dx.doi.org/10.1016/j.tins.2022.01.004] [PMID: 35184897]
[24]
Yoon, Y.J.; Wu, B.; Buxbaum, A.R.; Das, S.; Tsai, A.; English, B.P.; Grimm, J.B.; Lavis, L.D.; Singer, R.H. Glutamate-induced RNA localization and translation in neurons. Proc. Natl. Acad. Sci. USA, 2016, 113(44), E6877-E6886.
[http://dx.doi.org/10.1073/pnas.1614267113] [PMID: 27791158]
[25]
Buxbaum, A.R.; Wu, B.; Singer, R.H. Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science, 2014, 343(6169), 419-422.
[http://dx.doi.org/10.1126/science.1242939] [PMID: 24458642]
[26]
Tischmeyer, W.; Grimm, R. Activation of immediate early genes and memory formation. Cell. Mol. Life Sci., 1999, 55(4), 564-574.
[http://dx.doi.org/10.1007/s000180050315] [PMID: 10357227]
[27]
Plath, N.; Ohana, O.; Dammermann, B.; Errington, M.L.; Schmitz, D.; Gross, C.; Mao, X.; Engelsberg, A.; Mahlke, C.; Welzl, H.; Kobalz, U.; Stawrakakis, A.; Fernandez, E.; Waltereit, R.; Bick-Sander, A.; Therstappen, E.; Cooke, S.F.; Blanquet, V.; Wurst, W.; Salmen, B.; Bösl, M.R.; Lipp, H.P.; Grant, S.G.N.; Bliss, T.V.P.; Wolfer, D.P.; Kuhl, D. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 2006, 52(3), 437-444.
[http://dx.doi.org/10.1016/j.neuron.2006.08.024] [PMID: 17088210]
[28]
Yap, E.L.; Greenberg, M.E. Activity-regulated transcription: Bridging the gap between neural activity and behavior. Neuron, 2018, 100(2), 330-348.
[http://dx.doi.org/10.1016/j.neuron.2018.10.013] [PMID: 30359600]
[29]
Tyssowski, K.M.; DeStefino, N.R.; Cho, J.H.; Dunn, C.J.; Poston, R.G.; Carty, C.E.; Jones, R.D.; Chang, S.M.; Romeo, P.; Wurzelmann, M.K.; Ward, J.M.; Andermann, M.L.; Saha, R.N.; Dudek, S.M.; Gray, J.M. Different neuronal activity patterns induce different gene expression programs. Neuron, 2018, 98(3), 530-546.e11.
[http://dx.doi.org/10.1016/j.neuron.2018.04.001] [PMID: 29681534]
[30]
Rao, V.R.; Pintchovski, S.A.; Chin, J.; Peebles, C.L.; Mitra, S.; Finkbeiner, S. AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat. Neurosci., 2006, 9(7), 887-895.
[http://dx.doi.org/10.1038/nn1708] [PMID: 16732277]
[31]
Guzowski, J.F.; Lyford, G.L.; Stevenson, G.D.; Houston, F.P.; McGaugh, J.L.; Worley, P.F.; Barnes, C.A. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci., 2000, 20(11), 3993-4001.
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-03993.2000] [PMID: 10818134]
[32]
Lyford, G.L.; Yamagata, K.; Kaufmann, W.E.; Barnes, C.A.; Sanders, L.K.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Lanahan, A.A.; Worley, P.F. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron, 1995, 14(2), 433-445.
[http://dx.doi.org/10.1016/0896-6273(95)90299-6] [PMID: 7857651]
[33]
Wu, J.; Petralia, R.S.; Kurushima, H.; Patel, H.; Jung, M.; Volk, L.; Chowdhury, S.; Shepherd, J.D.; Dehoff, M.; Li, Y.; Kuhl, D.; Huganir, R.L.; Price, D.L.; Scannevin, R.; Troncoso, J.C.; Wong, P.C.; Worley, P.F. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. Cell, 2011, 147(3), 615-628.
[http://dx.doi.org/10.1016/j.cell.2011.09.036] [PMID: 22036569]
[34]
Greer, P.L.; Hanayama, R.; Bloodgood, B.L.; Mardinly, A.R.; Lipton, D.M.; Flavell, S.W.; Kim, T.K.; Griffith, E.C.; Waldon, Z.; Maehr, R.; Ploegh, H.L.; Chowdhury, S.; Worley, P.F.; Steen, J.; Greenberg, M.E. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell, 2010, 140(5), 704-716.
[http://dx.doi.org/10.1016/j.cell.2010.01.026] [PMID: 20211139]
[35]
Park, S.; Park, J.M.; Kim, S.; Kim, J.A.; Shepherd, J.D.; Smith-Hicks, C.L.; Chowdhury, S.; Kaufmann, W.; Kuhl, D.; Ryazanov, A.G.; Huganir, R.L.; Linden, D.J.; Worley, P.F. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron, 2008, 59(1), 70-83.
[http://dx.doi.org/10.1016/j.neuron.2008.05.023] [PMID: 18614030]
[36]
Shepherd, J.D.; Rumbaugh, G.; Wu, J.; Chowdhury, S.; Plath, N.; Kuhl, D.; Huganir, R.L.; Worley, P.F. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron, 2006, 52(3), 475-484.
[http://dx.doi.org/10.1016/j.neuron.2006.08.034] [PMID: 17088213]
[37]
Chowdhury, S.; Shepherd, J.D.; Okuno, H.; Lyford, G.; Petralia, R.S.; Plath, N.; Kuhl, D.; Huganir, R.L.; Worley, P.F. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 2006, 52(3), 445-459.
[http://dx.doi.org/10.1016/j.neuron.2006.08.033] [PMID: 17088211]
[38]
Messaoudi, E.; Kanhema, T.; Soulé, J.; Tiron, A.; Dagyte, G.; da Silva, B.; Bramham, C.R. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci., 2007, 27(39), 10445-10455.
[http://dx.doi.org/10.1523/JNEUROSCI.2883-07.2007] [PMID: 17898216]
[39]
Shepherd, J.D.; Bear, M.F. New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci., 2011, 14(3), 279-284.
[http://dx.doi.org/10.1038/nn.2708] [PMID: 21278731]
[40]
Wall, M.J.; Collins, D.R.; Chery, S.L.; Allen, Z.D.; Pastuzyn, E.D.; George, A.J.; Nikolova, V.D.; Moy, S.S.; Philpot, B.D.; Shepherd, J.D.; Müller, J.; Ehlers, M.D.; Mabb, A.M.; Corrêa, S.A.L. The temporal dynamics of arc expression regulate cognitive flexibility. Neuron, 2018, 98(6), 1124-1132.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.05.012] [PMID: 29861284]
[41]
Ramírez-Amaya, V.; Vazdarjanova, A.; Mikhael, D.; Rosi, S.; Worley, P.F.; Barnes, C.A. Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J. Neurosci., 2005, 25(7), 1761-1768.
[http://dx.doi.org/10.1523/JNEUROSCI.4342-04.2005] [PMID: 15716412]
[42]
Nakayama, D.; Iwata, H.; Teshirogi, C.; Ikegaya, Y.; Matsuki, N.; Nomura, H. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J. Neurosci., 2015, 35(2), 819-830.
[http://dx.doi.org/10.1523/JNEUROSCI.2525-14.2015] [PMID: 25589774]
[43]
Giorgi, C.; Yeo, G.W.; Stone, M.E.; Katz, D.B.; Burge, C.; Turrigiano, G.; Moore, M.J. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell, 2007, 130(1), 179-191.
[http://dx.doi.org/10.1016/j.cell.2007.05.028] [PMID: 17632064]
[44]
Soulé, J.; Alme, M.; Myrum, C.; Schubert, M.; Kanhema, T.; Bramham, C.R. Balancing Arc synthesis, mRNA decay, and proteasomal degradation: maximal protein expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor stimulation. J. Biol. Chem., 2012, 287(26), 22354-22366.
[http://dx.doi.org/10.1074/jbc.M112.376491] [PMID: 22584581]
[45]
Das, S.; Moon, H.C.; Singer, R.H.; Park, H.Y. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons. Sci. Adv., 2018, 4(6), eaar3448.
[http://dx.doi.org/10.1126/sciadv.aar3448] [PMID: 29938222]
[46]
Lituma, P.J.; Singer, R.H.; Das, S.; Castillo, P.E. Real-time imaging of Arc/Arg3.1 transcription ex vivo reveals input-specific immediate early gene dynamics. Proc. Natl. Acad. Sci. USA, 2022, 119(38), e2123373119.
[http://dx.doi.org/10.1073/pnas.2123373119] [PMID: 36095210]
[47]
Saha, R.N.; Wissink, E.M.; Bailey, E.R.; Zhao, M.; Fargo, D.C.; Hwang, J.Y.; Daigle, K.R.; Fenn, J.D.; Adelman, K.; Dudek, S.M. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat. Neurosci., 2011, 14(7), 848-856.
[http://dx.doi.org/10.1038/nn.2839] [PMID: 21623364]
[48]
Steward, O.; Wallace, C.S.; Lyford, G.L.; Worley, P.F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron, 1998, 21(4), 741-751.
[http://dx.doi.org/10.1016/S0896-6273(00)80591-7] [PMID: 9808461]
[49]
Greenberg, M.E.; Ziff, E.B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature, 1984, 311(5985), 433-438.
[http://dx.doi.org/10.1038/311433a0] [PMID: 6090941]
[50]
Kawashima, T.; Okuno, H.; Nonaka, M.; Adachi-Morishima, A.; Kyo, N.; Okamura, M.; Takemoto-Kimura, S.; Worley, P.F.; Bito, H. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc. Natl. Acad. Sci. USA, 2009, 106(1), 316-321.
[http://dx.doi.org/10.1073/pnas.0806518106] [PMID: 19116276]
[51]
Grimm, J.B.; Muthusamy, A.K.; Liang, Y.; Brown, T.A.; Lemon, W.C.; Patel, R.; Lu, R.; Macklin, J.J.; Keller, P.J.; Ji, N.; Lavis, L.D. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods, 2017, 14(10), 987-994.
[http://dx.doi.org/10.1038/nmeth.4403] [PMID: 28869757]
[52]
Wu, B.; Eliscovich, C.; Yoon, Y.J.; Singer, R.H. Translation dynamics of single mRNAs in live cells and neurons. Science, 2016, 352(6292), 1430-1435.
[http://dx.doi.org/10.1126/science.aaf1084] [PMID: 27313041]
[53]
Wang, C.; Han, B.; Zhou, R.; Zhuang, X. Real-time imaging of translation on single mRNA transcripts in live cells. Cell, 2016, 165(4), 990-1001.
[http://dx.doi.org/10.1016/j.cell.2016.04.040] [PMID: 27153499]
[54]
Tanenbaum, M.E.; Gilbert, L.A.; Qi, L.S.; Weissman, J.S.; Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014, 159(3), 635-646.
[http://dx.doi.org/10.1016/j.cell.2014.09.039] [PMID: 25307933]
[55]
Job, C.; Eberwine, J. Identification of sites for exponential translation in living dendrites. Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13037-13042.
[http://dx.doi.org/10.1073/pnas.231485698] [PMID: 11606784]
[56]
Costa-Mattioli, M.; Sossin, W.S.; Klann, E.; Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron, 2009, 61(1), 10-26.
[http://dx.doi.org/10.1016/j.neuron.2008.10.055] [PMID: 19146809]
[57]
Gandin, V.; English, B.P.; Freeman, M.; Leroux, L.P.; Preibisch, S.; Walpita, D.; Jaramillo, M.; Singer, R.H. Cap-dependent translation initiation monitored in living cells. Nat. Commun., 2022, 13(1), 6558.
[http://dx.doi.org/10.1038/s41467-022-34052-8] [PMID: 36323665]
[58]
Gindina, S.; Botsford, B.; Cowansage, K.; LeDoux, J.; Klann, E.; Hoeffer, C.; Ostroff, L. Upregulation of eIF4E, but not other translation initiation factors, in dendritic spines during memory formation. J. Comp. Neurol., 2021, 529(11), 3112-3126.
[http://dx.doi.org/10.1002/cne.25158] [PMID: 33864263]
[59]
Sutton, M.A.; Schuman, E.M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 2006, 127(1), 49-58.
[http://dx.doi.org/10.1016/j.cell.2006.09.014] [PMID: 17018276]
[60]
Das, S.; Vera, M.; Gandin, V.; Singer, R.H.; Tutucci, E. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol., 2021, 22(7), 483-504.
[http://dx.doi.org/10.1038/s41580-021-00356-8] [PMID: 33837370]
[61]
Swanger, S.A.; Bassell, G.J. Making and breaking synapses through local mRNA regulation. Curr. Opin. Genet. Dev., 2011, 21(4), 414-421.
[http://dx.doi.org/10.1016/j.gde.2011.04.002] [PMID: 21530231]
[62]
Kandel, E.R.; Dudai, Y.; Mayford, M.R. The molecular and systems biology of memory. Cell, 2014, 157(1), 163-186.
[http://dx.doi.org/10.1016/j.cell.2014.03.001] [PMID: 24679534]
[63]
Bekinschtein, P.; Cammarota, M.; Igaz, L.M.; Bevilaqua, L.R.M.; Izquierdo, I.; Medina, J.H. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron, 2007, 53(2), 261-277.
[http://dx.doi.org/10.1016/j.neuron.2006.11.025] [PMID: 17224407]
[64]
Steward, O.; Farris, S.; Pirbhoy, P.S.; Darnell, J.; Driesche, S.J.V. Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes. Front. Mol. Neurosci., 2015, 7, 101.
[http://dx.doi.org/10.3389/fnmol.2014.00101] [PMID: 25628532]
[65]
Na, Y.; Park, S.; Lee, C.; Kim, D.K.; Park, J.M.; Sockanathan, S.; Huganir, R.L.; Worley, P.F. Real-time imaging reveals properties of glutamate-induced arc/Arg 3.1 translation in neuronal dendrites. Neuron, 2016, 91(3), 561-573.
[http://dx.doi.org/10.1016/j.neuron.2016.06.017] [PMID: 27397520]
[66]
Farris, S.; Lewandowski, G.; Cox, C.D.; Steward, O. Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. J. Neurosci., 2014, 34(13), 4481-4493.
[http://dx.doi.org/10.1523/JNEUROSCI.4944-13.2014] [PMID: 24671994]
[67]
Ramirez-Amaya, V.; Angulo-Perkins, A.; Chawla, M.K.; Barnes, C.A.; Rosi, S. Sustained transcription of the immediate early gene Arc in the dentate gyrus after spatial exploration. J. Neurosci., 2013, 33(4), 1631-1639.
[http://dx.doi.org/10.1523/JNEUROSCI.2916-12.2013] [PMID: 23345235]
[68]
Panja, D.; Kenney, J.W.; D’Andrea, L.; Zalfa, F.; Vedeler, A.; Wibrand, K.; Fukunaga, R.; Bagni, C.; Proud, C.G.; Bramham, C.R. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep., 2014, 9(4), 1430-1445.
[http://dx.doi.org/10.1016/j.celrep.2014.10.016] [PMID: 25453757]
[69]
Rosenblum, K.; Futter, M.; Voss, K.; Erent, M.; Skehel, P.A.; French, P.; Obosi, L.; Jones, M.W.; Bliss, T.V.P. The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J. Neurosci., 2002, 22(13), 5432-5441.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05432.2002] [PMID: 12097495]
[70]
Shobe, J.; Philips, G.T.; Carew, T.J. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica. Learn. Mem., 2016, 23(5), 182-188.
[http://dx.doi.org/10.1101/lm.040915.115] [PMID: 27084925]
[71]
Bambah-Mukku, D.; Travaglia, A.; Chen, D.Y.; Pollonini, G.; Alberini, C.M. A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J. Neurosci., 2014, 34(37), 12547-12559.
[http://dx.doi.org/10.1523/JNEUROSCI.0324-14.2014] [PMID: 25209292]
[72]
Campbell, R.R.; Wood, M.A. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci., 2019, 20(3), 133-147.
[http://dx.doi.org/10.1038/s41583-019-0121-9] [PMID: 30696992]
[73]
Li, L.; Carter, J.; Gao, X.; Whitehead, J.; Tourtellotte, W.G. The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Mol. Cell. Biol., 2005, 25(23), 10286-10300.
[http://dx.doi.org/10.1128/MCB.25.23.10286-10300.2005] [PMID: 16287845]
[74]
Penke, Z.; Chagneau, C.; Laroche, S. Contribution of Egr1/zif268 to activity-dependent arc/Arg3.1 transcription in the dentate gyrus and area CA1 of the hippocampus. Front. Behav. Neurosci., 2011, 5, 48.
[http://dx.doi.org/10.3389/fnbeh.2011.00048] [PMID: 21887136]
[75]
Sun, X.; Lin, Y. Npas4: Linking neuronal activity to memory. Trends Neurosci., 2016, 39(4), 264-275.
[http://dx.doi.org/10.1016/j.tins.2016.02.003] [PMID: 26987258]
[76]
Sun, C.; Nold, A.; Fusco, C.M.; Rangaraju, V.; Tchumatchenko, T.; Heilemann, M.; Schuman, E.M. The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Sci. Adv., 2021, 7(38), eabj0790.
[http://dx.doi.org/10.1126/sciadv.abj0790] [PMID: 34533986]
[77]
Chouaib, R.; Safieddine, A.; Pichon, X.; Imbert, A.; Kwon, O.S.; Samacoits, A.; Traboulsi, A.M.; Robert, M.C.; Tsanov, N.; Coleno, E.; Poser, I.; Zimmer, C.; Hyman, A.; Le Hir, H.; Zibara, K.; Peter, M.; Mueller, F.; Walter, T.; Bertrand, E. A dual protein-mRNA localization screen reveals compartmentalized translation and widespread co-translational RNA targeting. Dev. Cell, 2020, 54(6), 773-791.e5.
[http://dx.doi.org/10.1016/j.devcel.2020.07.010] [PMID: 32783880]
[78]
Job, C.; Eberwine, J. Localization and translation of mRNA in dentrites and axons. Nat. Rev. Neurosci., 2001, 2(12), 889-898.
[http://dx.doi.org/10.1038/35104069] [PMID: 11733796]
[79]
Govindarajan, A.; Kelleher, R.J.; Tonegawa, S. A clustered plasticity model of long-term memory engrams. Nat. Rev. Neurosci., 2006, 7(7), 575-583.
[http://dx.doi.org/10.1038/nrn1937] [PMID: 16791146]
[80]
Kastellakis, G.; Cai, D.J.; Mednick, S.C.; Silva, A.J.; Poirazi, P. Synaptic clustering within dendrites: An emerging theory of memory formation. Prog. Neurobiol., 2015, 126, 19-35.
[http://dx.doi.org/10.1016/j.pneurobio.2014.12.002] [PMID: 25576663]
[81]
Chen, M.B.; Jiang, X.; Quake, S.R.; Südhof, T.C. Persistent transcriptional programmes are associated with remote memory. Nature, 2020, 587(7834), 437-442.
[http://dx.doi.org/10.1038/s41586-020-2905-5] [PMID: 33177708]
[82]
Mueller, F.; Senecal, A.; Tantale, K.; Marie-Nelly, H.; Ly, N.; Collin, O.; Basyuk, E.; Bertrand, E.; Darzacq, X.; Zimmer, C. FISH-quant: automatic counting of transcripts in 3D FISH images. Nat. Methods, 2013, 10(4), 277-278.
[http://dx.doi.org/10.1038/nmeth.2406] [PMID: 23538861]
[83]
Lionnet, T.; Czaplinski, K.; Darzacq, X.; Shav-Tal, Y.; Wells, A.L.; Chao, J.A.; Park, H.Y.; de Turris, V.; Lopez-Jones, M.; Singer, R.H. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods, 2011, 8(2), 165-170.
[http://dx.doi.org/10.1038/nmeth.1551] [PMID: 21240280]
[84]
Donlin-Asp, P.G.; Polisseni, C.; Klimek, R.; Heckel, A.; Schuman, E.M. Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2017578118.
[http://dx.doi.org/10.1073/pnas.2017578118] [PMID: 33771924]
[85]
Eliscovich, C.; Shenoy, S.M.; Singer, R.H. Imaging mRNA and protein interactions within neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(10), E1875-E1884.
[http://dx.doi.org/10.1073/pnas.1621440114] [PMID: 28223507]
[86]
Larsson, A.J.M.; Johnsson, P.; Hagemann-Jensen, M.; Hartmanis, L.; Faridani, O.R.; Reinius, B.; Segerstolpe, Å.; Rivera, C.M.; Ren, B.; Sandberg, R. Genomic encoding of transcriptional burst kinetics. Nature, 2019, 565(7738), 251-254.
[http://dx.doi.org/10.1038/s41586-018-0836-1] [PMID: 30602787]
[87]
Karbowski, J. Energetics of stochastic BCM type synaptic plasticity and storing of accurate information. J. Comput. Neurosci., 2021, 49(2), 71-106.
[http://dx.doi.org/10.1007/s10827-020-00775-0] [PMID: 33528721]
[88]
Atta-ur-Rahman; Choudhary, M.I. Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl. Chem., 2001, 73(3), 555-560.
[http://dx.doi.org/10.1351/pac200173030555]
[89]
Atta-ur-Rahman; Choudhary, M.I. Biodiversity: A wonderful source of exciting new pharmacophores. Further to a new theory of memory. Pure Appl. Chem., 2002, 74(4), 511-517.
[http://dx.doi.org/10.1351/pac200274040511]
[90]
Atta-ur-Rahman; Choudhary, M.I. Biodiversity as a source of new pharmacophores: A new theory of memory III. Pure Appl. Chem., 2005, 77(1), 75-81.
[http://dx.doi.org/10.1351/pac200577010075]
[91]
Amtul, Z. Atta-ur-Rahman, Neural plasticity and memory, is memory encoded in hydrogen bonding patterns? Neuroscientist, 2016, 22(1), 9-18.
[http://dx.doi.org/10.1177/1073858414547934] [PMID: 25168338]
[92]
Amtul, Z. Atta-ur-Rahman, Neural plasticity and memory: molecular mechanism. Rev. Neurosci., 2015, 26(3), 253-268.
[http://dx.doi.org/10.1515/revneuro-2014-0075] [PMID: 25995328]
[93]
Atta-ur-Rahman. Molecular basis of memory: A grand orchestra of pattern formation by hydrogen bonds? Curr. Med. Chem., 2019, 25(42), 5800-5802.
[http://dx.doi.org/10.2174/092986732542181220144316]
[94]
Rahman, A.; Choudhary, M.I.; Shaheen, F.; Ganesan, A.; Simjee, S.U.; Raza, M. New anticonvulsant compounds. U.S. Patent 20,080,004,353 2008.
[95]
Chatterjee, S.; Bahl, E.; Mukherjee, U.; Walsh, E.N.; Shetty, M.S.; Yan, A.L.; Vanrobaeys, Y.; Lederman, J.D.; Giese, K.P.; Michaelson, J.; Abel, T. Endoplasmic reticulum chaperone genes encode effectors of long-term memory. Sci. Adv., 2022, 8(12), eabm6063.
[http://dx.doi.org/10.1126/sciadv.abm6063] [PMID: 35319980]
[96]
Fein, Y.Y.; Geyer, P.; Zwick, P.; Kiałka, F.; Pedalino, S.; Mayor, M.; Gerlich, S.; Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys., 2019, 15(12), 1242-1245.
[http://dx.doi.org/10.1038/s41567-019-0663-9]
[97]
Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness. ScienceDaily, 2014. Available from: https://www.sciencedaily.com/releases/2014/01/140116085105.htm
[98]
Discovery of quantum vibrations in "microtubules" inside brain neurons corroborates contro-versial 20-year-old theory of consciousness. Elsevier 2014. Available from: https://www.elsevier.com/about/press-releases/research-and-journals/discovery-of-quantum-vibrations-in-microtubules-inside-brain-neurons-corroborates-controversial-20-year-old-theory-of-consciousness
[99]
Penrose, R. The Emperor’s New Mind; Penguin Books: New York, NY, 1989.
[http://dx.doi.org/10.1093/oso/9780198519737.001.0001]
[100]
Gödel, K. On Formally Undecidable Propositions of Principia Mathematica and Related Systems; Dover Publications: New York, 1992.
[101]
Bringsjord, S.; Xiao, H. A refutation of Penrose’s Gödelian case against artificial intelligence. J. Exp. Theor. Artif. Intell., 2000, 12(3), 307-329.
[http://dx.doi.org/10.1080/09528130050111455]
[102]
Penrose, R. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics; Oxford University Press, 1999.
[103]
Penrose, R. Shadows of the Mind: A Search for the Missing Science of Consciousness; Oxford University Press, 1995.
[104]
Hameroff, S. That’s life! The geometry of π electron resonance clouds.Quantum Aspects of Life; Abbott, D.; Davies, P.; Pati, A., Eds.; World Scientific: London, 2008, pp. 403-434.
[http://dx.doi.org/10.1142/9781848162556_0018]
[105]
Penrose, R.; Hameroff, S. Consciousness in the universe: Neuroscience, quantum space-time geometry and orch OR theory. J. Cosmol., 2011, 14, 1-17.
[106]
Sahu, S.; Ghosh, S.; Ghosh, B.; Aswani, K.; Hirata, K.; Fujita, D.; Bandyopadhyay, A. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron., 2013, 47, 141-148.
[http://dx.doi.org/10.1016/j.bios.2013.02.050] [PMID: 23567633]
[107]
Osborne, H. Quantum vibrations in brain opens ‘Pandora’s Box’ of theories of consciousness. International Business Times; , 2014. Available from: https://www.ibtimes.co.uk/quantum-vibrations-brain-opens-pandoras-box-theories-consciousness-1432614
[108]
Lewton, T. Quantum experiments add weight to a fringe theory of consciousness. NewScientist, 2022. Available from: https://www.newscientist.com/article/2316408-quantum-experiments-add-weight-to-a-fringe-theory-of-consciousness/
[109]
Tangermann, V. Experiment suggests that consciousness may be rooted in quantum physics. Futurism; , 2022. Available from: https://futurism.com/human-consciousness-quantum-physics
[110]
Nicholson, C. The secret world in the gaps between brain cells. Phys. Today, 2022, 75(5), 26-32.
[http://dx.doi.org/10.1063/PT.3.4999]
[111]
Dent, E.W.; Baas, P.W. Microtubules in neurons as information carriers. J. Neurochem., 2014, 129(2), 235-239.
[http://dx.doi.org/10.1111/jnc.12621] [PMID: 24266899]
[112]
Tononi, G. An information integration theory of consciousness. BMC Neurosci., 2004, 5(1), 42.
[http://dx.doi.org/10.1186/1471-2202-5-42] [PMID: 15522121]
[113]
Oizumi, M.; Albantakis, L.; Tononi, G. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0. PLOS Comput. Biol., 2014, 10(5), e1003588.
[http://dx.doi.org/10.1371/journal.pcbi.1003588] [PMID: 24811198]
[114]
Tononi, G. Integrated information theory. Scholarpedia J., 2015, 10(1), 4164.
[http://dx.doi.org/10.4249/scholarpedia.4164]
[115]
Barbosa, L.S.; Marshall, W.; Streipert, S.; Albantakis, L.; Tononi, G. A measure for intrinsic information. Sci. Rep., 2020, 10(1), 18803.
[http://dx.doi.org/10.1038/s41598-020-75943-4] [PMID: 33139829]
[116]
Barbosa, L.S.; Marshall, W.; Albantakis, L.; Tononi, G. Mechanism integrated information. Entropy (Basel), 2021, 23(3), 362.
[http://dx.doi.org/10.3390/e23030362] [PMID: 33803765]
[117]
Marshall, W.; Albantakis, L.; Tononi, G. Black-boxing and cause-effect power. PLOS Comput. Biol., 2018, 14(4), e1006114.
[http://dx.doi.org/10.1371/journal.pcbi.1006114] [PMID: 29684020]
[118]
Haun, A.; Tononi, G. Why does space feel the way it does? Towards a principled account of spatial experience. Entropy (Basel), 2019, 21(12), 1160.
[http://dx.doi.org/10.3390/e21121160]
[119]
Vezoli, J.; Vinck, M.; Bosman, C.A.; Bastos, A.M.; Lewis, C.M.; Kennedy, H.; Fries, P. Brain rhythms define distinct interaction net-works with differential dependence on anatomy. Neuron, 2021, 109(23), 3862-3878.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.09.052] [PMID: 34672985]
[120]
Lewis, C.M.; Ni, J.; Wunderle, T.; Jendritza, P.; Lazar, A.; Diester, I.; Fries, P. Cortical gamma-band resonance preferentially transmits coherent input. Cell Rep., 2021, 35(5), 109083.
[http://dx.doi.org/10.1016/j.celrep.2021.109083] [PMID: 33951439]
[121]
Stauch, B.J.; Peter, A.; Schuler, H.; Fries, P. Stimulus-specific plasticity in human visual gamma-band activity and functional connectivi-ty. eLife, 2021, 10, e68240.
[http://dx.doi.org/10.7554/eLife.68240] [PMID: 34473058]
[122]
Rohenkohl, G.; Bosman, C.A.; Fries, P. Gamma synchronization between V1 and V4 improves behavioral performance. Neuron, 2018, 100(4), 953-963.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.09.019] [PMID: 30318415]
[123]
Ni, J.; Wunderle, T.; Lewis, C.M.; Desimone, R.; Diester, I.; Fries, P. Gamma-rhythmic gain modulation. Neuron, 2016, 92(1), 240-251.
[http://dx.doi.org/10.1016/j.neuron.2016.09.003] [PMID: 27667008]
[124]
Michalareas, G.; Vezoli, J.; van Pelt, S.; Schoffelen, J.M.; Kennedy, H.; Fries, P. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 2016, 89(2), 384-397.
[http://dx.doi.org/10.1016/j.neuron.2015.12.018] [PMID: 26777277]
[125]
Bastos, A.M.; Vezoli, J.; Bosman, C.A.; Schoffelen, J.M.; Oostenveld, R.; Dowdall, J.R.; De Weerd, P.; Kennedy, H.; Fries, P. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 2015, 85(2), 390-401.
[http://dx.doi.org/10.1016/j.neuron.2014.12.018] [PMID: 25556836]
[126]
Fries, P. Rhythms for cognition: Communication through coherence. Neuron, 2015, 88(1), 220-235.
[http://dx.doi.org/10.1016/j.neuron.2015.09.034] [PMID: 26447583]
[127]
Bosman, C.A.; Schoffelen, J.M.; Brunet, N.; Oostenveld, R.; Bastos, A.M.; Womelsdorf, T.; Rubehn, B.; Stieglitz, T.; De Weerd, P.; Fries, P. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 2012, 75(5), 875-888.
[http://dx.doi.org/10.1016/j.neuron.2012.06.037] [PMID: 22958827]
[128]
Hunt, T. Kicking the psychophysical laws into gear a new approach to the combination problem. J. Conscious. Stud., 2011, 18, 11-12.
[129]
Yan, L.; Ma, Y.; Seminario, J. Encoding information using molecular vibronics. J. Nanosci. Nanotechnol., 2016, 6(3), 675.
[130]
McArdle, S.; Mayorov, A.; Shan, X.; Benjamin, S.; Yuan, X. Digital quantum simulation of molecular vibrations. Chem. Sci. (Camb.), 2019, 10(22), 5725-5735.
[http://dx.doi.org/10.1039/C9SC01313J] [PMID: 31293758]
[131]
Mashour, G.A.; Roelfsema, P.; Changeux, J.P.; Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron, 2020, 105(5), 776-798.
[http://dx.doi.org/10.1016/j.neuron.2020.01.026] [PMID: 32135090]
[132]
Dehaene, S.; Changeux, J.P.; Naccache, L.; Sackur, J.; Sergent, C. Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends Cogn. Sci., 2006, 10(5), 204-211.
[http://dx.doi.org/10.1016/j.tics.2006.03.007] [PMID: 16603406]
[133]
VanRullen, R.; Kanai, R. Deep learning and the Global Workspace Theory. Trends Neurosci., 2021, 44(9), 692-704.
[http://dx.doi.org/10.1016/j.tins.2021.04.005]
[134]
Shea, N.; Frith, C.D. The global workspace needs metacognition. Trends Cogn. Sci., 2019, 23(7), 560-571.
[http://dx.doi.org/10.1016/j.tics.2019.04.007] [PMID: 31153773]

© 2024 Bentham Science Publishers | Privacy Policy