Research Article

新型吲哚衍生物EGFR/SRC激酶双抑制剂的合成及抗癌活性研究

卷 31, 期 24, 2024

发表于: 31 July, 2023

页: [3798 - 3817] 页: 20

弟呕挨: 10.2174/0929867330666230626143911

价格: $65

摘要

背景:最近的研究表明,c-SRC和EGFR之间的合作是多种肿瘤更具侵袭性表型的原因,包括胶质母细胞瘤和结肠癌、乳腺癌和肺癌。研究表明,SRC和EGFR抑制剂联合使用可诱导细胞凋亡,延缓获得性化疗耐药。因此,这种组合可能会导致治疗egfr突变型肺癌的新治疗策略。奥西替尼是作为第三代EGFR- tki开发的,用于对抗EGFR突变抑制剂的毒性。针对奥希替尼等激酶抑制剂的耐药和不良反应,设计合成了12种结构类似于奥希替尼的新型化合物。 方法:通过新颖的原始合成方法合成化合物,并通过分子对接研究评价受体相互作用。为了评估其对EGFR和SRC激酶的抑制活性,采用体外酶测定。用肺癌、乳腺癌、前列腺癌(A549、MCF6、PC3)细胞系测定其抗癌能力。化合物还对正常(HEK293)细胞株进行了细胞毒性试验。 结果:虽然在EGFR酶抑制研究中,没有一种化合物表现出比奥西替尼更强的抑制作用,但化合物16的IC50为1.026 μM,效果最高。对SRC激酶也有较强的抑制活性,IC50为0.002 μM。在所测试的化合物中,尿素衍生物6-11对SRC激酶的抑制率为80.12-89.68%,而参比化合物达沙替尼的抑制率为93.26%。与对照化合物奥西替尼、达沙替尼和顺铂相比,大多数化合物在乳腺癌、肺癌和前列腺癌细胞系中造成50%以上的细胞死亡,对正常细胞的毒性较弱。化合物16对肺癌和前列腺癌细胞具有较强的细胞毒性。用活性最强的化合物16治疗前列腺癌细胞,与对照组相比,caspase-3(8倍)、caspase-8(6倍)和Bax(5.7倍)水平显著升高,Bcl-2水平显著降低(2.3倍)。这些结果表明,化合物16在前列腺癌细胞系中具有较强的诱导凋亡作用。 结论:综合激酶抑制、细胞毒性和细胞凋亡实验表明,化合物16对SRC和EGFR激酶具有双重抑制活性,同时对正常细胞保持低毒性。其他化合物在激酶和细胞培养试验中也显示出相当大的活性谱。

关键词: 抗癌活性,激酶抑制剂,EGFR, SRC,对接,抑制,凋亡。

[1]
Olgen, S. Overview on anticancer drug design and development. Curr. Med. Chem., 2018, 25(15), 1704-1719.
[http://dx.doi.org/10.2174/0929867325666171129215610] [PMID: 29189124]
[2]
Pancewicz-Wojtkiewicz, J.; Bernatowicz, P.L. The effect of afatinib tratment in non-small cell lung cancer cells. Anticancer Res., 2017, 37(7), 3543-3546.
[http://dx.doi.org/10.21873/anticanres.11723] [PMID: 28668844]
[3]
Bedi, S.; Khan, S.A.; AbuKhader, M.M.; Alam, P.; Siddiqui, N.A.; Husain, A. A comprehensive review on Brigatinib – A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharm. J., 2018, 26(6), 755-763.
[http://dx.doi.org/10.1016/j.jsps.2018.04.010] [PMID: 30202213]
[4]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[5]
Traxler, P.; Furet, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther., 1999, 82(2-3), 195-206.
[http://dx.doi.org/10.1016/S0163-7258(98)00044-8] [PMID: 10454197]
[6]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[7]
Olgen, S. Design strategies, structures and molecular interacions of small molecule Src inhibitors. Anticancer. Agents Med. Chem., 2016, 16(8), 992-1002.
[http://dx.doi.org/10.2174/1871520616666160223111800] [PMID: 26902603]
[8]
Ramalingam, S.S.; Jänne, P.A.; Mok, T.; O’Byrne, K.; Boyer, M.J.; Von Pawel, J.; Pluzanski, A.; Shtivelband, M.; Docampo, L.I.; Bennouna, J.; Zhang, H.; Liang, J.Q.; Doherty, J.P.; Taylor, I.; Mather, C.B.; Goldberg, Z.; O’Connell, J.; Paz-Ares, L. Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): A randomised, double-blind, phase 3 trial. Lancet Oncol., 2014, 15(12), 1369-1378.
[http://dx.doi.org/10.1016/S1470-2045(14)70452-8] [PMID: 25439691]
[9]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1), 35.
[http://dx.doi.org/10.1186/s43042-019-0035-0]
[10]
Waring, M.J. The discovery of osimertinib (Tagrisso): An irreversible inhibitor of activating and T790M resistant forms of the epidermal growth factor receptor tyrosine kinase for the treatment of non-small cell lung cancer. In: Successful Drug Discover; , 2018; 3, pp. 341-357.
[http://dx.doi.org/10.1002/9783527808694.ch12]
[11]
Yan, X.E.; Ayaz, P.; Zhu, S.J.; Zhao, P.; Liang, L.; Zhang, C.H.; Wu, Y.C.; Li, J.L.; Choi, H.G.; Huang, X.; Shan, Y.; Shaw, D.E.; Yun, C.H. Structural basis of AZD9291 selectivity for EGFR T790M. J. Med. Chem., 2020, 63(15), 8502-8511.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00891] [PMID: 32672461]
[12]
Butterworth, S.; Cross, D.A.E.; Finlay, M.R.V.; Ward, R.A.; Waring, M.J. The structure-guided discovery of osimertinib: The first U.S. FDA approved mutant selective inhibitor of EGFR T790M. MedChemComm, 2017, 8(5), 820-822.
[http://dx.doi.org/10.1039/C7MD90012K] [PMID: 30108799]
[13]
An, B.; Pan, T.; Hu, J.; Pang, Y.; Huang, L.; Chan, A.S.C.; Li, X.; Yan, J. The discovery of a potent and selective third-generation EGFR kinase inhibitor as a therapy for EGFR L858R/T790M double mutant non-small cell lung cancer. Eur. J. Med. Chem., 2019, 183, 111709-111729.
[http://dx.doi.org/10.1016/j.ejmech.2019.111709] [PMID: 31581004]
[14]
Ishizawar, R.; Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell, 2004, 6(3), 209-214.
[http://dx.doi.org/10.1016/j.ccr.2004.09.001] [PMID: 15380511]
[15]
Belli, S.; Esposito, D.; Servetto, A.; Pesapane, A.; Formisano, L.; Bianco, R. c-Src and EGFR inhibition in molecular cancer therapy: What else can we improve? Cancers, 2020, 12(6), 1489.
[http://dx.doi.org/10.3390/cancers12061489.] [PMID: 32517369]
[16]
Ichihara, E.; Westover, D.; Meador, C.B.; Yan, Y.; Bauer, J.A.; Lu, P.; Ye, F.; Kulick, A.; de Stanchina, E.; McEwen, R.; Ladanyi, M.; Cross, D.; Pao, W.; Lovly, C.M. SFK/FAK signaling attenuates osimertinib efficacy in both drug- sensitive and drug-resistant models of EGFR-mutant lung cancer. Cancer Res., 2017, 77(11), 2990-3000.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2300] [PMID: 28416483]
[17]
Ghosh, A.K.; Brindisi, M. Urea derivatives in modern drug discovery and medicinal chemistry. J Med Chem., 2020, 63(6), 2751-2788.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01541] [PMID: 31789518]
[18]
Sahin, Z.; Biltekin, S.N.; Yurttas, L.; Berk, B.; Özhan, Y.; Sipahi, H.; Gao, Z.G.; Jacobson, K.A.; Demirayak, Ş. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur. J. Med. Chem., 2021, 212, 113125.
[http://dx.doi.org/10.1016/j.ejmech.2020.113125] [PMID: 33422981]
[19]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[20]
Gong, L.; Tang, Y.; An, R.; Lin, M.; Chen, L.; Du, J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis., 2017, 8(10), e3080.
[http://dx.doi.org/10.1038/cddis.2017.465] [PMID: 28981095]
[21]
El-Dash, Y.; Elzayat, E.; Abdou, A.M.; Hassan, R.A. Novel thienopyrimidine-aminothiazole hybrids: Design, synthesis, antimicrobial screening, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and VEGFR-2 inhibition. Bioorg. Chem., 2021, 114, 105137.
[http://dx.doi.org/10.1016/j.bioorg.2021.105137] [PMID: 34237644]
[22]
Lambuk, L.; Iezhitsa, I.; Agarwal, R.; Bakar, N.S.; Agarwal, P.; Ismail, N.M. Antiapoptotic effect of taurine against NMDA-induced retinal excitotoxicity in rats. Neurotoxicology, 2019, 70, 62-71.
[http://dx.doi.org/10.1016/j.neuro.2018.10.009] [PMID: 30385388]
[23]
Donepudi, M.; Sweeney, A.M.; Briand, C.; Grütter, M.G. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell, 2003, 11(2), 543-549.
[http://dx.doi.org/10.1016/S1097-2765(03)00059-5] [PMID: 12620240]
[24]
Dolka, I.; Król, M.; Sapierzyński, R. Evaluation of apoptosis-associated protein (Bcl-2, Bax, cleaved caspase-3 and p53) expression in canine mammary tumors: An immunohistochemical and prognostic study. Res. Vet. Sci., 2016, 105, 124-133.
[http://dx.doi.org/10.1016/j.rvsc.2016.02.004] [PMID: 27033920]
[25]
Cheng, C.; Wen, S.; Li, H.J. Fluorine- and/or deuterium-containing compounds for treating non-small cell lung cancer and related diseases. US Patent 2019/0169171 Al,, 2019.
[26]
Jiang, Y.P. Pyrimidine or pyridine compounds, preparation method therefor and pharmaceutical uses thereof. EP Patent 3 216 786 A1,, 2017.
[27]
Alves, J.; Goueli, S.A.; Zegzouti, H. www.promega.com/tbs/tm313/tm313.html.
[28]
Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; Lamkanfi, M.; Krönke, M.; Pasparakis, M.; Kashkar, H. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 2019, 575(7784), 683-687.
[http://dx.doi.org/10.1038/s41586-019-1770-6] [PMID: 31748744]
[29]
Ma, C.; MacKenzie, S.H.; Clay Clark, A. Redesigning the procaspase-8 dimer interface for improved dimerization. Protein Sci., 2014, 23(4), 442-453.
[http://dx.doi.org/10.1002/pro.2426] [PMID: 24442640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy