Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Linoleic and Arachidonic Fatty Acids and their Potential Relationship with Inflammation, Pregnancy, and Fetal Development

Author(s): Macarena Ortiz, Daniela Álvarez, Yasna Muñoz, Nicolás Crisosto, Rodrigo Valenzuela and Manuel Maliqueo*

Volume 31, Issue 31, 2024

Published on: 01 August, 2023

Page: [5046 - 5060] Pages: 15

DOI: 10.2174/0929867331666230706161144

Price: $65

conference banner
Abstract

A healthy maternal diet must consider an appropriate supply of long-chain polyunsaturated fatty acids (LCPUFAs) precursors to ensure adequate growth and development of the fetus. In this regard, n-6 PUFAs, predominantly linoleic (C18:2 n-6, LA) and arachidonic acid (C20:4 n-6), have a central role in the development of the central nervous system because they are part of the membrane structure and participate in the metabolism and signal transduction of cells. Nevertheless, they can also be transformed into inflammatory metabolites promoting the pathogenesis of cardiovascular diseases, cancer, and autoimmune or inflammatory conditions. In modern westernized societies, there is a high dietary consumption of foods rich in n-6 PUFAs which could have detrimental consequences for the fetus and neonate due to excessive exposure to these fatty acids (FAs).

Objective: To summarize the evidence of maternal, placental, and fetal alterations that an excessive intake of n-6 polyunsaturated FAs (PUFAs), LA, and AA, could produce during pregnancy.

Methods: A thorough review of the literature regarding the effects of n-6 PUFAs during pregnancy and lactation including in vivo and in vitro models, was carried out using the PubMed database from the National Library of Medicine-National Institutes of Health.

Results: An elevated intake of n-6 PUFA, specifically LA, during pregnancy influences children's motor, cognitive, and verbal development during infancy and early childhood. Similarly, they could harm the placenta and the development of other fetal organs such as the fat tissue, liver, and cardiovascular system.

Conclusion: Maternal diet, specifically LA intake, could have significant repercussions on fetal development and long-term consequences in the offspring, including the possibility of future metabolic and mental diseases. It would be necessary to focus on the prevention of these alterations through timely dietary interventions in the target population.

Keywords: Fatty acids, linoleic acid, arachidonic acid, obesity, pregnancy, fetal development, inflammation.

[1]
Simopoulos, A.P. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol., 2011, 44(2), 203-215.
[http://dx.doi.org/10.1007/s12035-010-8162-0] [PMID: 21279554]
[2]
Bianchi, S.; Bernardi, S.; Belli, M.; Varvara, G.; Macchiarelli, G. Exposure to persistent organic pollutants during tooth formation: molecular mechanisms and clinical findings. Rev. Environ. Health, 2020, 35(4), 303-310.
[http://dx.doi.org/10.1515/reveh-2019-0093] [PMID: 32304316]
[3]
Marchix, J.; Catheline, D.; Duby, C.; Monthéan-Boulier, N.; Boissel, F.; Pédrono, F.; Boudry, G.; Legrand, P. Interactive effects of maternal and weaning high linoleic acid intake on hepatic lipid metabolism, oxylipins profile and hepatic steatosis in offspring. J. Nutr. Biochem., 2020, 75, 108241.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108241] [PMID: 31715523]
[4]
Haggarty, P.; Wood, M.; Ferguson, E.; Hoad, G.; Srikantharajah, A.; Milne, E.; Hamilton, M.; Bhattacharya, S. Fatty acid metabolism in human preimplantation embryos. Hum. Reprod., 2006, 21(3), 766-773.
[http://dx.doi.org/10.1093/humrep/dei385] [PMID: 16311299]
[5]
Collodel, G.; Castellini, C.; Lee, J.C.Y.; Signorini, C. Relevance of fatty acids to sperm maturation and quality. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/7038124] [PMID: 32089776]
[6]
Matorras, R.; Ruiz, J.I.; Mendoza, R.; Ruiz, N.; Sanjurjo, P.; Rodriguez-Escudero, F.J. Fatty acid composition of fertilization-failed human oocytes. Hum. Reprod., 1998, 13(8), 2227-2230.
[http://dx.doi.org/10.1093/humrep/13.8.2227] [PMID: 9756301]
[7]
Salas-Huetos, A.; Arvizu, M.; Mínguez-Alarcón, L.; Mitsunami, M.; Ribas-Maynou, J.; Yeste, M.; Ford, J.B.; Souter, I.; Chavarro, J.E. Women’s and men’s intake of omega-3 fatty acids and their food sources and assisted reproductive technology outcomes. Am. J. Obstet. Gynecol., 2022, 227(2), 246.e1-246.e11.
[http://dx.doi.org/10.1016/j.ajog.2022.03.053] [PMID: 35364062]
[8]
Shrestha, N.; Cuffe, J.S.M.; Holland, O.J.; Perkins, A.V.; McAinch, A.J.; Hryciw, D.H. Linoleic acid increases prostaglandin e2 release and reduces mitochondrial respiration and cell viability in human trophoblast-like cells. Cell. Physiol. Biochem., 2019, 52(1), 94-108.
[http://dx.doi.org/10.33594/000000007] [PMID: 30790507]
[9]
McKeegan, P.J.; Sturmey, R.G. The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev., 2012, 24(1), 59-67.
[http://dx.doi.org/10.1071/RD11907] [PMID: 22394718]
[10]
Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 132, 41-48.
[http://dx.doi.org/10.1016/j.plefa.2018.03.004] [PMID: 29610056]
[11]
Haggarty, P. Fatty acid supply to the human fetus. Annu. Rev. Nutr., 2010, 30(1), 237-255.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104742] [PMID: 20438366]
[12]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[13]
Naughton, S.S.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat., 2016, 125, 90-99.
[http://dx.doi.org/10.1016/j.prostaglandins.2016.06.003] [PMID: 27350414]
[14]
Islam, A.; Kagawa, Y.; Sharifi, K.; Ebrahimi, M.; Miyazaki, H.; Yasumoto, Y.; Kawamura, S.; Yamamoto, Y.; Sakaguti, S.; Sawada, T.; Tokuda, N.; Sugino, N.; Suzuki, R.; Owada, Y. Fatty acid binding protein 3 is involved in n–3 and n–6 PUFA transport in mouse trophoblasts. J. Nutr., 2014, 144(10), 1509-1516.
[http://dx.doi.org/10.3945/jn.114.197202] [PMID: 25122651]
[15]
Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., 2008, 233(6), 674-688.
[http://dx.doi.org/10.3181/0711-MR-311] [PMID: 18408140]
[16]
Valenzuela, R.; Videla, L.A. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct., 2011, 2(11), 644-648.
[http://dx.doi.org/10.1039/c1fo10133a] [PMID: 22008843]
[17]
Abdelrahman, M.A.; Osama, H.; Saeed, H.; Madney, Y.M.; Harb, H.S.; Abdelrahim, M.E.A. Impact of n-3 polyunsaturated fatty acid intake in pregnancy on maternal health and birth outcomes: systematic review and meta-analysis from randomized controlled trails. Arch. Gynecol. Obstet., 2022, 307(1), 249-262.
[http://dx.doi.org/10.1007/s00404-022-06533-0] [PMID: 35348829]
[18]
Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr., 2013, 4(3), 311-312.
[http://dx.doi.org/10.3945/an.113.003772] [PMID: 23674797]
[19]
Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr. Pap., 2010, 91, 1-166.
[PMID: 21812367]
[20]
Zhou, Y.; Khan, H.; Xiao, J.; Cheang, W.S. Effects of arachidonic acid metabolites on cardiovascular health and disease. Int. J. Mol. Sci., 2021, 22(21), 12029.
[http://dx.doi.org/10.3390/ijms222112029] [PMID: 34769460]
[21]
Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients, 2021, 13(7), 2421.
[http://dx.doi.org/10.3390/nu13072421] [PMID: 34371930]
[22]
Choque, B.; Catheline, D.; Rioux, V.; Legrand, P. Linoleic acid: Between doubts and certainties. Biochimie, 2014, 96, 14-21.
[http://dx.doi.org/10.1016/j.biochi.2013.07.012] [PMID: 23900039]
[23]
Jump, D.B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol., 2002, 13(2), 155-164.
[http://dx.doi.org/10.1097/00041433-200204000-00007] [PMID: 11891418]
[24]
Contreras, A.V.; Torres, N.; Tovar, A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr., 2013, 4(4), 439-452.
[http://dx.doi.org/10.3945/an.113.003798] [PMID: 23858092]
[25]
Hashimoto, T.; Cook, W.S.; Qi, C.; Yeldandi, A.V.; Reddy, J.K.; Rao, M.S. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J. Biol. Chem., 2000, 275(37), 28918-28928.
[http://dx.doi.org/10.1074/jbc.M910350199] [PMID: 10844002]
[26]
Echeverría, F.; Ortiz, M.; Valenzuela, R.; Videla, L.A. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot. Essent. Fatty Acids, 2016, 114, 28-34.
[http://dx.doi.org/10.1016/j.plefa.2016.10.001] [PMID: 27926461]
[27]
Sampath, H.; Ntambi, J.M. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr., 2005, 25(1), 317-340.
[http://dx.doi.org/10.1146/annurev.nutr.25.051804.101917] [PMID: 16011470]
[28]
Yoshikawa, T.; Shimano, H.; Yahagi, N.; Ide, T.; Amemiya-Kudo, M.; Matsuzaka, T.; Nakakuki, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Takahashi, A.; Sone, H.; Osuga, J.; Gotoda, T.; Ishibashi, S.; Yamada, N. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem., 2002, 277(3), 1705-1711.
[http://dx.doi.org/10.1074/jbc.M105711200] [PMID: 11694526]
[29]
Feldstein, A.E.; Nobili, V. Biomarkers in nonalcoholic fatty liver disease: a new era in diagnosis and staging of disease in children. J. Pediatr. Gastroenterol. Nutr., 2010, 51(4), 378-379.
[http://dx.doi.org/10.1097/MPG.0b013e3181ecf3d4] [PMID: 20808243]
[30]
DuBois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Putte, L.B.A.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[http://dx.doi.org/10.1096/fasebj.12.12.1063] [PMID: 9737710]
[31]
Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther., 2021, 6(1), 94.
[http://dx.doi.org/10.1038/s41392-020-00443-w] [PMID: 33637672]
[32]
Kikut, J.; Komorniak, N.; Ziętek, M.; Palma, J.; Szczuko, M. Inflammation with the participation of arachidonic (AA) and linoleic acid (LA) derivatives (HETEs and HODEs) is necessary in the course of a normal reproductive cycle and pregnancy. J. Reprod. Immunol., 2020, 141, 103177.
[http://dx.doi.org/10.1016/j.jri.2020.103177] [PMID: 32659532]
[33]
Sun, T.; Li, S.J.; Diao, H.L.; Teng, C.B.; Wang, H.B.; Yang, Z.M. Cyclooxygenases and prostaglandin E synthases in the endometrium of the rhesus monkey during the menstrual cycle. Reproduction, 2004, 127(4), 465-473.
[http://dx.doi.org/10.1530/rep.1.00121] [PMID: 15047937]
[34]
Sato, K.; Chisaka, H.; Okamura, K.; Challis, J.R.G. Effect of the interaction between lipoxygenase pathway and progesterone on the regulation of hydroxysteroid 11-Beta dehydrogenase 2 in cultured human term placental trophoblasts. Biol. Reprod., 2008, 78(3), 514-520.
[http://dx.doi.org/10.1095/biolreprod.107.064717] [PMID: 18032417]
[35]
Edwin, S.S.; Romero, R.J.; Munoz, H.; Branch, D.W.; Mitchell, M.D. 5-Hydroxyeicosatetraenoic acid and human parturition. Prostaglandins, 1996, 51(6), 403-412.
[http://dx.doi.org/10.1016/0090-6980(96)00046-9] [PMID: 8873235]
[36]
Vrachnis, N.; Karavolos, S.; Iliodromiti, Z.; Sifakis, S.; Siristatidis, C.; Mastorakos, G.; Creatsas, G. Review: Impact of mediators present in amniotic fluid on preterm labour. In Vivo, 2012, 26(5), 799-812.
[PMID: 22949593]
[37]
Tilley, S.L.; Coffman, T.M.; Koller, B.H. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest., 2001, 108(1), 15-23.
[http://dx.doi.org/10.1172/JCI200113416] [PMID: 11435451]
[38]
Narumiya, S.; FitzGerald, G.A. Genetic and pharmacological analysis of prostanoid receptor function. J. Clin. Invest., 2001, 108(1), 25-30.
[http://dx.doi.org/10.1172/JCI200113455] [PMID: 11435452]
[39]
Rossi, A.; Kapahi, P.; Natoli, G.; Takahashi, T.; Chen, Y.; Karin, M.; Santoro, M.G. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature, 2000, 403(6765), 103-108.
[http://dx.doi.org/10.1038/47520] [PMID: 10638762]
[40]
Umamaheswaran, S.; Dasari, S.K.; Yang, P.; Lutgendorf, S.K.; Sood, A.K. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev., 2018, 37(2-3), 203-211.
[http://dx.doi.org/10.1007/s10555-018-9741-1] [PMID: 29948328]
[41]
Esparvarinha, M.; Madadi, S.; Aslanian-Kalkhoran, L.; Nickho, H.; Dolati, S.; Pia, H.; Danaii, S.; Taghavi, S.; Yousefi, M. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2, TH17/Treg cells), NK cells, MDSCs, and the immune checkpoints. Cell Biol. Int., 2023, 47(3), 507-519.
[http://dx.doi.org/10.1002/cbin.11955] [PMID: 36335635]
[42]
Musso, G.; Cassader, M.; Paschetta, E.; Gambino, R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology, 2018, 155(2), 282-302.e8.
[http://dx.doi.org/10.1053/j.gastro.2018.06.031] [PMID: 29906416]
[43]
Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet., 2009, 100, 1-21.
[http://dx.doi.org/10.1159/000235706] [PMID: 19696523]
[44]
Ramsden, C.E.; Ringel, A.; Feldstein, A.E.; Taha, A.Y.; MacIntosh, B.A.; Hibbeln, J.R.; Majchrzak-Hong, S.F.; Faurot, K.R.; Rapoport, S.I.; Cheon, Y.; Chung, Y.M.; Berk, M.; Douglas Mann, J. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot. Essent. Fatty Acids, 2012, 87(4-5), 135-141.
[http://dx.doi.org/10.1016/j.plefa.2012.08.004] [PMID: 22959954]
[45]
Warner, D.; Vatsalya, V.; Zirnheld, K.H.; Warner, J.B.; Hardesty, J.E.; Umhau, J.C.; McClain, C.J.; Maddipati, K.; Kirpich, I.A. Linoleic acid-derived oxylipins differentiate early stage alcoholic hepatitis from mild alcohol-associated liver injury. Hepatol. Commun., 2021, 5(6), 947-960.
[http://dx.doi.org/10.1002/hep4.1686] [PMID: 34141982]
[46]
Welch, B.M.; Keil, A.P.; van ’t Erve, T.J.; Deterding, L.J.; Williams, J.G.; Lih, F.B.; Cantonwine, D.E.; McElrath, T.F.; Ferguson, K.K. Longitudinal profiles of plasma eicosanoids during pregnancy and size for gestational age at delivery: A nested case-control study. PLoS Med., 2020, 17(8), e1003271.
[http://dx.doi.org/10.1371/journal.pmed.1003271] [PMID: 32797061]
[47]
Jones, H.N.; Woollett, L.A.; Barbour, N.; Prasad, P.D.; Powell, T.L.; Jansson, T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J., 2009, 23(1), 271-278.
[http://dx.doi.org/10.1096/fj.08-116889] [PMID: 18827021]
[48]
Pantham, P.; Aye, I.L.M.H.; Powell, T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta, 2015, 36(7), 709-715.
[http://dx.doi.org/10.1016/j.placenta.2015.04.006] [PMID: 25972077]
[49]
Crawford, M.A. Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. Am. J. Clin. Nutr., 2000, 71(1)(Suppl.), 275S-284S.
[http://dx.doi.org/10.1093/ajcn/71.1.275S] [PMID: 10617983]
[50]
Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr., 2011, 94(6)(Suppl.), S1908-S1913.
[http://dx.doi.org/10.3945/ajcn.110.001230] [PMID: 21562082]
[51]
Lager, S.; Powell, T.L. Regulation of nutrient transport across the placenta. J. Pregnancy, 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/179827] [PMID: 23304511]
[52]
Cunningham, P.; McDermott, L. Long chain PUFA transport in human term placenta. J. Nutr., 2009, 139(4), 636-639.
[http://dx.doi.org/10.3945/jn.108.098608] [PMID: 19225129]
[53]
Tian, L.; Dong, S.S.; Hu, J.; Yao, J.J.; Yan, P.S. The effect of maternal obesity on fatty acid transporter expression and lipid metabolism in the full-term placenta of lean breed swine. J. Anim. Physiol. Anim. Nutr. (Berl.), 2018, 102(1), e242-e253.
[http://dx.doi.org/10.1111/jpn.12735] [PMID: 28508539]
[54]
Cinelli, G.; Fabrizi, M.; Ravà, L.; Ciofi degli Atti, M.; Vernocchi, P.; Vallone, C.; Pietrantoni, E.; Lanciotti, R.; Signore, F.; Manco, M. Influence of maternal obesity and gestational weight gain on maternal and foetal lipid profile. Nutrients, 2016, 8(6), 368.
[http://dx.doi.org/10.3390/nu8060368] [PMID: 27314385]
[55]
Basak, S.; Duttaroy, A.K. Maternal PUFAs, placental epigenetics, and their relevance to fetal growth and brain development. Reprod. Sci., 2022.
[PMID: 35676498]
[56]
Mani, I.; Dwarkanath, P.; Thomas, T.; Thomas, A.; Kurpad, A.V. Maternal fat and fatty acid intake and birth outcomes in a South Indian population. Int. J. Epidemiol., 2016, 45(2), 523-531.
[http://dx.doi.org/10.1093/ije/dyw010] [PMID: 27013336]
[57]
Parra-Cabrera, S.; Stein, A.D.; Wang, M.; Martorell, R.; Rivera, J.; Ramakrishnan, U. Dietary intakes of polyunsaturated fatty acids among pregnant Mexican women. Matern. Child Nutr., 2011, 7(2), 140-147.
[http://dx.doi.org/10.1111/j.1740-8709.2010.00254.x] [PMID: 21410881]
[58]
Zhang, J.; Wang, C.; Gao, Y.; Li, L.; Man, Q.; Song, P.; Meng, L.; Du, Z.Y.; Miles, E.A.; Lie, Ø.; Calder, P.C.; Frøyland, L. Different intakes of n-3 fatty acids among pregnant women in 3 regions of China with contrasting dietary patterns are reflected in maternal but not in umbilical erythrocyte phosphatidylcholine fatty acid composition. Nutr. Res., 2013, 33(8), 613-621.
[http://dx.doi.org/10.1016/j.nutres.2013.05.009] [PMID: 23890350]
[59]
Barrera, C.; Valenzuela, R.; Chamorro, R.; Bascuñán, K.; Sandoval, J.; Sabag, N.; Valenzuela, F.; Valencia, M.P.; Puigrredon, C.; Valenzuela, A. The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of chilean women. Nutrients, 2018, 10(7), 839.
[http://dx.doi.org/10.3390/nu10070839] [PMID: 29958393]
[60]
Bourre, J. Handbook of Neurochemistry and Molecular Neurobiology; Springer: Cham, 2009.
[61]
Lassek, W.D.; Gaulin, S.J.C. Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries. Prostaglandins Leukot. Essent. Fatty Acids, 2014, 91(5), 195-201.
[http://dx.doi.org/10.1016/j.plefa.2014.07.017] [PMID: 25172360]
[62]
Lassek, W.D.; Gaulin, S.J.C. Maternal milk DHA content predicts cognitive performance in a sample of 28 nations. Matern. Child Nutr., 2015, 11(4), 773-779.
[http://dx.doi.org/10.1111/mcn.12060] [PMID: 23795772]
[63]
Green, P.; Gispan-Herman, I.; Yadid, G. Increased arachidonic acid concentration in the brain of Flinders Sensitive Line rats, an animal model of depression. J. Lipid Res., 2005, 46(6), 1093-1096.
[http://dx.doi.org/10.1194/jlr.C500003-JLR200] [PMID: 15805551]
[64]
Rao, J.S.; Ertley, R.N.; DeMar, J.C., Jr; Rapoport, S.I.; Bazinet, R.P.; Lee, H-J. Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol. Psychiatry, 2007, 12(2), 151-157.
[http://dx.doi.org/10.1038/sj.mp.4001887] [PMID: 16983392]
[65]
Taha, A.Y. Linoleic acid–good or bad for the brain? NPJ Sci. Food, 2020, 4(1), 1.
[http://dx.doi.org/10.1038/s41538-019-0061-9] [PMID: 31909187]
[66]
Horrobin, D.F. Phospholipid metabolism and depression: the possible roles of phospholipase A2 and coenzyme A-independent transacylase. Hum. Psychopharmacol., 2001, 16(1), 45-52.
[http://dx.doi.org/10.1002/hup.182] [PMID: 12404597]
[67]
Sakayori, N.; Tokuda, H.; Yoshizaki, K.; Kawashima, H.; Innis, S.M.; Shibata, H.; Osumi, N. Maternal nutritional imbalance between linoleic acid and alpha-linolenic acid increases offspring’s anxious behavior with a sex-dependent manner in mice. Tohoku J. Exp. Med., 2016, 240(1), 31-37.
[http://dx.doi.org/10.1620/tjem.240.31] [PMID: 27558477]
[68]
Kim, H.; Kim, H.; Lee, E.; Kim, Y.; Ha, E.H.; Chang, N. Association between maternal intake of n-6 to n-3 fatty acid ratio during pregnancy and infant neurodevelopment at 6 months of age: results of the MOCEH cohort study. Nutr. J., 2017, 16(1), 23.
[http://dx.doi.org/10.1186/s12937-017-0242-9] [PMID: 28420388]
[69]
Bernard, J.Y.; Armand, M.; Garcia, C.; Forhan, A.; De Agostini, M.; Charles, M.A.; Heude, B. The association between linoleic acid levels in colostrum and child cognition at 2 and 3 y in the EDEN cohort. Pediatr. Res., 2015, 77(6), 829-835.
[http://dx.doi.org/10.1038/pr.2015.50] [PMID: 25760551]
[70]
Bernard, J.Y.; Armand, M.; Peyre, H.; Garcia, C.; Forhan, A.; De Agostini, M.; Charles, M.A.; Heude, B. EDEN Mother-Child Cohort Study Group (Etude des Déterminants pré- et postnatals précoces du développement et de la santé de l’Enfant). Breastfeeding, polyunsaturated fatty acid levels in colostrum and child intelligence quotient at age 5-6 years. J. Pediatr., 2017, 183, 43-50.e3.
[http://dx.doi.org/10.1016/j.jpeds.2016.12.039] [PMID: 28081886]
[71]
Steenweg-de Graaff, J.; Tiemeier, H.; Ghassabian, A.; Rijlaarsdam, J.; Jaddoe, V.W.V.; Verhulst, F.C.; Roza, S.J. Maternal fatty acid status during pregnancy and child autistic traits. Am. J. Epidemiol., 2016, 183(9), 792-799.
[http://dx.doi.org/10.1093/aje/kwv263] [PMID: 27052119]
[72]
Massiera, F.; Barbry, P.; Guesnet, P.; Joly, A.; Luquet, S.; Moreilhon-Brest, C.; Mohsen-Kanson, T.; Amri, E.Z.; Ailhaud, G. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J. Lipid Res., 2010, 51(8), 2352-2361.
[http://dx.doi.org/10.1194/jlr.M006866] [PMID: 20410018]
[73]
Moon, R.J.; Harvey, N.C.; Robinson, S.M.; Ntani, G.; Davies, J.H.; Inskip, H.M.; Godfrey, K.M.; Dennison, E.M.; Calder, P.C.; Cooper, C.; Group, S.W.S.S. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrinol. Metab., 2013, 98(1), 299-307.
[http://dx.doi.org/10.1210/jc.2012-2482] [PMID: 23162098]
[74]
Wahab, R.J.; Jaddoe, V.W.V.; Mezzoiuso, A.G.; Gaillard, R. Maternal polyunsaturated fatty acid concentrations during pregnancy and childhood liver fat accumulation. Clin. Nutr., 2022, 41(4), 847-854.
[http://dx.doi.org/10.1016/j.clnu.2022.02.012] [PMID: 35263694]
[75]
Ortiz, M.; Sánchez, F.; Álvarez, D.; Flores, C.; Salas-Pérez, F.; Valenzuela, R.; Cantin, C.; Leiva, A.; Crisosto, N.; Maliqueo, M. Association between maternal obesity, essential fatty acids and biomarkers of fetal liver function. Prostaglandins Leukot. Essent. Fatty Acids, 2023, 190, 102541.
[http://dx.doi.org/10.1016/j.plefa.2023.102541] [PMID: 36736061]
[76]
Newton, K.P.; Lavine, J.E.; Wilson, L.; Behling, C.; Vos, M.B.; Molleston, J.P.; Rosenthal, P.; Miloh, T.; Fishbein, M.H.; Jain, A.K.; Murray, K.F.; Schwimmer, J.B. Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN). Alanine aminotransferase and gamma-glutamyl transpeptidase predict histologic improvement in pediatric nonalcoholic steatohepatitis. Hepatology, 2021, 73(3), 937-951.
[http://dx.doi.org/10.1002/hep.31317] [PMID: 32416645]
[77]
Grant, W.F.; Gillingham, M.B.; Batra, A.K.; Fewkes, N.M.; Comstock, S.M.; Takahashi, D.; Braun, T.P.; Grove, K.L.; Friedman, J.E.; Marks, D.L. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS One, 2011, 6(2), e17261.
[http://dx.doi.org/10.1371/journal.pone.0017261] [PMID: 21364873]
[78]
De Oliveira Cipriano Torres, D.; Dos Santos, A.C.O.; Silva, A.K.S.E.; Leite, J.I.A.; De Souza, J.R.B.; Beltrão, E.I.C.; Peixoto, C.A. Effect of maternal diet rich in omega-6 and omega-9 fatty acids on the liver of LDL receptor-deficient mouse offspring. Birth Defects Res. B Dev. Reprod. Toxicol., 2010, 89(2), 164-170.
[http://dx.doi.org/10.1002/bdrb.20240] [PMID: 20437476]
[79]
Kelsall, C.J.; Hoile, S.P.; Irvine, N.A.; Masoodi, M.; Torrens, C.; Lillycrop, K.A.; Calder, P.C.; Clough, G.F.; Hanson, M.A.; Burdge, G.C. Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis. PLoS One, 2012, 7(4), e34492.
[http://dx.doi.org/10.1371/journal.pone.0034492] [PMID: 22509311]
[80]
Taylor, P.D.; Khan, I.Y.; Hanson, M.A.; Poston, L. Impaired EDHF-mediated vasodilatation in adult offspring of rats exposed to a fat-rich diet in pregnancy. J. Physiol., 2004, 558(3), 943-951.
[http://dx.doi.org/10.1113/jphysiol.2002.018879] [PMID: 15194731]
[81]
Armitage, J.A.; Lakasing, L.; Taylor, P.D.; Balachandran, A.A.; Jensen, R.I.; Dekou, V.; Ashton, N.; Nyengaard, J.R.; Poston, L. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J. Physiol., 2005, 565(1), 171-184.
[http://dx.doi.org/10.1113/jphysiol.2005.084947] [PMID: 15774514]
[82]
Shrestha, N.; Sleep, S.L.; Cuffe, J.S.M.; Holland, O.J.; Perkins, A.V.; Yau, S.Y.; McAinch, A.J.; Hryciw, D.H. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin. Exp. Pharmacol. Physiol., 2020, 47(5), 907-915.
[http://dx.doi.org/10.1111/1440-1681.13244] [PMID: 31883131]
[83]
Shrestha, N.; Cuffe, J.S.M.; Holland, O.J.; Bulmer, A.C.; Hill, M.; Perkins, A.V.; Muhlhausler, B.S.; McAinch, A.J.; Hryciw, D.H. Elevated maternal linoleic acid reduces circulating leptin concentrations, cholesterol levels and male fetal survival in a rat model. J. Physiol., 2019, 597(13), 3349-3361.
[http://dx.doi.org/10.1113/JP277583] [PMID: 31124126]
[84]
Fountain, E.D.; Mao, J.; Whyte, J.J.; Mueller, K.E.; Ellersieck, M.R.; Will, M.J.; Roberts, R.M.; MacDonald, R.; Rosenfeld, C.S. Effects of diets enriched in omega-3 and omega-6 polyunsaturated fatty acids on offspring sex-ratio and maternal behavior in mice. Biol. Reprod., 2008, 78(2), 211-217.
[http://dx.doi.org/10.1095/biolreprod.107.065003] [PMID: 17928632]
[85]
Shrestha, N.; Holland, O.J.; Kent, N.L.; Perkins, A.V.; McAinch, A.J.; Cuffe, J.S.M.; Hryciw, D.H. Maternal high linoleic acid alters placental fatty acid composition. Nutrients, 2020, 12(8), 2183.
[http://dx.doi.org/10.3390/nu12082183] [PMID: 32717842]
[86]
Draycott, S.A.V.; Liu, G.; Daniel, Z.C.; Elmes, M.J.; Muhlhausler, B.S.; Langley-Evans, S.C. Maternal dietary ratio of linoleic acid to alpha-linolenic acid during pregnancy has sex-specific effects on placental and fetal weights in the rat. Nutr. Metab. (Lond.), 2019, 16(1), 1.
[http://dx.doi.org/10.1186/s12986-018-0330-7] [PMID: 30622622]
[87]
Shrestha, N.; Sleep, S.L.; Cuffe, J.S.M.; Holland, O.J.; McAinch, A.J.; Dekker Nitert, M.; Hryciw, D.H. Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet. Am. J. Physiol. Endocrinol. Metab., 2020, 318(2), E276-E285.
[http://dx.doi.org/10.1152/ajpendo.00265.2019] [PMID: 31846371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy