Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

In-vitro Safety Assessment of Ultrasmall Gold Nanoparticles for Preclinical Drug Delivery Applications

Author(s): Farhat Naz*, Arun Kumar, Pankaj Prabhakar and Shantanu Lale

Volume 13, Issue 4, 2023

Published on: 18 July, 2023

Page: [304 - 321] Pages: 18

DOI: 10.2174/2210303113666230622123933

Price: $65

Abstract

Background: The development of safe and biocompatible nanoparticles has always been a major concern in nanomedicine applications. Various studies on the size-dependent toxicity of nanoparticles have been reported but are still controversial. The potential of small-sized nanoparticles can be utilized for imaging and diagnostics. However, insufficient toxicity data on these nanoparticles prevents researchers from utilizing their potential in diagnostics. More studies are needed on the toxicity of small-sized nanoparticles to present unanimous report for safe systemic use. The present study aimed to investigate the toxicity concerns of very small-sized AuNPs (2 ± 0.5 nm, 5 ± 1 nm, and 10 ± 2 nm) and provide a platform for their safe in vivo use.

Methods: The cellular interactions of these three small-sized AuNPs with regard to cytotoxicity were investigated on hepatocellular carcinoma (HepG2) and epithelial kidney (HEK-293) cell lines. The cytotoxicity investigation of both cell lines was done through MTT assays, PI & DAPI, and cytology. Cellular stress was investigated by Catalase, TBARS, GSH, SOD & ROS parameters. The AuNPs incubated cells were also assessed for immunogenicity by ELISA, protein interaction by BSA, and cellular internalization by TEM (Edax).

Results: All three-sized AuNPs were not toxic on cell viability, apoptosis, necrosis, or cytology assessment. No oxidative stress was noted in both cell types in the presence of 2 and 5-nm-sized AuNPs, whereas 10 nm-sized AuNPs showed little oxidative stress. AuNPs of size 2 and 5 nm were immunologically inert, but 10 nm-sized AuNPs elicited interleukin (IL-4 and IL-10) and interferon IFN gamma response. AuNPs of sized 2 nm showed 4 times the adsorption of albumin protein as compared to AuNPs of sized 5 nm. The TEM micrographs and peak of gold in the Edax graph confirmed the presence of AuNPs in cells.

Conclusion: Our results are suggestive of utilizing the potential of these three-sized AuNPs safely in preclinical drug delivery applications.

Keywords: Gold nanoparticles, cytotoxicity, oxidative stress, immunotoxicity, cellular internalization (TEM and Edax), AuNPs.

Graphical Abstract
[1]
Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 2017, 22(9), 1445.
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[2]
Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2020, 2(9), 3764-3787.
[http://dx.doi.org/10.1039/D0NA00472C] [PMID: 36132791]
[3]
D’Acunto, M.; Cioni, P.; Gabellieri, E.; Presciuttini, G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology, 2021, 32(19), 192001.
[http://dx.doi.org/10.1088/1361-6528/abe1ed]
[4]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[5]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[6]
Huo, S.; Jin, S.; Ma, X.; Xue, X.; Yang, K.; Kumar, A.; Wang, P.C.; Zhang, J.; Hu, Z.; Liang, X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano, 2014, 8(6), 5852-5862.
[http://dx.doi.org/10.1021/nn5008572] [PMID: 24824865]
[7]
Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3(11), 1941-1949.
[http://dx.doi.org/10.1002/smll.200700378]
[8]
Gao, C.H.; Mortimer, M.; Zhang, M.; Holden, P.A.; Cai, P.; Wu, S.; Xin, Y.; Wu, Y.; Huang, Q. Impact of metal oxide nanoparticles on in vitro DNA amplification. PeerJ, 2019, 7, e7228.
[http://dx.doi.org/10.7717/peerj.7228] [PMID: 31293839]
[9]
Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. RETRACTED ARTICLE: Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to hela cells. Sci. Rep., 2018, 8(1), 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[10]
Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P.C.; He, S.; Zhang, X.; Liang, X.J. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano, 2012, 6(5), 4483-4493.
[http://dx.doi.org/10.1021/nn301282m] [PMID: 22540892]
[11]
Yu, Z.; Li, Q.; Wang, J.; Yu, Y.; Wang, Y.; Zhou, Q.; Li, P. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett., 2020, 15(1), 115.
[http://dx.doi.org/10.1186/s11671-020-03344-7] [PMID: 32436107]
[12]
Mateo, D.; Morales, P.; Ávalos, A.; Haza, A.I. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol. Mech. Methods, 2014, 24(3), 161-172.
[http://dx.doi.org/10.3109/15376516.2013.869783] [PMID: 24274460]
[13]
Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/942916] [PMID: 24027766]
[14]
Li, J.J.; Muralikrishnan, S.; Ng, C.T.; Yung, L.Y.L.; Bay, B.H. Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med., 2010, 235(9), 1025-1033.
[http://dx.doi.org/10.1258/ebm.2010.010021] [PMID: 20719818]
[15]
Stonāns, I.; Stonāne, E.; Rußwurm, S.; Deigner, H.P.; Böhm, K.J.; Wiederhold, M.; Jäger, L.; Reinhart, K. HepG2 human hepatoma cells express multiple cytokine genes. Cytokine, 1999, 11(2), 151-156.
[http://dx.doi.org/10.1006/cyto.1998.0366] [PMID: 10089137]
[16]
Roy, R.; Parashar, V.; Chauhan, L.K.S.; Shanker, R.; Das, M.; Tripathi, A.; Dwivedi, P.D. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol. In Vitro, 2014, 28(3), 457-467.
[http://dx.doi.org/10.1016/j.tiv.2013.12.004] [PMID: 24368203]
[17]
Turabekova, M.; Rasulev, B.; Theodore, M.; Jackman, J.; Leszczynska, D.; Leszczynski, J. Immunotoxicity of nanoparticles: A computational study suggests that CNTs and C 60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale, 2014, 6(7), 3488-3495.
[http://dx.doi.org/10.1039/C3NR05772K] [PMID: 24548972]
[18]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5), 3926-3938.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[19]
Khan, H.A.; Abdelhalim, M.A.K.; Alhomida, A.S.; Al Ayed, M.S. Short communication transient increase in IL-1β, IL-6 and TNF-α gene expression in rat liver exposed to gold nanoparticles. Genet. Mol. Res., 2013, 12(4), 5851-5857.
[http://dx.doi.org/10.4238/2013.November.22.12] [PMID: 24301954]
[20]
Hussain, S.; Boland, S.; Baeza-Squiban, A.; Hamel, R.; Thomassen, L.C.J.; Martens, J.A.; Billon-Galland, M.A.; Fleury-Feith, J.; Moisan, F.; Pairon, J.C.; Marano, F. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 2009, 260(1-3), 142-149.
[http://dx.doi.org/10.1016/j.tox.2009.04.001] [PMID: 19464580]
[21]
Perera, Y.R.; Xu, J.X.; Amarasekara, D.L.; Hughes, A.C.; Abbood, I.; Fitzkee, N.C. Understanding the adsorption of peptides and proteins onto PEGylated gold nanoparticles. Molecules, 2021, 26(19), 5788.
[http://dx.doi.org/10.3390/molecules26195788] [PMID: 34641335]
[22]
Mustafa, T.; Fumiya, W.; Monroe, W.; Mahmood, M.; Xu, Y.; Saeed, L.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, R. Impact of gold nano-particle concentration on their cellular uptake by MC3T3-E1 mouse osteocytic cells as analyzed by transmission electron microscopy. J. Nanomedic. Nanotechnol., 2011, 2, 6.
[http://dx.doi.org/10.4172/2157-7439.1000118]
[23]
Tosa, N.; Olenic, L.; Bratu, I.; Turdeanu, R.; Turcu, I. Infrared and UV-Vis spectroscopic study of 3,7,10-substituted-phenothiazine derivatives adsorbed on gold nanoparticles. J. Phys. Conf. Ser., 2009, 182, 012019.
[http://dx.doi.org/10.1088/1742-6596/182/1/012019]
[24]
Wang, Z.; Zhang, Q.; Kuehner, D.; Ivaska, A.; Niu, L. Green synthesis of 1-2 nm gold nanoparticles stabilized by amine-terminated ionic liquid and their electrocatalytic activity in oxygen reduction. Green Chem., 2008, 10(9), 907.
[http://dx.doi.org/10.1039/b806453a]
[25]
Naz, F.; Koul, V.; Srivastava, A.; Gupta, Y.K.; Dinda, A.K. Biokinetics of ultrafine gold nanoparticles (AuNPs) relating to redistribution and urinary excretion: A long-term in vivo study. J. Drug Target., 2016, 24(8), 720-729.
[http://dx.doi.org/10.3109/1061186X.2016.1144758] [PMID: 26837799]
[26]
Eaton, P.; Quaresma, P.; Soares, C.; Neves, C.; de Almeida, M.P.; Pereira, E.; West, P. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 2017, 182, 179-190.
[http://dx.doi.org/10.1016/j.ultramic.2017.07.001] [PMID: 28692935]
[27]
Naz, F.; Dinda, A.K.; Saxena, R.; Koul, V. Biosafety of unmodified ultrafine gold particles (AuPs) upon interacting with human blood components before systemic use. Regul. Toxicol. Pharmacol., 2019, 107, 104405.
[http://dx.doi.org/10.1016/j.yrtph.2019.104405] [PMID: 31207267]
[28]
Bac, LH; Kim, JS; Kim, JC Size, optical, and stability properties of gold nanoparticles synthesized by electrical explosion of wire in differ-ent aqueous. Rev Adv Mater Sci, 2011, 28(117), 12-30.
[29]
Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol., 2011, 697, 63-70.
[http://dx.doi.org/10.1007/978-1-60327-198-1_6] [PMID: 21116954]
[30]
Adewale, O.B.; Davids, H.; Cairncross, L.; Roux, S. Toxicological behavior of gold nanoparticles on various models: Influence of physicochemical properties and other factors. Int. J. Toxicol., 2019, 38(5), 357-384.
[http://dx.doi.org/10.1177/1091581819863130] [PMID: 31462100]
[31]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[32]
Coradeghini, R.; Gioria, S.; García, C.P.; Nativo, P.; Franchini, F.; Gilliland, D.; Ponti, J.; Rossi, F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett., 2013, 217(3), 205-216.
[http://dx.doi.org/10.1016/j.toxlet.2012.11.022] [PMID: 23246733]
[33]
Huang, K.T.; Wu, C.T.; Huang, K.H.; Lin, W.C.; Chen, C.M.; Guan, S.S.; Chiang, C.K.; Liu, S.H. Titanium nanoparticle inhalation induces renal fibrosis in mice via an oxidative stress upregulated transforming growth factor-β pathway. Chem. Res. Toxicol., 2015, 28(3), 354-364.
[http://dx.doi.org/10.1021/tx500287f] [PMID: 25406100]
[34]
Abdal Dayem, A.; Hossain, M.; Lee, S.; Kim, K.; Saha, S.; Yang, G.M.; Choi, H.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[35]
Zhang, L.; Haddouti, E.M.; Beckert, H.; Biehl, R.; Pariyar, S.; Rüwald, J.M.; Li, X.; Jaenisch, M.; Burger, C.; Wirtz, D.C.; Kabir, K.; Schildberg, F.A. Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in THP-1-derived macrophages. Mediators Inflamm., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/3824593] [PMID: 33343230]
[36]
Byrne, J.; Baugh, J.A. The significance of nanoparticles in particle- induced pulmonary fibrosis. McGill J. Med., 2020, 11(1), 43-50.
[http://dx.doi.org/10.26443/mjm.v11i1.455] [PMID: 18523535]
[37]
Al-Fahdawi, M.Q.; Al-Doghachi, F.A.J.; Abdullah, Q.K.; Hammad, R.T.; Rasedee, A.; Ibrahim, W.N.; Alshwyeh, H.A.; Alosaimi, A.A.; Aldosary, S.K.; Eid, E.E.M.; Rosli, R.; Taufiq-Yap, Y.H.; Al-Haj, N.A.; Al-Qubaisi, M.S. Oxidative stress cytotoxicity induced by platinum-doped magnesia nanoparticles in cancer cells. Biomed. Pharmacother., 2021, 138, 111483.
[http://dx.doi.org/10.1016/j.biopha.2021.111483] [PMID: 33744756]
[38]
Mottram, P.L.; Leong, D.; Crimeen-Irwin, B.; Gloster, S.; Xiang, S.D.; Meanger, J.; Ghildyal, R.; Vardaxis, N.; Plebanski, M. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm., 2007, 4(1), 73-84.
[http://dx.doi.org/10.1021/mp060096p] [PMID: 17274665]
[39]
Wang, P.; Wang, X.; Wang, L.; Hou, X.; Liu, W.; Chen, C. Interaction of gold nanoparticles with proteins and cells. Sci. Technol. Adv. Mater., 2015, 16(3), 034610.
[http://dx.doi.org/10.1088/1468-6996/16/3/034610] [PMID: 27877797]
[40]
Brewer, S.H.; Glomm, W.R.; Johnson, M.C.; Knag, M.K.; Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir, 2005, 21(20), 9303-9307.
[http://dx.doi.org/10.1021/la050588t] [PMID: 16171365]
[41]
Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G.J.; Puntes, V.F. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small, 2011, 7(24), 3479-3486.
[http://dx.doi.org/10.1002/smll.201101511] [PMID: 22058075]
[42]
Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31(30), 7606-7619.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.051] [PMID: 20656344]
[43]
Deng, Z.J.; Liang, M.; Toth, I.; Monteiro, M.J.; Minchin, R.F. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano, 2012, 6(10), 8962-8969.
[http://dx.doi.org/10.1021/nn3029953] [PMID: 22998416]
[44]
Liu, J.; Peng, Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater., 2017, 55, 13-27.
[http://dx.doi.org/10.1016/j.actbio.2017.03.055] [PMID: 28377307]
[45]
Paino, I.M.M.; Marangoni, V.S.; de Oliveira, R.C.S.; Antunes, L.M.G.; Zucolotto, V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol. Lett., 2012, 215(2), 119-125.
[http://dx.doi.org/10.1016/j.toxlet.2012.09.025] [PMID: 23046612]
[46]
Ma, N.; Ma, C.; Li, C.; Wang, T.; Tang, Y.; Wang, H.; Mou, X.; Chen, Z.; He, N. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J. Nanosci. Nanotechnol., 2013, 13(10), 6485-6498.
[http://dx.doi.org/10.1166/jnn.2013.7525] [PMID: 24245105]
[47]
Xia, Q.; Huang, J.; Feng, Q.; Chen, X.; Liu, X.; Li, X.; Zhang, T.; Xiao, S.; Li, H.; Zhong, Z.; Xiao, K. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int. J. Nanomedicine, 2019, 14(14), 6957-6970.
[http://dx.doi.org/10.2147/IJN.S214008] [PMID: 32021157]
[48]
Lammel, T.; Mackevica, A.; Johansson, B.R.; Sturve, J. Endocytosis, intracellular fate, accumulation, and agglomeration of titanium dioxide (TiO2) nanoparticles in the rainbow trout liver cell line RTL-W1. Environ. Sci. Pollut. Res. Int., 2019, 26(15), 15354-15372.
[http://dx.doi.org/10.1007/s11356-019-04856-1] [PMID: 30929178]
[49]
Goodman, C.M.; McCusker, C.D.; Yilmaz, T.; Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem., 2004, 15(4), 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[50]
Tsoli, M.; Kuhn, H.; Brandau, W.; Esche, H.; Schmid, G. Cellular uptake and toxicity of Au55 clusters. Small, 2005, 1(8-9), 841-844.
[http://dx.doi.org/10.1002/smll.200500104] [PMID: 17193536]
[51]
Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev., 2011, 40(3), 1647-1671.
[http://dx.doi.org/10.1039/C0CS00018C] [PMID: 21082078]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy