Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Computational Studies and Antimicrobial Activity of 1-(benzo[d]oxazol-2- yl)-3,5-diphenylformazan Derivatives

Author(s): Mazen Almehmadi, Ahad Amer Alsaiari, Mamdouh Allahyani, Abdulaziz Alsharif, Abdulelah Aljuaid, Supriyo Saha and Mohammad Asif*

Volume 20, Issue 6, 2024

Published on: 17 July, 2023

Page: [835 - 846] Pages: 12

DOI: 10.2174/1573409919666230703103135

Price: $65

Abstract

Background: Due to the biological importance of the benzoxazole derivatives, some 1- (benzo[d]oxazol-2-yl)-3,5-diphenyl-formazans 4a-f were synthesized and screened for in-silico studies and in-vitro antibacterial activity.

Methods: The benzo[d]oxazole-2-thiol (1) was prepared by reacting with 2-aminophenol and carbon disulfide in the presence of alcoholic potassium hydroxide. Then 2-hydrazinylbenzo[d] oxazole (2) was synthesized from the reaction of compound 1 with hydrazine hydrate in the presence of alcohol. Compound 2 was reacted with aromatic aldehydes to give Schiff base, 2-(2- benzylidene-hydrazinyl)benzo[d]oxazole derivatives 3a-f. The title compounds, formazan derivatives 4a-f, were prepared by a reaction of benzene diazonium chloride. All compounds were confirmed by their physical data, FTIR, 1H-NMR, and 13CNMR spectral data. All the prepared title compounds were screened for in-silico studies and in-vitro antibacterial activity on various microbial strains.

Results: Molecular docking against the 4URO receptor demonstrated that molecule 4c showed a maximum dock score of (-) 8.0 kcal/mol. MD simulation data reflected the stable ligand-receptor interaction. As per MM/PBSA analysis, the maximum free binding energy of (-) 58.831 kJ/mol was exhibited by 4c. DFT calculation data confirmed that most of the molecules were soft molecules with electrophilic nature.

Conclusion: The synthesized molecules were validated using molecular docking, MD simulation, MMPBSA analysis, and DFT calculation. Among all the molecules, 4c showed maximum activity. The activity profile of the synthesized molecules against tested micro-organisms was found to be 4c>4b>4a>4e>4f>4d.

Keywords: Benzoxazole derivatives, diazonium salt, formazan, antibacterial activity, 4URO receptor, aromatic aldehydes.

Graphical Abstract
[1]
Kakkar, S.; Tahlan, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Benzoxazole derivatives: design, synthesis and biological evaluation. Chem. Cent. J., 2018, 12(1), 92.
[http://dx.doi.org/10.1186/s13065-018-0459-5] [PMID: 30101384]
[2]
Li, Z.; Dong, J.; Yuan, Z.; Yang, D.Y.; Weng, Z. One-pot synthesis of 3-difluoromethyl benzoxazole-2-thiones. Org. Lett., 2018, 20(20), 6407-6410.
[http://dx.doi.org/10.1021/acs.orglett.8b02713] [PMID: 30303015]
[3]
Evans, D.A.; Sacks, C.E.; Kleschick, W.A.; Taber, T.R. Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187. J. Am. Chem. Soc., 1979, 101(22), 6789-6791.
[http://dx.doi.org/10.1021/ja00516a069]
[4]
Sharma, N.K.P.; Jha, K.K.; Kumar, M.V. Synthesis and antimicrobial evaluation of 2-(2-(benzo [d] oxazol-2-yl) phenylamino)-n-(substituted phenyl) acetamides. Int. J. Pharm. Sci. Res., 2014, 5(8), 3260-3266.
[5]
Lavanya, A.; Parlapalli, A.; Ciddi, M.; Sarangapani, M. Novel 2–amino-n’-(2-oxoindolin–3-ylidene) benzo[d]oxazol-5-carbohydrazides as anti-inflammatory agents. Int. J. Pharm. Sci. Res., 2015, 6(1), 212-218.
[6]
Davidson, J.P.; Corey, E.J. First enantiospecific total synthesis of the antitubercular marine natural product pseudopteroxazole. Revision of assigned stereochemistry. J. Am. Chem. Soc., 2003, 125(44), 13486-13489.
[http://dx.doi.org/10.1021/ja0378916] [PMID: 14583045]
[7]
Kakkar, S.; Kumar, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A. Design, synthesis and biological potential of heterocyclic benzoxazole scaffolds as promising antimicrobial and anticancer agents. Chem. Cent. J., 2018, 12(1), 96-107.
[http://dx.doi.org/10.1186/s13065-018-0464-8] [PMID: 30232633]
[8]
Xiao, Y.; Jing, B.; Liu, X.; Xue, H.; Liu, Y. Metal-free C–H mercaptalization of benzothiazoles and benzoxazoles using 1,3-propanedithiol as thiol source. Beilstein J. Org. Chem., 2019, 15, 279-284.
[http://dx.doi.org/10.3762/bjoc.15.24] [PMID: 30800177]
[9]
Abeed, A.; Youssef, M.; Hegazy, R. Synthesis, Anti-diabetic and renoprotective activity of some new benzazole, thiazolidin-4-one and azetidin-2-one derivatives. J. Braz. Chem. Soc., 2017, 28(11), 2054-2063.
[http://dx.doi.org/10.21577/0103-5053.20170050]
[10]
Akbay, A.; Oren, I.; Temiz-Arpaci, O.; Aki-Sener, E.; Yalçin, I. Synthesis and HIV-1 reverse transcriptase inhibitor activity of some 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole and oxazolo(4,5-b)pyridine derivatives. Arzneimittelforschung, 2003, 53(4), 266-271.
[PMID: 12785123]
[11]
Sangi, D.P.; Meira, Y.G.; Moreira, N.M.; Lopes, T.A.; Leite, M.P.; Pereira-Flores, M.E.; Alvarenga, E.S. Benzoxazoles as novel herbicidal agents. Pest Manag. Sci., 2019, 75(1), 262-269.
[http://dx.doi.org/10.1002/ps.5111] [PMID: 29885098]
[12]
Sato, H.; Dan, T.; Onuma, E.; Tanaka, H.; Aoki, B.; Koga, H. Studies on Uricosuric Diuretics. II. Substituted 7,8-Dihydrofuro(2,3-g)-1,2-benzisoxazole-7-carboxylic acids and 7,8-Dihydrofuro(2,3-g)benzoxazole-7-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1991, 39(7), 1760-1772.
[http://dx.doi.org/10.1248/cpb.39.1760] [PMID: 1777929]
[13]
Kumar, T.K.; Sreenivasulu, R. Synthesis, characterization and antimicrobial activity of novel n-(benzoxazol-2-yl)-2-(2-oxoindolin-3-ylidine) hydrazine carbothioamides. Int. J. Pharm. Sci. Res., 2020, 11(6), 2776-2785.
[14]
Turan-Zitouni, G.; Demirayak, Ş.; Özdemir, A.; Kaplancıklı, Z.A.; Yıldız, M.T. Synthesis of some 2-[(benzazole-2-yl)thioacetylamino]thiazole derivatives and their antimicrobial activity and toxicity. Eur. J. Med. Chem., 2004, 39(3), 267-272.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.001] [PMID: 15051175]
[15]
Suto, M.J.; Turner, W.R. Synthesis of Boxazomycin B and related analogs. Tetrahedron Lett., 1995, 36(40), 7213-7216.
[http://dx.doi.org/10.1016/0040-4039(95)01533-N]
[16]
Lewis, J.W.; Sandorfy, C. Infrared absorption and resonance Raman scattering of photochromic triphenylformazans. Can. J. Chem., 1983, 61(5), 809-816.
[http://dx.doi.org/10.1139/v83-148]
[17]
Hunter, L.; Roberts, C.B. 145. The associating effect of the hydrogen atom. Part IX. The N–H–N bond. Virtual tautomerism of the formazyl compounds. J. Chem. Soc., 1941, 0(0), 820-823.
[http://dx.doi.org/10.1039/JR9410000820]
[18]
Abbas, A.A. New synthesis of 28- and 30- crown-formazans and Bis formazans. Tetrahedron, 1998, 54(40), 12421-12428.
[http://dx.doi.org/10.1016/S0040-4020(98)00761-3]
[19]
Khan, S.A.; Shahid, S.; Kanwal, S.; Hussain, G. Synthesis characterization and antibacterial activity of Cr (III), Co (III), Fe (II), Cu (II), Ni (III) complexes of 4-(2-(((2-hydroxy-5-nitrophenyl) diazenyl) (phenyl) methylene) hydrazinyl) benzene sulfonic acid based formazan dyes and their applications on leather. Dyes Pigments, 2018, 148, 31-43.
[http://dx.doi.org/10.1016/j.dyepig.2017.08.058]
[20]
Abdul Rahim, A.K. Metal complexes of formazans; Thesis. Department of Chemistry, University of Calicut, 2000.
[21]
Tezcan, H. Synthesis and spectral properties of some bis-substituted formazans. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 69(3), 971-979.
[http://dx.doi.org/10.1016/j.saa.2007.05.061] [PMID: 17627872]
[22]
Bamoniri, A.; Mirjalili, B.B.F.; Moshtael-Arani, N. Nano BF3·SiO2: A green heterogeneous solid acid for synthesis of formazan dyes under solvent-free condition. J. Mol. Catal. Chem., 2014, 393, 272-278.
[http://dx.doi.org/10.1016/j.molcata.2014.06.024]
[23]
Shawali, A.S.; Samy, N.A. Functionalized formazans: A review on recent progress in their pharmacological activities. J. Adv. Res., 2015, 6(3), 241-254.
[http://dx.doi.org/10.1016/j.jare.2014.07.001] [PMID: 26257923]
[24]
Desai, R.M.; Desai, J.M. Synthesis and antimicrobial activity of some new formazan derivatives. Indian J. Heterocycl. Chem., 1999, 8(4), 329-331.
[25]
Zsoldos-Mády, V.; Pintér, I.; Peredy-Kajtár, M.; Perczel, A. Transformation of aldose formazans. Novel synthesis of 2-acetamido-2-deoxypentonolactones and a new pent-2-enose formazan. Carbohydr. Res., 2011, 346(12), 1534-1540.
[http://dx.doi.org/10.1016/j.carres.2011.04.026] [PMID: 21592466]
[26]
Rama, A.; Nadendla, R.; Babu, N. Synthesis and Biological Evaluation of Some Novel Formazans. J. Pharm. Res., 2011, 4(1), 3.
[27]
Saha, S.; Pal, D.; Kumar, S. Antifungal and Antibacterial Activities of Phenyl and Ortho-Hydroxy Phenyl Linked Imidazolyl Triazolo Hydroxamic Acid Derivatives. Inventi Rapid: Med. Chem., 2017, 2017(2), 42-49.
[28]
Saharan, V.D.; Mahajan, S.S.; Mahajan, S. Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis. Bioorg. Med. Chem. Lett., 2017, 27(4), 808-815.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.026] [PMID: 28117201]
[29]
Saha, S.; Banerjee, S.; Ganguly, S. Molecular Docking Studies of some Novel Hydroxamic Acid Derivatives. Int. J. Chemtech Res., 2010, 2(2), 932-936.
[30]
Saha, S.; Pal, D.; Kumar, S. Design, synthesis and antiproliferative activity of hydroxyacetamide derivatives against HeLa cervical carcinoma cell and breast cancer cell line. Trop. J. Pharm. Res., 2016, 15(7), 1401.
[http://dx.doi.org/10.4314/tjpr.v15i7.8]
[31]
Saha, S.; Yeom, G.S.; Nimse, S.B.; Pal, D. Combination Therapy of Ledipasvir and Itraconazole in the Treatment of COVID-19 Patients Coinfected with Black Fungus: An In Silico Statement. BioMed Res. Int., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/5904261] [PMID: 35463967]
[32]
Krishnan, V.; Verma, P.; Saha, S.; Singh, B.; Vinutha, T.; Kumar, R.R.; Kulshreshta, A.; Singh, S.P.; Sathyavathi, T.; Sachdev, A.; Praveen, S. Polyphenol-enriched extract from pearl millet (Pennisetum glaucum) inhibits key enzymes involved in post prandial hyper glycemia (α-amylase, α-glucosidase) and regulates hepatic glucose uptake. Biocatal. Agric. Biotechnol., 2022, 43102411.
[http://dx.doi.org/10.1016/j.bcab.2022.102411]
[33]
Joshi, B.C.; Juyal, V.; Sah, A.N.; Saha, S. Computational Investigation of Geniposidic Acid as an Anticancer Agent Using Molecular Docking, Molecular Dynamic Simulation, DFT Calculation, and OSIRIS-Molinspiration Profiling. Physical. Chem. Res., 2023, 11, 801-823.
[34]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[35]
Vishvakarma, V.K.; Singh, M.B.; Jain, P.; Kumari, K.; Singh, P. Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations. Amino Acids, 2022, 54(2), 205-213.
[http://dx.doi.org/10.1007/s00726-021-03098-1] [PMID: 34807314]
[36]
Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10037-10041.
[http://dx.doi.org/10.1073/pnas.181342398] [PMID: 11517324]
[37]
Bhardwaj, S.D.; Jolly, V.S. Synthesis, anti-HIV and anticancer activities of some new formazans. Asian J. Chem., 1997, 9, 48-51.
[38]
Bhardwaj, S.D.; Phatak, P.; Jolly, V.S. Anti-cancer activity of Formazans. Orient. J. Chem., 1995, 2, 181-186.
[39]
Mohammed, O.A.; Dahham, O.S. Synthesis, characterization, and study of antibacterial activity of some new formazan dyes derivatives, Derived from 2-mercapto benzoxazole. IOP Conf. Series: Materials Sci. & Engineering, 2018, 454, p. 012015.
[40]
Desai, J.M.; Shah, V.H. Synthesis and antimicrobial profile of 5-imidazolinones, sulphonamides, azomethines, 2-azetidinones and formazans derived from 2-amino-3-cyano-5-(5-chloro-3-methyl-1-phenyl pyrazol-4-ylvinyl)-7,7-dimethyl-6,7-dihydro benzo thiophenes. Indian J. Chem., 2003, 42, 631-636.
[41]
Pascua-Maestro, R.; Corraliza-Gomez, M.; Diez-Hermano, S.; Perez-Segurado, C.; Ganfornina, M.D.; Sanchez, D. The MTT-formazan assay: Complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochem., 2018, 120(3), 179-186.
[http://dx.doi.org/10.1016/j.acthis.2018.01.006] [PMID: 29395318]
[42]
Journal, B.S.; Hassan, H.A.; Jinzeel, N.A. Synthesis of some heterocyclic compounds derived from 2-mercapto benzoxazole. Baghdad Sci J, 2013, 10(3), 766-778.
[http://dx.doi.org/10.21123/bsj.10.3.766-778]
[43]
Khalid, M.; Ali, A.; De la Torre, A.F.; Marrugo, K.P.; Concepcion, O.; Kamal, G.M.; Muhammad, S.; Al-Sehemi, A.G. Facile synthesis, spectral (ir, mass, uv−vis, nmr), linear and nonlinear investigation of the novel phosphonate compounds: a combined experimental and simulation study. Chem Sel., 2020, 5(10), 2994-3006.
[http://dx.doi.org/10.1002/slct.201904224]
[44]
Hussain, Z.; Yousif, E.; Ahmed, A.; Altaie, A. Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Org. Med. Chem. Lett., 2014, 4(1), 1.
[http://dx.doi.org/10.1186/2191-2858-4-1] [PMID: 24576663]
[45]
(45) Ericsson, H.M.; Sherris, J.C. Antibiotic sensitivity testing report of an international collaborative study. Acta Pathol. Microbiol. Scand., 1971, 1971, 217-223.
[46]
Raviraj, R.; Jadhava, G.; Srikanth, B.; Harathic, P.; Shinde, G.P. Synthesis of some novel benzoxazole derivatives and their antimicrobial activity. J. Pharm. Res., 2011, 4(10), 3562-3565.
[47]
Siddique, A.B.; Ahmad, S.; Shaheen, M.A.; Ali, A.; Tahir, M.N.; Vieira, L.C.; Muhammad, S.; Siddeeg, S.M. Synthesis, antimicrobial potential and computational studies of crystalline 4-bromo-2-(1,4,5-triphenyl-1 H -imidazole-2-yl)phenol and its metal complexes. Cryst Eng Comm, 2022, 24(47), 8237-8247.
[http://dx.doi.org/10.1039/D2CE01118B]
[48]
Khalid, M.; Ali, A.; Rehman, M.F.U.; Mustaqeem, M.; Ali, S.; Khan, M.U.; Asim, S.; Ahmad, N.; Saleem, M. Exploration of noncovalent interactions, chemical reactivity, and nonlinear optical properties of piperidone derivatives: a concise theoretical approach. ACS Omega, 2020, 5(22), 13236-13249.
[http://dx.doi.org/10.1021/acsomega.0c01273] [PMID: 32548510]
[49]
Hussein, E.M.; Al-Rooqi, M.M.; Abd El-Galil, S.M.; Ahmed, S.A. Design, synthesis, and biological evaluation of novel N4-substituted sulfonamides: acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chem., 2019, 13(1), 91.
[http://dx.doi.org/10.1186/s13065-019-0603-x] [PMID: 31384838]
[50]
Saha, S.; Pal, D.; Kumar, S. Hydroxyacetamide derivatives: cytotoxicity, genotoxicity, antioxidative and metal chelating studies. Indian J. Exp. Biol., 2017, 55, 831-837.
[51]
Kushwaha, P.P.; Singh, A.K.; Bansal, T.; Yadav, A.; Prajapati, K.S.; Shuaib, M.; Kumar, S. Identification of natural inhibitors against sars-cov-2 drugable targets using molecular docking, molecular dynamics simulation, and mm-pbsa approach. Front. Cell. Infect. Microbiol., 2021, 11730288.
[http://dx.doi.org/10.3389/fcimb.2021.730288] [PMID: 34458164]
[52]
Vishvakarma, V.K.; Pal, S.; Singh, P.; Bahadur, I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J. Mol. Struct., 2022, 1251131965.
[http://dx.doi.org/10.1016/j.molstruc.2021.131965] [PMID: 34840349]
[53]
Jin, R.Y.; Zeng, C.Y.; Liang, X.H.; Sun, X.H.; Liu, Y.F.; Wang, Y.Y.; Zhou, S. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorg. Chem., 2018, 80, 253-260.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.030] [PMID: 29966871]
[54]
Alhassan, A.M.; Ahmed, Q.U.; Malami, I.; Zakaria, Z.A. Pseudocedrela kotschyi: a review of ethnomedicinal uses, pharmacology and phytochemistry. Pharm. Biol., 2021, 59(1), 953-961.
[http://dx.doi.org/10.1080/13880209.2021.1950776] [PMID: 34283002]
[55]
Zinad, D.S.; Mahal, A.; Salman, G.A.; Shareef, O.A.; Pratama, M.R.F. Molecular docking and DFT study of synthesized oxazine derivatives. Egypt. J. Chem., 2022, 65(7), 231-240.
[56]
Saleem, T.; Khan, S.; Yaqub, M.; Khalid, M.; Islam, M.; Yousaf ur Rehman, M.; Rashid, M.; Shafiq, I.; Braga, A.A.C.; Syed, A.; Bahkali, A.H.; Trant, J.F.; Shafiq, Z. Novel quinoline-derived chemosensors: synthesis, anion recognition, spectroscopic, and computational study. New J. Chem., 2022, 46(38), 18233-18243.
[http://dx.doi.org/10.1039/D2NJ02666J]
[57]
Khalid, M.; Ahmed, R.; shafiq, I.; Arshad, M.; Asghar, M.A.; Munawar, K.S.; Imran, M.; Braga, A.A.C. First theoretical framework for highly efficient photovoltaic parameters by structural modification with benzothiophene-incorporated acceptors in dithiophene based chromophores. Sci. Rep., 2022, 12(1), 20148.
[http://dx.doi.org/10.1038/s41598-022-24087-8] [PMID: 36418911]
[58]
Arshad, M.N.; Shafiq, I.; Khalid, M.; Asad, M.; Asiri, A.M.; Alotaibi, M.M.; Braga, A.A.C.; Khan, A.; Alamry, K.A. Enhancing the photovoltaic properties via incorporation of selenophene units in organic chromophores with A2-π2-A1-π1-A2 configuration: A DFT-based exploration. Polymers, 2023, 15(6), 1508.
[http://dx.doi.org/10.3390/polym15061508] [PMID: 36987288]
[59]
Concepcion, O.; Ali, A.; Khalid, M.; F de la Torre, A.; Khan, M.U.; Raza, A.R.; Kamal, G.M.; Rehman, M.F.U.; Alam, M.M.; Imran, M.; Braga, A.A.C.; Pertino, M.W. Facile synthesis of diversely functionalized peptoids, spectroscopic characterization, and dft-based nonlinear optical exploration. ACS Omega, 2021, 6(40), 26016-26025.
[http://dx.doi.org/10.1021/acsomega.1c02962] [PMID: 34660963]
[60]
Khalid, M.; Khan, M.U.; Shafiq, I.; Hussain, R.; Ali, A.; Imran, M.; Braga, A.A.C.; Fayyaz ur Rehman, M.; Akram, M.S. Structural modulation of π-conjugated linkers in D–π–A dyes based on triphenylamine dicyanovinylene framework to explore the NLO properties. R. Soc. Open Sci., 2021, 8(8), 210570.
[http://dx.doi.org/10.1098/rsos.210570]
[61]
Akhter, S.; Concepcion, O.; de la Torre, A.F.; Ali, A.; Raza, A.R.; Eman, R.; Khalid, M.; Rehman, M.F.; Akram, M.S.; Ali, H.M. Synthesis, spectroscopic characterization, DFT and molecular dynamics of quinoline-based peptoids. Arab. J. Chem., 2023, 16(4), 104570.
[http://dx.doi.org/10.1016/j.arabjc.2023.104570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy