Review Article

衰老与糖尿病肾病:新出现的发病机制和临床意义

卷 31, 期 6, 2024

发表于: 14 July, 2023

页: [697 - 725] 页: 29

弟呕挨: 10.2174/0929867330666230621112215

价格: $65

Open Access Journals Promotions 2
摘要

糖尿病肾病(DKD)是世界范围内慢性肾病(CKD)和终末期肾病(ESRD)的主要原因之一。随着老龄化势不可挡的趋势,DKD在老年人中的患病率逐渐增加。遗传因素、糖代谢异常、炎症、线粒体失调和氧化应激都有助于DKD的发展。可以想象,随着年龄的增长,这些病理生物学过程可能会加强,这将进一步加剧老年患者肾功能的恶化,最终导致ESRD。目前,老年人DKD的发病机制还不是很清楚。本研究对糖尿病肾病与衰老的关系进行了评估,同时讨论了老年肾脏的结构和功能变化,相关机制对DKD结果的影响,以及靶向治疗的最新进展。

关键词: 衰老,糖尿病肾病,发病机制,病理,ESRD, DKD。

[1]
Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab., 2020, 9(4), 183-185.
[http://dx.doi.org/10.1097/XCE.0000000000000210] [PMID: 33225235]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[4]
Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract, 2020, 162, 108072.
[http://dx.doi.org/10.1016/j.diabres.2020.108072] [PMID: 32061820]
[5]
Bridges, C.C.; Zalups, R.K. The aging kidney and the nephrotoxic effects of mercury. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(2), 55-80.
[http://dx.doi.org/10.1080/10937404.2016.1243501] [PMID: 28339347]
[6]
Barutta, F.; Bellini, S.; Corbetta, B.; Durazzo, M.; Gruden, G. The future of diabetic kidney disease management: What to expect from the experimental studies? J. Nephrol., 2020, 33(6), 1151-1161.
[http://dx.doi.org/10.1007/s40620-020-00724-1] [PMID: 32221858]
[7]
Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; Zhai, Z.; Zhang, D.; Dai, Z.; Gao, J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol. (Lausanne), 2021, 12, 672350.
[http://dx.doi.org/10.3389/fendo.2021.672350] [PMID: 34276558]
[8]
Burrows, N.R.; Li, Y.; Geiss, L.S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care, 2010, 33(1), 73-77.
[http://dx.doi.org/10.2337/dc09-0343] [PMID: 20040673]
[9]
Guo, J.; Zheng, H.J.; Zhang, W.; Lou, W.; Xia, C.; Han, X.T.; Huang, W.J.; Zhang, F.; Wang, Y.; Liu, W.J. Accelerated kidney aging in diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 1-24.
[http://dx.doi.org/10.1155/2020/1234059] [PMID: 32774664]
[10]
Denic, A.; Glassock, R.J.; Rule, A.D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis., 2016, 23(1), 19-28.
[http://dx.doi.org/10.1053/j.ackd.2015.08.004] [PMID: 26709059]
[11]
Roseman, D.A.; Hwang, S.J.; Oyama-Manabe, N.; Chuang, M.L.; O’Donnell, C.J.; Manning, W.J.; Fox, C.S. Clinical associations of total kidney volume: the Framingham Heart Study. Nephrol. Dial. Transplant., 2017, 32(8), 1344-1350.
[PMID: 27325252]
[12]
Tauchi, H.; Tsuboi, K.; Okutomi, J. Age changes in the human kidney of the different races. Gerontology, 1971, 17(2), 87-97.
[http://dx.doi.org/10.1159/000211811] [PMID: 5093734]
[13]
Wang, X.; Vrtiska, T.J.; Avula, R.T.; Walters, L.R.; Chakkera, H.A.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int., 2014, 85(3), 677-685.
[http://dx.doi.org/10.1038/ki.2013.359] [PMID: 24067437]
[14]
Rule, A.D.; Sasiwimonphan, K.; Lieske, J.C.; Keddis, M.T.; Torres, V.E.; Vrtiska, T.J. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis., 2012, 59(5), 611-618.
[http://dx.doi.org/10.1053/j.ajkd.2011.12.022] [PMID: 22398108]
[15]
Lorenz, E.C.; Vrtiska, T.J.; Lieske, J.C.; Dillon, J.J.; Stegall, M.D.; Li, X.; Bergstralh, E.J.; Rule, A.D. Prevalence of renal artery and kidney abnormalities by computed tomography among healthy adults. Clin. J. Am. Soc. Nephrol., 2010, 5(3), 431-438.
[http://dx.doi.org/10.2215/CJN.07641009] [PMID: 20089492]
[16]
Denic, A.; Alexander, M.P.; Kaushik, V.; Lerman, L.O.; Lieske, J.C.; Stegall, M.D.; Larson, J.J.; Kremers, W.K.; Vrtiska, T.J.; Chakkera, H.A.; Poggio, E.D.; Rule, A.D. Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am. J. Kidney Dis., 2016, 68(1), 58-67.
[http://dx.doi.org/10.1053/j.ajkd.2015.12.029] [PMID: 26857648]
[17]
Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med., 2010, 152(9), 561-567.
[http://dx.doi.org/10.7326/0003-4819-152-9-201005040-00006] [PMID: 20439574]
[18]
Takazakura, E.; Sawabu, N.; Handa, A.; Takada, A.; Shinoda, A.; Takeuchi, J. Intrarenal vascular changes with age and disease. Kidney Int., 1972, 2(4), 224-230.
[http://dx.doi.org/10.1038/ki.1972.98] [PMID: 4657923]
[19]
Hoang, K.; Tan, J.C.; Derby, G.; Blouch, K.L.; Masek, M.; Ma, I.; Lemley, K.V.; Myers, B.D. Determinants of glomerular hypofiltration in aging humans. Kidney Int., 2003, 64(4), 1417-1424.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00207.x] [PMID: 12969161]
[20]
Fioretto, P.; Steffes, M.W.; Brown, D.M.; Mauer, S.M. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am. J. Kidney Dis., 1992, 20(6), 549-558.
[http://dx.doi.org/10.1016/S0272-6386(12)70217-2] [PMID: 1462981]
[21]
Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[22]
Friedman, E.A. Renal syndromes in diabetes. Endocrinol. Metab. Clin. North Am., 1996, 25(2), 293-324.
[http://dx.doi.org/10.1016/S0889-8529(05)70326-1] [PMID: 8799702]
[23]
Sobamowo, H.; Prabhakar, S.S. The kidney in aging. Prog. Mol. Biol. Transl. Sci., 2017, 146, 303-340.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.018] [PMID: 28253989]
[24]
Tan, J.C.; Busque, S.; Workeneh, B.; Ho, B.; Derby, G.; Blouch, K.L.; Graham Sommer, F.; Edwards, B.; Myers, B.D. Effects of aging on glomerular function and number in living kidney donors. Kidney Int., 2010, 78(7), 686-692.
[http://dx.doi.org/10.1038/ki.2010.128] [PMID: 20463656]
[25]
Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol., 2017, 28(1), 313-320.
[http://dx.doi.org/10.1681/ASN.2016020154] [PMID: 27401688]
[26]
Zhou, X.J.; Rakheja, D.; Yu, X.; Saxena, R.; Vaziri, N.D.; Silva, F.G. The aging kidney. Kidney Int., 2008, 74(6), 710-720.
[http://dx.doi.org/10.1038/ki.2008.319] [PMID: 18614996]
[27]
Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Am. J. Kidney Dis., 2003, 41(1), 1-12.
[http://dx.doi.org/10.1053/ajkd.2003.50007] [PMID: 12500213]
[28]
Wiggins, J.E.; Goyal, M.; Sanden, S.K.; Wharram, B.L.; Shedden, K.A.; Misek, D.E.; Kuick, R.D.; Wiggins, R.C. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol., 2005, 16(10), 2953-2966.
[http://dx.doi.org/10.1681/ASN.2005050488] [PMID: 16120818]
[29]
Esposito, C.; Dal Canton, A. Functional changes in the aging kidney. J. Nephrol., 2010, 23(Suppl. 15), S41-S45.
[PMID: 20872370]
[30]
Huber, T.B.; Edelstein, C.L.; Hartleben, B.; Inoki, K.; Jiang, M.; Koya, D.; Kume, S.; Lieberthal, W.; Pallet, N.; Quiroga, A.; Ravichandran, K.; Susztak, K.; Yoshida, S.; Dong, Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 2012, 8(7), 1009-1031.
[http://dx.doi.org/10.4161/auto.19821] [PMID: 22692002]
[31]
Wiggins, J.E. Aging in the glomerulus. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(12), 1358-1364.
[http://dx.doi.org/10.1093/gerona/gls157] [PMID: 22843670]
[32]
Martin, J.E.; Sheaff, M.T. Renal ageing. J. Pathol., 2007, 211(2), 198-205.
[http://dx.doi.org/10.1002/path.2111] [PMID: 17200944]
[33]
Abdelhafiz, A.H. Diabetic kidney disease in older people with type 2 diabetes mellitus: Improving prevention and treatment options. Drugs Aging, 2020, 37(8), 567-584.
[http://dx.doi.org/10.1007/s40266-020-00773-y] [PMID: 32495289]
[34]
Plante, G.E. Impact of aging on the body’s vascular system. Metabolism, 2003, 52(10)(Suppl. 2), 31-35.
[http://dx.doi.org/10.1016/S0026-0495(03)00299-3] [PMID: 14577061]
[35]
Murata, K.; Horiuchi, Y. Age-dependent distribution of acidic glycosaminoglycans in human kidney tissue. Nephron J., 1978, 20(2), 111-118.
[http://dx.doi.org/10.1159/000181203] [PMID: 622208]
[36]
Merker, L. Nephropathy in diabetes. MMW Fortschr. Med., 2021, 163(8), 48-51.
[http://dx.doi.org/10.1007/s15006-021-9782-1] [PMID: 33904093]
[37]
Campbell, R.C.; Ruggenenti, P.; Remuzzi, G. Proteinuria in diabetic nephropathy: Treatment and evolution. Curr. Diab. Rep., 2003, 3(6), 497-504.
[http://dx.doi.org/10.1007/s11892-003-0014-0] [PMID: 14611747]
[38]
Baldea, A.J. Effect of aging on renal function plus monitoring and support. Surg. Clin. North Am., 2015, 95(1), 71-83.
[http://dx.doi.org/10.1016/j.suc.2014.09.003] [PMID: 25459543]
[39]
A/L B Vasanth Rao, VR; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr., 2019, 13(1), 754-762.
[http://dx.doi.org/10.1016/j.dsx.2018.11.054] [PMID: 30641802]
[40]
Najafian, B.; Fogo, A.B.; Lusco, M.A.; Alpers, C.E. AJKD atlas of renal pathology: Diabetic nephropathy. Am. J. Kidney dis., 2015, 66(5), e37-e38.
[http://dx.doi.org/10.1053/j.ajkd.2015.08.010] [PMID: 26498421]
[41]
Najafian, B.; Alpers, C.E.; Fogo, A.B. Pathology of human diabetic nephropathy. Contrib. Nephrol., 2011, 170, 36-47.
[http://dx.doi.org/10.1159/000324942] [PMID: 21659756]
[42]
Hong, D.; Zheng, T.; Jia-qing, S.; Jian, W.; Zhi-hong, L.; Lei-shi, L. Nodular glomerular lesion: A later stage of diabetic nephropathy? Diabetes Res. Clin. Pract., 2007, 78(2), 189-195.
[http://dx.doi.org/10.1016/j.diabres.2007.03.024] [PMID: 17683824]
[43]
An, X.; Zhang, L.; Yuan, Y.; Wang, B.; Yao, Q.; Li, L.; Zhang, J.; He, M.; Zhang, J. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci. Rep., 2017, 7(1), 6413.
[http://dx.doi.org/10.1038/s41598-017-06844-2] [PMID: 28743882]
[44]
Maezawa, Y.; Takemoto, M.; Yokote, K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J. Diabetes Investig., 2015, 6(1), 3-15.
[http://dx.doi.org/10.1111/jdi.12255] [PMID: 25621126]
[45]
Bakris, G.L.; Fonseca, V.A.; Sharma, K.; Wright, E.M. Renal sodium–glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int., 2009, 75(12), 1272-1277.
[http://dx.doi.org/10.1038/ki.2009.87] [PMID: 19357717]
[46]
Gronda, E.; Jessup, M.; Iacoviello, M.; Palazzuoli, A.; Napoli, C. Glucose metabolism in the kidney: Neurohormonal activation and heart failure development. J. Am. Heart Assoc., 2020, 9(23), e018889.
[http://dx.doi.org/10.1161/JAHA.120.018889] [PMID: 33190567]
[47]
Gilbert, R.E.; Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int., 1999, 56(5), 1627-1637.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00721.x] [PMID: 10571771]
[48]
Russo, G.T.; De Cosmo, S.; Viazzi, F.; Mirijello, A.; Ceriello, A.; Guida, P.; Giorda, C.; Cucinotta, D.; Pontremoli, R.; Fioretto, P. Diabetic kidney disease in the elderly: prevalence and clinical correlates. BMC Geriatr., 2018, 18(1), 38.
[http://dx.doi.org/10.1186/s12877-018-0732-4] [PMID: 29394888]
[49]
Kanwar, Y.S.; Sun, L.; Xie, P.; Liu, F.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol., 2011, 6(1), 395-423.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092150] [PMID: 21261520]
[50]
Xiong, Y.; Zhou, L. The signaling of cellular senescence in diabetic nephropathy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/7495629] [PMID: 31687085]
[51]
Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol., 2019, 15(6), 327-345.
[http://dx.doi.org/10.1038/s41581-019-0135-6] [PMID: 30894700]
[52]
Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015, 58(3), 443-455.
[http://dx.doi.org/10.1007/s00125-014-3462-y] [PMID: 25481708]
[53]
Siddiqi, F.S.; Majumder, S.; Thai, K.; Abdalla, M.; Hu, P.; Advani, S.L.; White, K.E.; Bowskill, B.B.; Guarna, G.; dos Santos, C.C.; Connelly, K.A.; Advani, A. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J. Am. Soc. Nephrol., 2016, 27(7), 2021-2034.
[http://dx.doi.org/10.1681/ASN.2014090898] [PMID: 26534922]
[54]
Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/1875870] [PMID: 29808088]
[55]
Zhan, M.; Kanwar, Y.S. An enigma: does a high-protein diet accelerate renal damage in humans? Lessons from diabetic animal models. Am. J. Physiol. Renal Physiol., 2020, 318(4), F979-F981.
[http://dx.doi.org/10.1152/ajprenal.00076.2020] [PMID: 32174145]
[56]
Koya, D.; Jirousek, M.R.; Lin, Y.W.; Ishii, H.; Kuboki, K.; King, G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest., 1997, 100(1), 115-126.
[http://dx.doi.org/10.1172/JCI119503] [PMID: 9202063]
[57]
Schena, F.P.; Gesualdo, L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol., 2005, 16(3_suppl_1)(Suppl. 1), S30-S33.
[http://dx.doi.org/10.1681/ASN.2004110970] [PMID: 15938030]
[58]
Grabias, B.M.; Konstantopoulos, K. The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am. J. Physiol. Renal Physiol., 2014, 306(5), F473-F485.
[http://dx.doi.org/10.1152/ajprenal.00503.2013] [PMID: 24352503]
[59]
Coward, R.J.M.; Welsh, G.I.; Yang, J.; Tasman, C.; Lennon, R.; Koziell, A.; Satchell, S.; Holman, G.D.; Kerjaschki, D.; Tavaré, J.M.; Mathieson, P.W.; Saleem, M.A. The human glomerular podocyte is a novel target for insulin action. Diabetes, 2005, 54(11), 3095-3102.
[http://dx.doi.org/10.2337/diabetes.54.11.3095] [PMID: 16249431]
[60]
Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. Involvement of the AMPK–PTEN pathway in insulin resistance induced by high glucose in cultured rat podocytes. Int. J. Biochem. Cell Biol., 2014, 51, 120-130.
[http://dx.doi.org/10.1016/j.biocel.2014.04.008] [PMID: 24747132]
[61]
Piwkowska, A.; Rogacka, D.; Jankowski, M.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun., 2010, 393(2), 268-273.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.119] [PMID: 20123087]
[62]
Rogacka, D.; Piwkowska, A.; Jankowski, M.; Kocbuch, K.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells. J. Cell. Physiol., 2010, 225(2), 577-584.
[http://dx.doi.org/10.1002/jcp.22242] [PMID: 20506529]
[63]
Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp. Cell Res., 2016, 349(2), 328-338.
[http://dx.doi.org/10.1016/j.yexcr.2016.11.005] [PMID: 27836811]
[64]
Welsh, G.I.; Hale, L.J.; Eremina, V.; Jeansson, M.; Maezawa, Y.; Lennon, R.; Pons, D.A.; Owen, R.J.; Satchell, S.C.; Miles, M.J.; Caunt, C.J.; McArdle, C.A.; Pavenstädt, H.; Tavaré, J.M.; Herzenberg, A.M.; Kahn, C.R.; Mathieson, P.W.; Quaggin, S.E.; Saleem, M.A.; Coward, R.J.M. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab., 2010, 12(4), 329-340.
[http://dx.doi.org/10.1016/j.cmet.2010.08.015] [PMID: 20889126]
[65]
Jiang, W.; Xiao, T.; Han, W.; Xiong, J.; He, T.; Liu, Y.; Huang, Y.; Yang, K.; Bi, X.; Xu, X.; Yu, Y.; Li, Y.; Gu, J.; Zhang, J.; Huang, Y.; Zhang, B.; Zhao, J. Klotho inhibits PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy. Mol. Cell. Endocrinol., 2019, 494, 110490.
[http://dx.doi.org/10.1016/j.mce.2019.110490] [PMID: 31207271]
[66]
Liu, L.; Yang, L.; Chang, B.; Zhang, J.; Guo, Y.; Yang, X. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren. Fail., 2018, 40(1), 492-497.
[http://dx.doi.org/10.1080/0886022X.2018.1489287] [PMID: 30200803]
[67]
Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003.
[http://dx.doi.org/10.1080/15548627.2017.1309485] [PMID: 28441075]
[68]
Allen, D.A.; Harwood, S.M.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J., 2003, 17(8), 1-21.
[http://dx.doi.org/10.1096/fj.02-0130fje] [PMID: 12670885]
[69]
Igarashi, M.; Wakasaki, H.; Takahara, N.; Ishii, H.; Jiang, Z.Y.; Yamauchi, T.; Kuboki, K.; Meier, M.; Rhodes, C.J.; King, G.L. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J. Clin. Invest., 1999, 103(2), 185-195.
[http://dx.doi.org/10.1172/JCI3326] [PMID: 9916130]
[70]
Adhikary, L.; Chow, F.; Nikolic-Paterson, D.J.; Stambe, C.; Dowling, J.; Atkins, R.C.; Tesch, G.H. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia, 2004, 47(7), 1210-1222.
[http://dx.doi.org/10.1007/s00125-004-1437-0] [PMID: 15232685]
[71]
Meldrum, K.K.; Meldrum, D.R.; Hile, K.L.; Yerkes, E.B.; Ayala, A.; Cain, M.P.; Rink, R.C.; Casale, A.J.; Kaefer, M.A. p38 MAPK mediates renal tubular cell TNF-α production and TNF-α-dependent apoptosis during simulated ischemia. Am. J. Physiol. Cell Physiol., 2001, 281(2), C563-C570.
[http://dx.doi.org/10.1152/ajpcell.2001.281.2.C563] [PMID: 11443055]
[72]
Zhou, L.; Xu, D.; Sha, W.; Shen, L.; Lu, G.; Yin, X.; Wang, M. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med., 2015, 13(1), 352.
[http://dx.doi.org/10.1186/s12967-015-0710-y] [PMID: 26552447]
[73]
Garagliano, J.M.; Katsurada, A.; Miyata, K.; Derbenev, A.V.; Zsombok, A.; Navar, L.G.; Satou, R. Advanced glycation end products stimulate angiotensinogen production in renal proximal tubular cells. Am. J. Med. Sci., 2019, 357(1), 57-66.
[http://dx.doi.org/10.1016/j.amjms.2018.10.008] [PMID: 30466736]
[74]
Forbes, J.M.; Thallas, V.; Thomas, M.C.; Founds, H.W.; Burns, W.C.; Jerums, G.; Cooper, M.E. The breakdown of pre-existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J., 2003, 17(12), 1762-1764.
[http://dx.doi.org/10.1096/fj.02-1102fje] [PMID: 12958202]
[75]
Curran, C.S.; Kopp, J.B. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front. Med. (Lausanne), 2022, 9, 970423.
[http://dx.doi.org/10.3389/fmed.2022.970423] [PMID: 36017003]
[76]
Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[77]
Zatz, R.; Dunn, B.R.; Meyer, T.W.; Anderson, S.; Rennke, H.G.; Brenner, B.M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest., 1986, 77(6), 1925-1930.
[http://dx.doi.org/10.1172/JCI112521] [PMID: 3011862]
[78]
Hostetter, T.H.; Troy, J.L.; Brenner, B.M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int., 1981, 19(3), 410-415.
[http://dx.doi.org/10.1038/ki.1981.33] [PMID: 7241881]
[79]
Singh, R.; Singh, A.K.; Alavi, N.; Leehey, D.J. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J. Am. Soc. Nephrol., 2003, 14(4), 873-880.
[http://dx.doi.org/10.1097/01.ASN.0000060804.40201.6E] [PMID: 12660321]
[80]
Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens., 2007, 21(1), 20-27.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[81]
Vidotti, D.B.; Casarini, D.E.; Cristovam, P.C.; Leite, C.A.; Schor, N.; Boim, M.A. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am. J. Physiol. Renal Physiol., 2004, 286(6), F1039-F1045.
[http://dx.doi.org/10.1152/ajprenal.00371.2003] [PMID: 14722017]
[82]
Satirapoj, B. Nephropathy in diabetes. Adv. Exp. Med. Biol., 2013, 771, 107-122.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_11] [PMID: 23393675]
[83]
He, W.; Miao, F.J.P.; Lin, D.C.H.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004, 429(6988), 188-193.
[http://dx.doi.org/10.1038/nature02488] [PMID: 15141213]
[84]
Vallon, V.; Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol., 2011, 1(3), 1175-1232.
[http://dx.doi.org/10.1002/cphy.c100049] [PMID: 23733640]
[85]
Vallon, V.; Blantz, R.C.; Thomson, S. Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol., 2003, 14(2), 530-537.
[http://dx.doi.org/10.1097/01.ASN.0000051700.07403.27] [PMID: 12538755]
[86]
Abbate, M.; Remuzzi, G. Proteinuria as a mediator of tubulointerstitial injury. Kidney Blood Press. Res., 1999, 22(1-2), 37-46.
[http://dx.doi.org/10.1159/000025907] [PMID: 10352406]
[87]
Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454.
[http://dx.doi.org/10.2337/db08-0057] [PMID: 18511445]
[88]
Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55(1), 225-233.
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0894] [PMID: 16380497]
[89]
Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269.
[http://dx.doi.org/10.2174/092986710793348581] [PMID: 20939814]
[90]
Kumar, S.; Kim, Y.R.; Vikram, A.; Naqvi, A.; Li, Q.; Kassan, M.; Kumar, V.; Bachschmid, M.M.; Jacobs, J.S.; Kumar, A.; Irani, K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1714-1719.
[http://dx.doi.org/10.1073/pnas.1614112114] [PMID: 28137876]
[91]
Lee, E.A.; Seo, J.Y.; Jiang, Z.; Yu, M.R.; Kwon, M.K.; Ha, H.; Lee, H.B. Reactive oxygen species mediate high glucose–induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int., 2005, 67(5), 1762-1771.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00274.x] [PMID: 15840023]
[92]
Zhan, M.; Brooks, C.; Liu, F.; Sun, L.; Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int., 2013, 83(4), 568-581.
[http://dx.doi.org/10.1038/ki.2012.441] [PMID: 23325082]
[93]
Zhan, M.; Usman, I.; Yu, J.; Ruan, L.; Bian, X.; Yang, J.; Yang, S.; Sun, L.; Kanwar, Y.S. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clin. Sci. (Lond.), 2018, 132(12), 1297-1314.
[http://dx.doi.org/10.1042/CS20180005] [PMID: 29760122]
[94]
Zhan, M.; Usman, I.M.; Sun, L.; Kanwar, Y.S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol., 2015, 26(6), 1304-1321.
[http://dx.doi.org/10.1681/ASN.2014050457] [PMID: 25270067]
[95]
Goldfine, A.B.; Shoelson, S.E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest., 2017, 127(1), 83-93.
[http://dx.doi.org/10.1172/JCI88884] [PMID: 28045401]
[96]
Zhang, H.; Nair, V.; Saha, J.; Atkins, K.B.; Hodgin, J.B.; Saunders, T.L.; Myers, M.G., Jr; Werner, T.; Kretzler, M.; Brosius, F.C. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int., 2017, 92(4), 909-921.
[http://dx.doi.org/10.1016/j.kint.2017.03.027] [PMID: 28554737]
[97]
Toth-Manikowski, S.; Atta, M.G. Diabetic kidney disease: Pathophysiology and therapeutic targets. J. Diabetes Res., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/697010] [PMID: 26064987]
[98]
García-García, P.M.; Getino-Melián, M.A.; Domínguez-Pimentel, V.; Navarro-González, J.F. Inflammation in diabetic kidney disease. World J. Diabetes, 2014, 5(4), 431-443.
[http://dx.doi.org/10.4239/wjd.v5.i4.431] [PMID: 25126391]
[99]
Donate-Correa, J.; Martín-Núñez, E.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic nephropathy. J. Diabetes Res., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/948417] [PMID: 25785280]
[100]
Weigert, C.; Sauer, U.; Brodbeck, K.; Pfeiffer, A.; Häring, H.U.; Schleicher, E.D. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J. Am. Soc. Nephrol., 2000, 11(11), 2007-2016.
[http://dx.doi.org/10.1681/ASN.V11112007] [PMID: 11053476]
[101]
Gruden, G.; Zonca, S.; Hayward, A.; Thomas, S.; Maestrini, S.; Gnudi, L.; Viberti, G.C. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes, 2000, 49(4), 655-661.
[http://dx.doi.org/10.2337/diabetes.49.4.655] [PMID: 10871205]
[102]
Wada, J.; Makino, H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol., 2016, 12(1), 13-26.
[http://dx.doi.org/10.1038/nrneph.2015.175] [PMID: 26568190]
[103]
Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol., 2020, 16(4), 206-222.
[http://dx.doi.org/10.1038/s41581-019-0234-4] [PMID: 31942046]
[104]
Hong, J.N.; Li, W.W.; Wang, L.L.; Guo, H.; Jiang, Y.; Gao, Y.J.; Tu, P.F.; Wang, X.M. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice. Chin. Med., 2017, 12(1), 13.
[http://dx.doi.org/10.1186/s13020-017-0134-0] [PMID: 28529539]
[105]
Fu, J.; Akat, K.M.; Sun, Z.; Zhang, W.; Schlondorff, D.; Liu, Z.; Tuschl, T.; Lee, K.; He, J.C. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J. Am. Soc. Nephrol., 2019, 30(4), 533-545.
[http://dx.doi.org/10.1681/ASN.2018090896] [PMID: 30846559]
[106]
Wang, X.; Yao, B.; Wang, Y.; Fan, X.; Wang, S.; Niu, A.; Yang, H.; Fogo, A.; Zhang, M.Z.; Harris, R.C. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes, 2017, 66(2), 494-504.
[http://dx.doi.org/10.2337/db16-0773] [PMID: 27815317]
[107]
Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. Pentraxin-3 attenuates renal damage in diabetic nephropathy by promoting M2 macrophage differentiation. Inflammation, 2015, 38(5), 1739-1747.
[http://dx.doi.org/10.1007/s10753-015-0151-z] [PMID: 25761429]
[108]
Tang, P.M.K.; Zhang, Y.; Xiao, J.; Tang, P.C.T.; Chung, J.Y.F.; Li, J.; Xue, V.W.; Huang, X.R.; Chong, C.C.N.; Ng, C.F.; Lee, T.L.; To, K.F.; Nikolic-Paterson, D.J.; Lan, H.Y. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage–myofibroblast transition. Proc. Natl. Acad. Sci. USA, 2020, 117(34), 20741-20752.
[http://dx.doi.org/10.1073/pnas.1917663117] [PMID: 32788346]
[109]
Tang, P.M.K.; Nikolic-Paterson, D.J.; Lan, H.Y. Macrophages: Versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol., 2019, 15(3), 144-158.
[http://dx.doi.org/10.1038/s41581-019-0110-2] [PMID: 30692665]
[110]
Awad, A.S.; You, H.; Gao, T.; Cooper, T.K.; Nedospasov, S.A.; Vacher, J.; Wilkinson, P.F.; Farrell, F.X.; Brian Reeves, W. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int., 2015, 88(4), 722-733.
[http://dx.doi.org/10.1038/ki.2015.162] [PMID: 26061548]
[111]
Moriwaki, Y.; Inokuchi, T.; Yamamoto, A.; Ka, T.; Tsutsumi, Z.; Takahashi, S.; Yamamoto, T. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol., 2007, 44(4), 215-218.
[http://dx.doi.org/10.1007/s00592-007-0007-6] [PMID: 17767370]
[112]
Pavkov, M.E.; Weil, E.J.; Fufaa, G.D.; Nelson, R.G.; Lemley, K.V.; Knowler, W.C.; Niewczas, M.A.; Krolewski, A.S. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int., 2016, 89(1), 226-234.
[http://dx.doi.org/10.1038/ki.2015.278] [PMID: 26398493]
[113]
Huang, K.; Huang, J.; Xie, X.; Wang, S.; Chen, C.; Shen, X.; Liu, P.; Huang, H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med., 2013, 65, 528-540.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.029] [PMID: 23891678]
[114]
Chen, Y.; Liang, Y.; Hu, T.; Wei, R.; Cai, C.; Wang, P.; Wang, L.; Qiao, W.; Feng, L. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med., 2017, 14(5), 4181-4193.
[http://dx.doi.org/10.3892/etm.2017.5098] [PMID: 29104634]
[115]
Shao, Y.; Lv, C.; Wu, C.; Zhou, Y.; Wang, Q. Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway. Diabetes Metab. Res. Rev., 2016, 32(6), 534-543.
[http://dx.doi.org/10.1002/dmrr.2788] [PMID: 26891083]
[116]
Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 139-152.
[http://dx.doi.org/10.1042/CS20120198] [PMID: 23075333]
[117]
Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[118]
Alicic, R.Z.; Johnson, E.J.; Tuttle, K.R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis., 2018, 25(2), 181-191.
[http://dx.doi.org/10.1053/j.ackd.2017.12.002] [PMID: 29580582]
[119]
Wada, T.; Furuichi, K.; Sakai, N.; Iwata, Y.; Yoshimoto, K.; Shimizu, M.; Takeda, S.I.; Takasawa, K.; Yoshimura, M.; Kida, H.; Kobayashi, K.I.; Mukaida, N.; Naito, T.; Matsushima, K.; Yokoyama, H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int., 2000, 58(4), 1492-1499.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00311.x] [PMID: 11012884]
[120]
Guzik, T.J.; Harrison, D.G. Endothelial NF-kappaB as a mediator of kidney damage: the missing link between systemic vascular and renal disease? Circ. Res., 2007, 101(3), 227-229.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158295] [PMID: 17673681]
[121]
Tang, P.M.K.; Zhang, Y.Y.; Hung, J.S.C.; Chung, J.Y.F.; Huang, X.R.; To, K.F.; Lan, H.Y. DPP4/CD32b/NF-κB circuit: A novel druggable target for inhibiting crp-driven diabetic nephropathy. Mol. Ther., 2021, 29(1), 365-375.
[http://dx.doi.org/10.1016/j.ymthe.2020.08.017] [PMID: 32956626]
[122]
Wang, W.J.; Cai, G.Y.; Chen, X.M. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget, 2017, 8(38), 64520-64533.
[http://dx.doi.org/10.18632/oncotarget.17327] [PMID: 28969091]
[123]
Prattichizzo, F.; De Nigris, V.; Mancuso, E.; Spiga, R.; Giuliani, A.; Matacchione, G.; Lazzarini, R.; Marcheselli, F.; Recchioni, R.; Testa, R.; La Sala, L.; Rippo, M.R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol., 2018, 15, 170-181.
[http://dx.doi.org/10.1016/j.redox.2017.12.001] [PMID: 29253812]
[124]
Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972.
[http://dx.doi.org/10.1172/JCI64098] [PMID: 23454759]
[125]
Ovadya, Y.; Krizhanovsky, V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014, 15(6), 627-642.
[http://dx.doi.org/10.1007/s10522-014-9529-9] [PMID: 25217383]
[126]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[127]
Ohashi, S.; Abe, H.; Takahashi, T.; Yamamoto, Y.; Takeuchi, M.; Arai, H.; Nagata, K.; Kita, T.; Okamoto, H.; Yamamoto, H.; Doi, T. Advanced glycation end products increase collagen-specific chaperone protein in mouse diabetic nephropathy. J. Biol. Chem., 2004, 279(19), 19816-19823.
[http://dx.doi.org/10.1074/jbc.M310428200] [PMID: 15004023]
[128]
Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol Med, 2015(1), S32-S40.
[http://dx.doi.org/10.2119/molmed.2015.00067] [PMID: 26605646]
[129]
Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ. Cardiovasc. Genet., 2015, 8(1), 150-158.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000671] [PMID: 25472959]
[130]
Chung, H.Y.; Sung, B.; Jung, K.J.; Zou, Y.; Yu, B.P. The molecular inflammatory process in aging. Antioxid. Redox Signal., 2006, 8(3-4), 572-581.
[http://dx.doi.org/10.1089/ars.2006.8.572] [PMID: 16677101]
[131]
Stenvinkel, P.; Larsson, T.E. Chronic kidney disease: A clinical model of premature aging. Am. J. Kidney Dis., 2013, 62(2), 339-351.
[http://dx.doi.org/10.1053/j.ajkd.2012.11.051] [PMID: 23357108]
[132]
Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[133]
Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380.
[http://dx.doi.org/10.1038/sj.emboj.7600244] [PMID: 15152190]
[134]
Satoh, A.; Brace, C.S.; Rensing, N.; Cliften, P.; Wozniak, D.F.; Herzog, E.D.; Yamada, K.A.; Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab., 2013, 18(3), 416-430.
[http://dx.doi.org/10.1016/j.cmet.2013.07.013] [PMID: 24011076]
[135]
Zhao, Y.; Banerjee, S.; Dey, N.; LeJeune, W.S.; Sarkar, P.S.; Brobey, R.; Rosenblatt, K.P.; Tilton, R.G.; Choudhary, S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes, 2011, 60(7), 1907-1916.
[http://dx.doi.org/10.2337/db10-1262] [PMID: 21593200]
[136]
O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal aging: Causes and consequences. J. Am. Soc. Nephrol., 2017, 28(2), 407-420.
[http://dx.doi.org/10.1681/ASN.2015121308] [PMID: 28143966]
[137]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[138]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[139]
Ding, Y.; Kim, S.; Lee, S.Y.; Koo, J.K.; Wang, Z.; Choi, M.E. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol., 2014, 25(12), 2835-2846.
[http://dx.doi.org/10.1681/ASN.2013101068] [PMID: 24854279]
[140]
Condon, K.J.; Sabatini, D.M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci., 2019, 132(21), jcs222570.
[http://dx.doi.org/10.1242/jcs.222570] [PMID: 31722960]
[141]
Li, Y.; Chen, Y. AMPK and autophagy. Adv. Exp. Med. Biol., 2019, 1206, 85-108.
[http://dx.doi.org/10.1007/978-981-15-0602-4_4] [PMID: 31776981]
[142]
Fang, L.; Zhou, Y.; Cao, H.; Wen, P.; Jiang, L.; He, W.; Dai, C.; Yang, J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One, 2013, 8(4), e60546.
[http://dx.doi.org/10.1371/journal.pone.0060546] [PMID: 23593240]
[143]
Catrina, S.B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia, 2021, 64(4), 709-716.
[http://dx.doi.org/10.1007/s00125-021-05380-z] [PMID: 33496820]
[144]
Yeo, E.J. Hypoxia and aging. Exp. Mol. Med., 2019, 51(6), 1-15.
[PMID: 31221957]
[145]
Yamamoto, T.; Takabatake, Y.; Kimura, T.; Takahashi, A.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.; Matsui, I.; Kitamura, H.; Matsusaka, T.; Niimura, F.; Yanagita, M.; Isaka, Y.; Rakugi, H. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy, 2016, 12(5), 801-813.
[http://dx.doi.org/10.1080/15548627.2016.1159376] [PMID: 26986194]
[146]
Jiang, N.; Zhao, H.; Han, Y.; Li, L.; Xiong, S.; Zeng, L.; Xiao, Y.; Wei, L.; Xiong, X.; Gao, P.; Yang, M.; Liu, Y.; Sun, L. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1–mediated control of mitochondrial dynamics. Cell Prolif., 2020, 53(11), e12909.
[http://dx.doi.org/10.1111/cpr.12909] [PMID: 32975326]
[147]
Bellot, G.; Garcia-Medina, R.; Gounon, P.; Chiche, J.; Roux, D.; Pouysségur, J.; Mazure, N.M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 2009, 29(10), 2570-2581.
[http://dx.doi.org/10.1128/MCB.00166-09] [PMID: 19273585]
[148]
Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[149]
Liu, W.J.; Huang, W.F.; Ye, L.; Chen, R.H.; Yang, C.; Wu, H.L.; Pan, Q.J.; Liu, H.F. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3182-3189. [PMID:29863264].
[PMID: 29863264]
[150]
Naguib, M.; Rashed, L.A. Serum level of the autophagy biomarker Beclin-1 in patients with diabetic kidney disease. Diabetes Res. Clin. Pract., 2018, 143, 56-61.
[http://dx.doi.org/10.1016/j.diabres.2018.06.022] [PMID: 29959950]
[151]
Shiels, P.G.; McGuinness, D.; Eriksson, M.; Kooman, J.P.; Stenvinkel, P. The role of epigenetics in renal ageing. Nat. Rev. Nephrol., 2017, 13(8), 471-482.
[http://dx.doi.org/10.1038/nrneph.2017.78] [PMID: 28626222]
[152]
Sugita, E.; Hayashi, K.; Hishikawa, A.; Itoh, H. Epigenetic alterations in podocytes in diabetic nephropathy. Front. Pharmacol., 2021, 12, 759299.
[http://dx.doi.org/10.3389/fphar.2021.759299] [PMID: 34630127]
[153]
Hayashi, K.; Sasamura, H.; Nakamura, M.; Sakamaki, Y.; Azegami, T.; Oguchi, H.; Tokuyama, H.; Wakino, S.; Hayashi, K.; Itoh, H. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int., 2015, 88(4), 745-753.
[http://dx.doi.org/10.1038/ki.2015.178] [PMID: 26108068]
[154]
Wan, F.; Tang, Y.W.; Tang, X.L.; Li, Y.Y.; Yang, R.C. TET2 mediated demethylation is involved in the protective effect of triptolide on podocytes. Am. J. Transl. Res., 2021, 13(3), 1233-1244.
[PMID: 33841652]
[155]
Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504.
[http://dx.doi.org/10.1038/nm.3363] [PMID: 24141423]
[156]
Young, G.H.; Wu, V.C. Klotho methylation is linked to uremic toxins and chronic kidney disease. Kidney Int., 2012, 81(7), 611-612.
[http://dx.doi.org/10.1038/ki.2011.461] [PMID: 22419041]
[157]
Verzola, D.; Gandolfo, M.T.; Gaetani, G.; Ferraris, A.; Mangerini, R.; Ferrario, F.; Villaggio, B.; Gianiorio, F.; Tosetti, F.; Weiss, U.; Traverso, P.; Mji, M.; Deferrari, G.; Garibotto, G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1563-F1573.
[http://dx.doi.org/10.1152/ajprenal.90302.2008] [PMID: 18768588]
[158]
Westhoff, J.H.; Schildhorn, C.; Jacobi, C.; Hömme, M.; Hartner, A.; Braun, H.; Kryzer, C.; Wang, C.; von Zglinicki, T.; Kränzlin, B.; Gretz, N.; Melk, A. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol., 2010, 21(2), 327-336.
[http://dx.doi.org/10.1681/ASN.2009010072] [PMID: 19959722]
[159]
Cheng, H.; Fan, X.; Lawson, W.E.; Paueksakon, P.; Harris, R.C. Telomerase deficiency delays renal recovery in mice after ischemia–reperfusion injury by impairing autophagy. Kidney Int., 2015, 88(1), 85-94.
[http://dx.doi.org/10.1038/ki.2015.69] [PMID: 25760322]
[160]
Sharma, K.; Karl, B.; Mathew, A.V.; Gangoiti, J.A.; Wassel, C.L.; Saito, R.; Pu, M.; Sharma, S.; You, Y.H.; Wang, L.; Diamond-Stanic, M.; Lindenmeyer, M.T.; Forsblom, C.; Wu, W.; Ix, J.H.; Ideker, T.; Kopp, J.B.; Nigam, S.K.; Cohen, C.D.; Groop, P.H.; Barshop, B.A.; Natarajan, L.; Nyhan, W.L.; Naviaux, R.K. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol., 2013, 24(11), 1901-1912.
[http://dx.doi.org/10.1681/ASN.2013020126] [PMID: 23949796]
[161]
Wauer, T.; Simicek, M.; Schubert, A.; Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature, 2015, 524(7565), 370-374.
[http://dx.doi.org/10.1038/nature14879] [PMID: 26161729]
[162]
Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524(7565), 309-314.
[http://dx.doi.org/10.1038/nature14893] [PMID: 26266977]
[163]
Chen, K.; Dai, H.; Yuan, J.; Chen, J.; Lin, L.; Zhang, W.; Wang, L.; Zhang, J.; Li, K.; He, Y. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis., 2018, 9(2), 105.
[http://dx.doi.org/10.1038/s41419-017-0127-z] [PMID: 29367621]
[164]
Sun, C.Y.; Cheng, M.L.; Pan, H.C.; Lee, J.H.; Lee, C.C. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget, 2017, 8(44), 77722-77733.
[http://dx.doi.org/10.18632/oncotarget.20773] [PMID: 29100420]
[165]
Shimizu, H.; Bolati, D.; Adijiang, A.; Enomoto, A.; Nishijima, F.; Dateki, M.; Niwa, T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol., 2010, 299(5), C1110-C1117.
[http://dx.doi.org/10.1152/ajpcell.00217.2010] [PMID: 20720180]
[166]
Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med., 2013, 60, 1-4.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.011] [PMID: 23434764]
[167]
Böger, R.H.; Bode-Böger, S.M.; Szuba, A.; Tsao, P.S.; Chan, J.R.; Tangphao, O.; Blaschke, T.F.; Cooke, J.P. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation, 1998, 98(18), 1842-1847.
[http://dx.doi.org/10.1161/01.CIR.98.18.1842] [PMID: 9799202]
[168]
Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev., 1998, 78(2), 547-581.
[http://dx.doi.org/10.1152/physrev.1998.78.2.547] [PMID: 9562038]
[169]
Pérez-Gallardo, R.V.; Noriega-Cisneros, R.; Esquivel-Gutiérrez, E.; Calderón-Cortés, E.; Cortés-Rojo, C.; Manzo-Avalos, S.; Campos-García, J.; Salgado-Garciglia, R.; Montoya-Pérez, R.; Boldogh, I.; Saavedra-Molina, A. Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J. Bioenerg. Biomembr., 2014, 46(6), 511-518.
[http://dx.doi.org/10.1007/s10863-014-9594-4] [PMID: 25425473]
[170]
Lieber, M.R.; Karanjawala, Z.E. Ageing, repetitive genomes and DNA damage. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 69-75.
[http://dx.doi.org/10.1038/nrm1281] [PMID: 14708011]
[171]
Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein klotho. Mol. Membr. Biol., 2013, 30(8), 369-385.
[http://dx.doi.org/10.3109/09687688.2013.837518] [PMID: 24124751]
[172]
Kim, J.H.; Hwang, K.H.; Park, K.S.; Kong, I.D.; Cha, S.K. Biological role of anti-aging protein klotho. J. Lifestyle Med., 2015, 5(1), 1-6.
[http://dx.doi.org/10.15280/jlm.2015.5.1.1] [PMID: 26528423]
[173]
Drew, D.A.; Katz, R.; Kritchevsky, S.; Ix, J.; Shlipak, M.; Gutiérrez, O.M.; Newman, A.; Hoofnagle, A.; Fried, L.; Semba, R.D.; Sarnak, M. Association between soluble klotho and change in kidney function: The health aging and body composition study. J. Am. Soc. Nephrol., 2017, 28(6), 1859-1866.
[http://dx.doi.org/10.1681/ASN.2016080828] [PMID: 28104822]
[174]
Xu, Y.; Sun, Z. Molecular basis of klotho: From gene to function in aging. Endocr. Rev., 2015, 36(2), 174-193.
[http://dx.doi.org/10.1210/er.2013-1079] [PMID: 25695404]
[175]
Ohnishi, M.; Razzaque, M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J., 2010, 24(9), 3562-3571.
[http://dx.doi.org/10.1096/fj.09-152488] [PMID: 20418498]
[176]
Asai, O.; Nakatani, K.; Tanaka, T.; Sakan, H.; Imura, A.; Yoshimoto, S.; Samejima, K.; Yamaguchi, Y.; Matsui, M.; Akai, Y.; Konishi, N.; Iwano, M.; Nabeshima, Y.; Saito, Y. Decreased renal α-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int., 2012, 81(6), 539-547.
[http://dx.doi.org/10.1038/ki.2011.423] [PMID: 22217880]
[177]
Miao, J.; Huang, J.; Luo, C.; Ye, H.; Ling, X.; Wu, Q.; Shen, W.; Zhou, L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol. Rep., 2021, 9(2), e14696.
[http://dx.doi.org/10.14814/phy2.14696] [PMID: 33463897]
[178]
Zhou, D.; Tan, R.J.; Fu, H.; Liu, Y. Wnt/β-catenin signaling in kidney injury and repair: A double-edged sword. Lab. Invest., 2016, 96(2), 156-167.
[http://dx.doi.org/10.1038/labinvest.2015.153] [PMID: 26692289]
[179]
He, W.; Dai, C.; Li, Y.; Zeng, G.; Monga, S.P.; Liu, Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol., 2009, 20(4), 765-776.
[http://dx.doi.org/10.1681/ASN.2008060566] [PMID: 19297557]
[180]
Zhou, L.; Li, Y.; Hao, S.; Zhou, D.; Tan, R.J.; Nie, J.; Hou, F.F.; Kahn, M.; Liu, Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol., 2015, 26(1), 107-120.
[http://dx.doi.org/10.1681/ASN.2014010085] [PMID: 25012166]
[181]
Luo, C.; Zhou, S.; Zhou, Z.; Liu, Y.; Yang, L.; Liu, J.; Zhang, Y.; Li, H.; Liu, Y.; Hou, F.F.; Zhou, L. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol., 2018, 29(4), 1238-1256.
[http://dx.doi.org/10.1681/ASN.2017050574] [PMID: 29440280]
[182]
Kitada, M.; Kume, S.; Takeda-Watanabe, A.; Kanasaki, K.; Koya, D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 153-164.
[http://dx.doi.org/10.1042/CS20120190] [PMID: 23075334]
[183]
Ogura, Y.; Kitada, M.; Koya, D. Sirtuins and renal oxidative stress. Antioxidants, 2021, 10(8), 1198.
[http://dx.doi.org/10.3390/antiox10081198] [PMID: 34439446]
[184]
Tanaka, Y.; Kume, S.; Kitada, M.; Kanasaki, K.; Uzu, T.; Maegawa, H.; Koya, D. Autophagy as a therapeutic target in diabetic nephropathy. Exp. Diabetes Res., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/628978] [PMID: 22028701]
[185]
Chuang, P.Y.; Cai, W.; Li, X.; Fang, L.; Xu, J.; Yacoub, R.; He, J.C.; Lee, K. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol., 2017, 313(3), F621-F628.
[http://dx.doi.org/10.1152/ajprenal.00255.2017] [PMID: 28615249]
[186]
Kume, S.; Kitada, M.; Kanasaki, K.; Maegawa, H.; Koya, D. Anti-aging molecule, Sirt1: A novel therapeutic target for diabetic nephropathy. Arch. Pharm. Res., 2013, 36(2), 230-236.
[http://dx.doi.org/10.1007/s12272-013-0019-4] [PMID: 23361587]
[187]
Ledford, H. Sirtuin protein linked to longevity in mammals. Nature, 2012.
[http://dx.doi.org/10.1038/nature.2012.10074]
[188]
Someya, S.; Yu, W.; Hallows, W.C.; Xu, J.; Vann, J.M.; Leeuwenburgh, C.; Tanokura, M.; Denu, J.M.; Prolla, T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010, 143(5), 802-812.
[http://dx.doi.org/10.1016/j.cell.2010.10.002] [PMID: 21094524]
[189]
Cai, J.; Liu, Z.; Huang, X.; Shu, S.; Hu, X.; Zheng, M.; Tang, C.; Liu, Y.; Chen, G.; Sun, L.; Liu, H.; Liu, F.; Cheng, J.; Dong, Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int., 2020, 97(1), 106-118.
[http://dx.doi.org/10.1016/j.kint.2019.08.028] [PMID: 31787254]
[190]
Bonafè, M.; Sabbatinelli, J.; Olivieri, F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res. Rev., 2020, 59, 101027.
[http://dx.doi.org/10.1016/j.arr.2020.101027] [PMID: 32068123]
[191]
Tennen, R.I.; Chua, K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci., 2011, 36(1), 39-46.
[http://dx.doi.org/10.1016/j.tibs.2010.07.009] [PMID: 20729089]
[192]
Ji, L.; Chen, Y.; Wang, H.; Zhang, W.; He, L.; Wu, J.; Liu, Y. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int. J. Oncol., 2019, 55(1), 103-115.
[http://dx.doi.org/10.3892/ijo.2019.4800] [PMID: 31115579]
[193]
Hasegawa, K.; Wakino, S.; Yoshioka, K.; Tatematsu, S.; Hara, Y.; Minakuchi, H.; Washida, N.; Tokuyama, H.; Hayashi, K.; Itoh, H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun., 2008, 372(1), 51-56.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.176] [PMID: 18485895]
[194]
Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 367-377.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[195]
Ryan, A.S. Insulin resistance with aging: Effects of diet and exercise. Sports Med., 2000, 30(5), 327-346.
[http://dx.doi.org/10.2165/00007256-200030050-00002] [PMID: 11103847]
[196]
Engfeldt, P.; Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl., 1988, 19, 26-29.
[PMID: 3069692]
[197]
Han, L.L.; Bai, X.J.; Lin, H.L.; Sun, X.F.; Chen, X.M. Association between kidney and cardiac diastolic function in Chinese subjects without overt disease: Correlation with ageing and inflammatory markers. Eur. J. Clin. Invest., 2011, 41(10), 1077-1086.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02503.x] [PMID: 21413979]
[198]
Matoba, K.; Takeda, Y.; Nagai, Y.; Kawanami, D.; Utsunomiya, K.; Nishimura, R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(14), 3393.
[http://dx.doi.org/10.3390/ijms20143393] [PMID: 31295940]
[199]
Satirapoj, B.; Dispan, R.; Radinahamed, P.; Kitiyakara, C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol., 2018, 19(1), 246.
[http://dx.doi.org/10.1186/s12882-018-1043-x] [PMID: 30241508]
[200]
Yang, X.; Liu, S.; Zhang, R.; Sun, B.; Zhou, S.; Chen, R.; Yu, P. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease. J. Diabetes Investig., 2018, 9(3), 602-609.
[http://dx.doi.org/10.1111/jdi.12753] [PMID: 28940849]
[201]
Wu, C.; Wang, Q.; Lv, C.; Qin, N.; Lei, S.; Yuan, Q.; Wang, G. The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin. Diabetes Res. Clin. Pract., 2014, 106(2), 343-350.
[http://dx.doi.org/10.1016/j.diabres.2014.08.026] [PMID: 25263500]
[202]
Fountoulakis, N.; Maltese, G.; Gnudi, L.; Karalliedde, J. Reduced levels of anti-ageing hormone klotho predict renal function decline in type 2 diabetes. J. Clin. Endocrinol. Metab., 2018, 103(5), 2026-2032.
[http://dx.doi.org/10.1210/jc.2018-00004] [PMID: 29509906]
[203]
Ruggenenti, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Petrov Iliev, I.; Pisanu, G.; Perna, A.; Russo, A.; Diadei, O.; Martinetti, D.; Cannata, A.; Carrara, F.; Ferrari, S.; Stucchi, N.; Remuzzi, G.; Fontana, L. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: A randomized controlled trial. Diabetes, 2017, 66(1), 75-86.
[http://dx.doi.org/10.2337/db16-0607] [PMID: 27634224]
[204]
Chu, S.H.; Yang, D.; Wang, Y.; Yang, R.; Qu, L.; Zeng, H. Effect of resveratrol on the repair of kidney and brain injuries and its regulation on klotho gene in d-galactose-induced aging mice. Bioorg. Med. Chem. Lett., 2021, 40, 127913.
[http://dx.doi.org/10.1016/j.bmcl.2021.127913] [PMID: 33705905]
[205]
Fouque, D.; Pelletier, S.; Mafra, D.; Chauveau, P. Nutrition and chronic kidney disease. Kidney Int., 2011, 80(4), 348-357.
[http://dx.doi.org/10.1038/ki.2011.118] [PMID: 21562470]
[206]
Kume, S.; Koya, D. Autophagy: A novel therapeutic target for diabetic nephropathy. Diabetes Metab. J., 2015, 39(6), 451-460.
[http://dx.doi.org/10.4093/dmj.2015.39.6.451] [PMID: 26706914]
[207]
Liu, C.; Liu, H.; Fang, Y.; Jiang, S.; Zhu, J.; Ding, X. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction. Clin. Invest. Med., 2014, 37(3), 142.
[http://dx.doi.org/10.25011/cim.v37i3.21381] [PMID: 24895989]
[208]
Liu, Y. Rapamycin and chronic kidney disease: Beyond the inhibition of inflammation. Kidney Int., 2006, 69(11), 1925-1927.
[http://dx.doi.org/10.1038/sj.ki.5001543] [PMID: 16724087]
[209]
Houde, V.P.; Brûlé, S.; Festuccia, W.T.; Blanchard, P.G.; Bellmann, K.; Deshaies, Y.; Marette, A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 2010, 59(6), 1338-1348.
[http://dx.doi.org/10.2337/db09-1324] [PMID: 20299475]
[210]
You, H.; Gao, T.; Cooper, T.K.; Brian Reeves, W.; Awad, A.S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol., 2013, 305(12), F1719-F1727.
[http://dx.doi.org/10.1152/ajprenal.00141.2013] [PMID: 24173355]
[211]
Sharma, D.; Bhattacharya, P.; Kalia, K.; Tiwari, V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res. Clin. Pract., 2017, 128, 91-108.
[http://dx.doi.org/10.1016/j.diabres.2017.04.010] [PMID: 28453961]
[212]
Bolignano, D.; Cernaro, V.; Gembillo, G.; Baggetta, R.; Buemi, M.; D’Arrigo, G. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS One, 2017, 12(6), e0178699.
[http://dx.doi.org/10.1371/journal.pone.0178699] [PMID: 28570649]
[213]
Zhao, Y.; Zhang, W.; Jia, Q.; Feng, Z.; Guo, J.; Han, X.; Liu, Y.; Shang, H.; Wang, Y.; Liu, W.J. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Front. Physiol., 2019, 9, 1939.
[http://dx.doi.org/10.3389/fphys.2018.01939] [PMID: 30719008]
[214]
Aghadavod, E.; Soleimani, A.; Hamidi, G.; Keneshlou, F.; Heidari, A.; Asemi, Z. Effects of high-dose vitamin E supplementation on markers of cardiometabolic risk and oxidative stress in patients with diabetic nephropathy: A randomized double-blinded controlled trial. Iran. J. Kidney Dis., 2018, 12(3), 156-162.
[PMID: 29891745]
[215]
Wu, C.; Qin, N.; Ren, H.; Yang, M.; Liu, S.; Wang, Q. Metformin regulating mir-34a pathway to inhibit egr1 in rat mesangial cells cultured with high glucose. Int. J. Endocrinol., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/6462793] [PMID: 29681936]
[216]
Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med., 2019, 380(24), 2295-2306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[217]
Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204.
[http://dx.doi.org/10.1152/ajprenal.00520.2013] [PMID: 24226524]
[218]
Jayarathne, H.S.M.; Debarba, L.K.; Jaboro, J.J.; Ginsburg, B.C.; Miller, R.A.; Sadagurski, M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell, 2022, 21(7), e13653.
[http://dx.doi.org/10.1111/acel.13653] [PMID: 35707855]
[219]
Miller, R.A.; Harrison, D.E.; Allison, D.B.; Bogue, M.; Debarba, L.; Diaz, V.; Fernandez, E.; Galecki, A.; Garvey, W.T.; Jayarathne, H.; Kumar, N.; Javors, M.A.; Ladiges, W.C.; Macchiarini, F.; Nelson, J.; Reifsnyder, P.; Rosenthal, N.A.; Sadagurski, M.; Salmon, A.B.; Smith, D.L., Jr; Snyder, J.M.; Lombard, D.B.; Strong, R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5(21), e140019.
[http://dx.doi.org/10.1172/jci.insight.140019] [PMID: 32990681]
[220]
Snyder, J.M.; Casey, K.M.; Galecki, A.; Harrison, D.E.; Jayarathne, H.; Kumar, N.; Macchiarini, F.; Rosenthal, N.; Sadagurski, M.; Salmon, A.B.; Strong, R.; Miller, R.A.; Ladiges, W. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice. Geroscience, 2023, 45(1), 385-397.
[http://dx.doi.org/10.1007/s11357-022-00641-0] [PMID: 35974129]
[221]
Kröller-Schön, S.; Knorr, M.; Hausding, M.; Oelze, M.; Schuff, A.; Schell, R.; Sudowe, S.; Scholz, A.; Daub, S.; Karbach, S.; Kossmann, S.; Gori, T.; Wenzel, P.; Schulz, E.; Grabbe, S.; Klein, T.; Münzel, T.; Daiber, A. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc. Res., 2012, 96(1), 140-149.
[http://dx.doi.org/10.1093/cvr/cvs246] [PMID: 22843705]
[222]
Rodríguez-Iturbe, B.; Quiroz, Y.; Shahkarami, A.; Li, Z.; Vaziri, N.D. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int., 2005, 68(3), 1041-1047.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00496.x] [PMID: 16105034]
[223]
Kawahara, T.L.A.; Michishita, E.; Adler, A.S.; Damian, M.; Berber, E.; Lin, M.; McCord, R.A.; Ongaigui, K.C.L.; Boxer, L.D.; Chang, H.Y.; Chua, K.F. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell, 2009, 136(1), 62-74.
[http://dx.doi.org/10.1016/j.cell.2008.10.052] [PMID: 19135889]
[224]
Han, S.J.; Kim, H.J.; Kim, D.J.; Sheen, S.S.; Chung, C.H.; Ahn, C.W.; Kim, S.H.; Cho, Y.W.; Park, S.W.; Kim, S.K.; Kim, C.S.; Kim, K.W.; Lee, K.W. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: A prospective randomized double-blind multicenter study. Diabetol. Metab. Syndr., 2015, 7(1), 64.
[http://dx.doi.org/10.1186/s13098-015-0060-1] [PMID: 26300986]
[225]
Gu, Y.Y.; Lu, F.H.; Huang, X.R.; Zhang, L.; Mao, W.; Yu, X.Q.; Liu, X.S.; Lan, H.Y. Non-coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease. Front. Pharmacol., 2021, 11, 583528.
[http://dx.doi.org/10.3389/fphar.2020.583528] [PMID: 33574750]
[226]
Esmaeili, S.; Motamedrad, M.; Hemmati, M.; Mehrpour, O.; Khorashadizadeh, M. Prevention of kidney cell damage in hyperglycaemia condition by adiponectin. Cell Biochem. Funct., 2019, 37(3), 148-152.
[http://dx.doi.org/10.1002/cbf.3380] [PMID: 30908696]
[227]
Hickson, L.J.; Langhi Prata, L.G.P.; Bobart, S.A.; Evans, T.K.; Giorgadze, N.; Hashmi, S.K.; Herrmann, S.M.; Jensen, M.D.; Jia, Q.; Jordan, K.L.; Kellogg, T.A.; Khosla, S.; Koerber, D.M.; Lagnado, A.B.; Lawson, D.K.; LeBrasseur, N.K.; Lerman, L.O.; McDonald, K.M.; McKenzie, T.J.; Passos, J.F.; Pignolo, R.J.; Pirtskhalava, T.; Saadiq, I.M.; Schaefer, K.K.; Textor, S.C.; Victorelli, S.G.; Volkman, T.L.; Xue, A.; Wentworth, M.A.; Wissler Gerdes, E.O.; Zhu, Y.; Tchkonia, T.; Kirkland, J.L. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.069] [PMID: 31542391]
[228]
Zhang, D.; Ma, M.; Liu, Y. Protective effects of incretin against age-related diseases. Curr. Drug Deliv., 2019, 16(9), 793-806.
[http://dx.doi.org/10.2174/1567201816666191010145029] [PMID: 31622202]
[229]
Coppolino, G.; Leporini, C.; Rivoli, L.; Ursini, F.; di Paola, E.D.; Cernaro, V.; Arturi, F.; Bolignano, D.; Russo, E.; De Sarro, G.; Andreucci, M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol. Res., 2018, 129, 274-294.
[http://dx.doi.org/10.1016/j.phrs.2017.12.001] [PMID: 29223646]
[230]
Shi, J.X.; Huang, Q. Glucagon-like peptide-1 protects mouse podocytes against high glucose-induced apoptosis, and suppresses reactive oxygen species production and proinflammatory cytokine secretion, through sirtuin 1 activation in vitro. Mol. Med. Rep., 2018, 18(2), 1789-1797.
[http://dx.doi.org/10.3892/mmr.2018.9085] [PMID: 29845208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy