Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design and Evaluation of SLNs Encapsulated Curcumin-based Topical Formulation for the Management of Cervical Cancer

Author(s): Manu Singhai, Vikas Pandey, Sumel Ashique, Ghanshyam Das Gupta, Daisy Arora, Tanweer Haider and Neeraj Mishra*

Volume 23, Issue 16, 2023

Published on: 04 August, 2023

Page: [1866 - 1879] Pages: 14

DOI: 10.2174/1871520623666230626145750

Price: $65

Open Access Journals Promotions 2
Abstract

Objective: Curcumin has the propensity to inhibit cancer growth, slow cancer development, increase chemotherapy effectiveness, and shield healthy cells from radiation treatment harm. As a result of curcumin's ability to block several signaling pathways, cervical cancer cells can once again proliferate normally. To optimize topically applied curcumin-loaded solid lipid nanoparticles (SLNPs) for the treatment of cervical cancer, this study set out to establish the relationship between design variables and experimental data. It also performed in vitro characterizations to determine the formulation's efficacy and safety.

Methods: Curcumin-loaded SLNPs were constructed and optimized using a systematic design of experiment (DoE) technique. SLNPs that were loaded with curcumin were produced utilizing a cold emulsification ultrasonication process. Using the Box Behnken Design, it was determined how independent variables (factors) like the quantity of lipid (A), the quantity of phospholipid (B), and the concentration of surfactant (C) affected the responses of the dependent variables (responses), such as particle size (Y1), polydispersity index (PDI) (Y2), and entrapment efficiency (EE) (Y3) (BBD).

Results: The ideal formulation (SLN9) was chosen using the desirability technique based on 3-D surface response graphs. Using polynomial equations and three-dimensional surface plots, the influence of independent factors on the dependent variables was evaluated. The observed responses were almost equal to the levels that the optimal formulation expected. The improved SLNP gel's shape and other physicochemical characteristics were also assessed, and they were determined to be ideal. The sustained release profile of the produced formulations was validated by in vitro release tests. Studies on hemolysis, immunogenic response, and in vitro cell cytotoxicity demonstrate the efficacy and safety of the formulations.

Conclusion: To improve the treatment effect, chitosan-coated SLNPs may carry encapsulated curcumin to the desired location and facilitate its localization and deposition in the desired vaginal tissue.

Keywords: Cervical cancer, design of experiment (DoE), box-behnken design (BBD), curcumin, chitosan, solid lipid nanoparticles.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Rama, S.; Fauziya, H.; Nisha, T.; Manu, S.; Akhlesh, K.S.; Laxmi, T. Recent advancements in development of vaccines for the treatment of cancer: A review. Int. J. Pharma Sci., 2019, 5(2), 55-60.
[3]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2018, 68(4), 297-316.
[http://dx.doi.org/10.3322/caac.21446] [PMID: 29846940]
[4]
Pimple, S.; Mishra, G.; Shastri, S. Global strategies for cervical cancer prevention. Curr. Opin. Obstet. Gynecol., 2016, 28(1), 4-10.
[http://dx.doi.org/10.1097/GCO.0000000000000241] [PMID: 26642063]
[5]
Goodarzi, E.; Khazaei, Z.; Sohrabivafa, M.; Mansori, K.; Naemi, H. Incidence and mortality of cervix cancer and their relationship with the human development index in 185 countries in the world: An ecology study in 2018. Adv. Hum. Biol., 2019, 9(3), 222.
[http://dx.doi.org/10.4103/AIHB.AIHB_15_19]
[6]
Apostolopoulos, V. Cancer vaccines: Research and applications. Cancers (Basel), 2019, 11(8), 1041.
[http://dx.doi.org/10.3390/cancers11081041] [PMID: 31344788]
[7]
Singh, A.; Negi, D. kaur, S.; Bhattachary, S.; Singh, G. Fundamentals of nanocarriers and probiotics in the treatment of cervical cancer. Curr. Nanomed., 2020, 10(4), 342-357.
[http://dx.doi.org/10.2174/2468187310999201105143429]
[8]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed., 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[9]
Kjaer, S.K.; Brule, A.J.C. Van Den; Paull, G; Svare, EI; Sherman, ME; Thomsen, BL; Suntum, M; Bock, JE; Poll, PA; Meijer, CJLM Type-specific persistence of high-risk human papillomavirus (HPV) as an indicator of high grade cervical squamous intraepithelial lesions in young women: Population based prospective follow up study. BMJ, 2002, 25(7364), 572.
[http://dx.doi.org/10.1136/bmj.325.7364.572] [PMID: 12228133]
[10]
Varan, C.; Wickström, H.; Sandler, N. Aktaş Y.; Bilensoy, E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int. J. Pharm., 2017, 531(2), 701-713.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.036] [PMID: 28432016]
[11]
Gupta, S.; Gupta, M.K. Possible role of nanocarriers in drug delivery against cervical cancer. Nano Rev. Exp., 2017, 8(1), 1335567.
[http://dx.doi.org/10.1080/20022727.2017.1335567] [PMID: 30410707]
[12]
Soni, H.; Sharan, P.S.; Mishra, K.; Nayak, G.; Singhai, A.K. Qualitative and quantitative profile of curcumin from ethanolic extract of curcuma longa. Int. Res. J. Pharm., 2011, 2(4), 180-184.
[13]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[14]
Pourhanifeh, M.H.; Darvish, M.; Tabatabaeian, J.; Fard, M.R.; Mottaghi, R.; Azadchehr, M.J.; Jahanshahi, M.; Sahebkar, A.; Mirzaei, H. Therapeutic role of curcumin and its novel formulations in gynecological cancers. J. Ovarian Res., 2020, 13(1), 130.
[http://dx.doi.org/10.1186/s13048-020-00731-7] [PMID: 33148295]
[15]
Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulation for cervical cancer treatment. Sci. Rep., 2016, 6(1), 20051.
[http://dx.doi.org/10.1038/srep20051] [PMID: 26837852]
[16]
Himiniuc, L.M.; Toma, B.F.; Popovici, R.; Grigore, A.M.; Hamod, A.; Volovat, C.; Volovat, S.; Nica, I.; Vasincu, D.; Agop, M.; Tirnovanu, M.; Ochiuz, L.; Negura, L.; Grigore, L. Update on the use of nanocarriers and drug delivery systems and future directions in cervical cancer. J. Immunol. Res., 2022, 2022, 1636908.
[http://dx.doi.org/10.1155/2022/1636908] [PMID: 35571568]
[17]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Gupta, R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J., 2017, 19(6), 1691-1702.
[http://dx.doi.org/10.1208/s12248-017-0154-9] [PMID: 29047044]
[18]
Li, R.; Deng, L.; Cai, Z.; Zhang, S.; Wang, K.; Li, L.; Ding, S.; Zhou, C. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater. Sci. Eng. C, 2017, 80, 156-164.
[http://dx.doi.org/10.1016/j.msec.2017.05.136] [PMID: 28866151]
[19]
Cheng, Y.; Zhao, P.; Wu, S.; Yang, T.; Chen, Y.; Zhang, X.; He, C.; Zheng, C.; Li, K.; Ma, X.; Xiang, G. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm., 2018, 545(1-2), 261-273.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.007] [PMID: 29730175]
[20]
Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem., 2020, 326(May), 126973.
[http://dx.doi.org/10.1016/j.foodchem.2020.126973] [PMID: 32413757]
[21]
Moorthi, C.; Kathiresan, K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J. Med. Hypotheses Ideas, 2013, 7(1), 15-20.
[http://dx.doi.org/10.1016/j.jmhi.2012.10.005]
[22]
R David, S.; Akmar B A, N.; Yian, K.R.; Mai, C.W.; Das, S.K.; Rajabalaya, R. Development and evaluation of curcumin liquid crystal systems for cervical cancer. Sci. Pharm., 2020, 88(1), 15.
[http://dx.doi.org/10.3390/scipharm88010015]
[23]
Ramezani, F.M.; Azarian, M.; Heydari, S.H.H.; Abdolvahabi, Z.; Mohammadi, A.Z.; Moradi, A.; Mousavi, S.M.; Ashrafizadeh, M.; Makvandi, P.; Saeb, M.R.; Rabiee, N. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer. ACS Appl. Bio Mater., 2022, 5(3), 1305-1318.
[http://dx.doi.org/10.1021/acsabm.1c01311] [PMID: 35201760]
[24]
Wang, J.; Liu, Q.; Yang, L.; Xia, X.; Zhu, R.; Chen, S.; Wang, M.; Cheng, L.; Wu, X.; Wang, S. Curcumin-loaded TPGS/F127/P123 mixed polymeric micelles for cervical cancer therapy: Formulation, characterization, and in vitro and in vivo evaluation. J. Biomed. Nanotechnol., 2017, 13(12), 1631-1646.
[http://dx.doi.org/10.1166/jbn.2017.2442] [PMID: 29490752]
[25]
Kumari, P.; Rompicharla, S.V.K.; Muddineti, O.S.; Ghosh, B.; Biswas, S. Transferrin-anchored poly(lactide) based micelles to improve anticancer activity of curcumin in hepatic and cervical cancer cell monolayers and 3D spheroids. Int. J. Biol. Macromol., 2018, 116, 1196-1213.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.040] [PMID: 29753013]
[26]
Wang, L.; Xu, X.; Zhang, Y.; Zhang, Y.; Zhu, Y.; Shi, J.; Sun, Y.; Huang, Q. Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J. Mater. Sci. Mater. Med., 2013, 24(9), 2137-2144.
[http://dx.doi.org/10.1007/s10856-013-4969-3] [PMID: 23779153]
[27]
Ghaffari, M.; Dehghan, G.; Baradaran, B.; Zarebkohan, A.; Mansoori, B.; Soleymani, J.; Ezzati, N.D.J.; Hamblin, M.R. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf. B Biointerfaces, 2020, 188, 110762.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110762]
[28]
Gumireddy, A.; Christman, R.; Kumari, D.; Tiwari, A.; North, E.J.; Chauhan, H. Preparation, characterization, and in vitro evaluation of curcumin- and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2019, 20(4), 145.
[http://dx.doi.org/10.1208/s12249-019-1349-4] [PMID: 30887133]
[29]
Gupta, T.; Singh, J.; Kaur, S.; Sandhu, S.; Singh, G.; Kaur, I.P. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (clen): A covenant for its effectiveness. Front. Bioeng. Biotechnol., 2020, 8, 879.
[http://dx.doi.org/10.3389/fbioe.2020.00879] [PMID: 33178666]
[30]
Almeida, A.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[31]
Wu, X.Y. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv., 2016, 13(5), 609-612.
[http://dx.doi.org/10.1517/17425247.2016.1165662] [PMID: 26978527]
[32]
Wang, J.; Wang, Y.; Meng, X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res. Lett., 2016, 11(1), 524.
[http://dx.doi.org/10.1186/s11671-016-1698-9] [PMID: 27888498]
[33]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133(10), 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[34]
Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[35]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[36]
Tabatabaeain, S.F.; Karimi, E.; Hashemi, M. Satureja khuzistanica essential oil-loaded solid lipid nanoparticles modified with chitosan-folate: Evaluation of encapsulation efficiency, cytotoxic and pro-apoptotic properties. Front Chem., 2022, 10, 904973.
[http://dx.doi.org/10.3389/fchem.2022.904973] [PMID: 35815210]
[37]
Arora, D.; Khurana, B.; Nanda, S. Statistical development and in vivo evaluation of resveratrol-loaded topical gel containing deformable vesicles for a significant reduction in photo-induced skin aging and oxidative stress. Drug Dev. Ind. Pharm., 2020, 46(11), 1898-1910. a
[http://dx.doi.org/10.1080/03639045.2020.1826507] [PMID: 32962434]
[38]
Khurana, B.; Arora, D.; Narang, R.K. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J. Drug Deliv. Sci. Technol., 2020, 59, 101901.
[http://dx.doi.org/10.1016/j.jddst.2020.101901]
[39]
Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev., 2015, 92, 39-52.
[http://dx.doi.org/10.1016/j.addr.2015.02.001] [PMID: 25683694]
[40]
Martínez-Pérez, B.; Quintanar-Guerrero, D.; Tapia-Tapia, M.; Cisneros-Tamayo, R.; Zambrano-Zaragoza, M.L.; Alcalá-Alcalá, S.; Mendoza-Muñoz, N.; Piñón-Segundo, E. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. Eur. J. Pharm. Sci., 2018, 115, 185-195.
[http://dx.doi.org/10.1016/j.ejps.2017.11.029] [PMID: 29208486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy