Generic placeholder image

Nanoscience & Nanotechnology-Asia


ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

A Review on Silicon Nanowires and their use in the Development of Nano Piezoresistive Pressure Sensors

Author(s): Kirankumar B. Balavalad*

Volume 13, Issue 5, 2023

Published on: 13 July, 2023

Article ID: e190623218101 Pages: 9

DOI: 10.2174/2210681213666230619153413

Price: $65


Silicon has been the most trusted and used material in the fabrication of microelectronics components and systems. Recently, silicon nanowires have gained a lot of importance in the development of devices/components in many applications. SiNWs have unique attributes that are not found in bulk silicon. Their one-dimensional electronic structure provides interesting properties. Unique properties and small dimension (nm) of silicon nanowires have made them to be used as sensing elements in the development of nanosensors and devices. Silicon nanowires are now being extensively used in the development of biosensors, FETs, lithium-ion batteries, transistors, microelectronic chips, and sensors. SiNWs are used in the development of solar cells and photovoltaic batteries, because of their charge-trapping capabilities. The fabrication of silicon nanowires follows chemical etching, chemical vapor deposition (CVD), electron beam lithography, etc. The dimensions of silicon nanowires are highly compatible with the dimensions of biological and chemical species, hence making them more efficient to be used as sensing elements in bio and chemical domains. SiNWs exhibit excellent piezoresistive properties and hence are used as piezoresistors in piezoresistive sensing applications. This article presents a review of SiNWs in the development of sensors. An emphasis is given to the piezoresistive property of SiNWs. The use of SiNWs as a piezoresistor in the development of piezoresistive pressure sensors is also extensively reviewed in this article, along with the unique properties of SiNWs. Typical dimensions and applications of SiNWs are also reviewed. Moreover, this article also explores the fabrication, characterization aspects, and capabilities of SiNWs in the design and development of nanoscale devices/sensors.

Keywords: NEMS, sensors, silicon nanowires, fabrication, piezoresistivity, SiNWs applications.

Graphical Abstract
He, R.; Yang, P. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol., 2006, 1(1), 42-46.
[] [PMID: 18654140]
Songsong, Zhang Tao Wang; Liang Lou; Sawada, R.; Dim-Lee Kwong; Chengkuo Lee; Lee, C. Annularly grooved diaphragm pressure sensor with embedded silicon nanowires for low pressure application. J. Microelectromech. Syst., 2014, 23(6), 1396-1407.
Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors. proceeding of 2013 COMSOL Conference, Bangalore. 2013. Excerpt from the Proceedings of the 2013 COMSOL Conference in Bangalor.
Shaby, S.M.; Juliet, A.V. A comparitive analysis on nanowire based mems pressure sensor. IEEE Electron Devices Society. The 15th International Conference on Solid-State Sensors, Actuators & Microsystems: Transducers, 2009.
Kim, J.H.; Park, K.T.; Kim, H.C.; Chun, K. Fabrication of a piezoresistive pressure sensor for enhancing sensitivity using silicon nanowire. Actuators and Microsystems Conference, 2009, pp. 1936-1939.
Kattabooman, N.; Komaragiri, R. VLSI layout based design optimization of a piezoresistive mems pressure sensors using COMSOL Excerpt from the Proceedings of the 2012 COMSOL Conference in Bangalor.
Maflin Shaby, S.; Vimala Juliet, A. Analysis and optimization of sensitivity of a MEMS peizoresistive pressure sensor; Adv. Mater. Res., 2012, 652-656.
Patel, R.; Ganapathiraj, S.; Kundaragi, S.; Gadekar, P. Carbon nanotubes based piezoresistive pressure sensor. Int. J. Ind. Electron. Elect. Eng., 2016, 4(6), 126-130.
Izuan, J.; Rashid, A.; Abdullah, J.; Yusof, N.A.; Hajian, R. The development of silicon nanowire as sensing material and its applications the development of silicon nanowire as sensing material. J. Nanomater., 2013, Article ID 328093.
Zhang, S.; Lou, L.; Gu, Y.A. Development of silicon nanowire-based NEMS absolute pressure sensor through surface micromachining. IEEE Electron Device Lett., 2017, 38(2017), 653-656.
Huang, Y.; Lieber, C.M. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem., 2004, 76(12), 2051-2068.
Liu, M.; Jin, P.; Xu, Z.; Hanaor, D.A.H.; Gan, Y.; Chen, C. Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires. Theor. Appl. Mech. Lett., 2016, 6(5), 195-199.
Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B.A. Silicon nanowire solar cells. Appl. Phys. Lett., 2007, 91, 233117.
Jinsung, Y.S.; Gwonchan, P. Mechanical properties of silicon nanowires. Nanoscale Res. Lett., 2009, 5, 211.
Ramanujam, J.; Shiri, D.; Verma, A. Silicon nanowire growth and properties: A review. Mater. Express, 2011, 1(2), 105-126.
Khorasaninejad, M.; Abedzadeh, N.; Jawanda, A.S. Bunching characteristics of silicon nanowire arrays Bunching characteristics of silicon nanowire arrays J. Appl. Phy., 2012, 111, 044328.
Hutagalung, S.D.; Fadhali, M.M.; Areshi, R.A.; Tan, F.D. Optical and electrical characteristics of silicon nanowires prepared by electroless etching. Nanoscale Res. Lett., 2017, 12(1), 425.
Lim, D.; Kim, M.; Kim, Y.; Kim, S. Memory characteristics of silicon nanowire transistors generated by weak impact ionization. Sci. Rep., 2017, Article number: 12436.
Lehée, G.; Souchon, F.; Riou, J.C.; Bosseboeuf, A.; Jourdan, G. Transduction performance of piezoresistive silicon nanowires on the frequency resolution of a resonant MEMS sensor. IEEE Sensors, 2015, 2015, 1-4.
Kim, C.; Ahn, H.; Ji, T. Flexible pressure sensors based on silicon nanowire array built by metal-assisted chemical etching. IEEE Electron Device Lett., 2020, 41(8), 1233-1236.
Access, O. Potential of silicon nanowires structures as nanoscale piezoresistors in mechanical sensors potential of silicon nanowires structures as nanoscale piezoresistors in mechanical sensors IOP Conf. Ser.: Mater. Sci. Eng., 2012, 40, 012038.
Jang, S.; Sung, J.; Chang, B.; Kim, T.; Ko, H.; Koo, K.; Cho, D.D. Characterization of the piezoresistive effects of silicon nanowires. Sensors, 2018, 18(10), 3304.
Shaby, S.M.; Juliet, A.V. Improving the sensitivity of MEMS piezoresistive pressure sensor using polysilicon double nanowire. Int. J. Comput. Appl., 2011, 34(9), 1-4.
Ri, Q.; Zlgwk, Q.P.; Wklfnqhvv, Q.P.; Ohqjwk, D.Q.G.P.; Lq, Q.; Dqg, R.; Frpsuhvvlrq, L.Q. 2016.
Buin, A.K.; Verma, A.; Anantram, M.P. Carrier-phonon interaction in small cross-sectional silicon nanowires. J. Appl. Phys., 2008, 104(5), 053716.
Buin, A.K.; Verma, A.; Svizhenko, A.; Anantram, M.P. Significant enhancement of hole mobility in [110] silicon nanowires compared to electrons and bulk silicon. Nano Lett., 2008, 8(2), 760-765.
[] [PMID: 18205425]
Nolan, M.; O’Callaghan, S.; Fagas, G.; Greer, J.C.; Frauenheim, T. Silicon nanowire band gap modification. Nano Lett., 2007, 7(1), 34-38.
[] [PMID: 17212436]
Sacconi, F.; Persson, M.P.; Povolotskyi, M.; Latessa, L.; Pecchia, A.; Gagliardi, A.; Balint, A.; Fraunheim, T.; Di Carlo, A. Electronic and transport properties of silicon nanowires. J. Comput. Electron., 2007, 6(1-3), 329-333.
A review on electronic andoptical properties of silicon nanowire and its different growth techniques. Springerplus, 2013, 2, 151.
Cui, Y.; Duan, X.; Hu, J.; Lieber, C.M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B, 2000, 104(22), 5213-5216.
Smith, C.S. Piezoresistance effect in Germanium and silicon. Phys. Rev., 1954, 94(1), 42-49.
Cao, J.X.; Gong, X.G.; Wu, R.Q. Giant piezoresistance and its origin in Si(111) nanowires: First-principles calculations. Phys. Rev. B Condens. Matter Mater. Phys., 2007, 75(23), 233302.
Shiri, D.; Kong, Y.; Buin, A.; Anantram, M.P. Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett., 2008, 93(7), 073114.
Niquet, Y.M.; Delerue, C.; Krzeminski, C. Effects of strain on the carrier mobility in silicon nanowires. Nano Lett., 2012, 12(7), 3545-3550.
[] [PMID: 22694664]
Rowe, A.C.H. Silicon nanowires feel the pinch. Nat. Nanotechnol., 2008, 3(6), 311-312.
[] [PMID: 18654531]
McClarty, M.M.; Jegenyes, N.; Gaudet, M.; Toccafondi, C.; Ossikovski, R.; Vaurette, F.; Arscott, S.; Rowe, A.C.H. Geometric and chemical components of the giant piezoresistance in silicon nanowires. Appl. Phys. Lett., 2016, 109(2), 023102.
Nghiêm, T.T.T.; Aubry-Fortuna, V.; Chassat, C.; Bosseboeuf, A.; Dollfus, P. Monte Carlo simulation of giant piezoresistance effect in p-type silicon nanostructures. Mod. Phys. Lett. B, 2011, 25(12,13), 995-1001.
Yang, Y.; Li, X. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology, 2011, 22(1), 015501.
[] [PMID: 21135460]
Milne, J.S.; Rowe, A.C.H.; Arscott, S.; Renner, C. Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett., 2010, 105(22), 226802.
[] [PMID: 21231411]
Barwicz, T.; Klein, L.; Koester, S.J.; Hamann, H. Silicon nanowire piezoresistance: Impact of surface crystallographic orientation. Appl. Phys. Lett., 2010, 97(2), 023110.
Piezoresistive effect of p- type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Advances, 2015, 5, 82121-82126.
Pham, V.T.; Dutta, M.; Bui, H.T.; Fukata, N. Effect of nanowire length on the performance of silicon nanowires based solar cell. Adv. Nat. Scii. Nanosci. Nanotechnology., 2014, 5, 045014.
Aryafar, M.; Hamedi, M.; Ganjeh, M.M. A novel temperature compensated piezoresistive pressure sensor. Measurement, 2015, 63, 25-29.
Yao, Z.; Liang, T.; Jia, P.; Hong, Y.; Qi, L.; Lei, C.; Zhang, B.; Xiong, J. A high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit. Sensors, 2016, 16(6), 913.
[] [PMID: 27322288]
Kato, S.; Kurokawa, Y.; Gotoh, K.; Soga, T. Fabrication of a silicon nanowire solar cell on a silicon-on-insulator substrate. Appl. Sci., 2019, 9(5), 818.
Abdul-Hameed, A.A.; Ali, B.; Al-Taay, H.F.M.; Mahdi, A. Fabrication of SiNWs/PEDOT:PSS heterojunction solar cells. Int. J. Mat. Sci Eng., 2020, 17(1), 69-76.
Martínez, R.V.; Martínez, J.; Garcia, R. Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Core 2010. Available from:
Shao, M.W.; Zhang, M.L.; Wong, N.B.; Ma, D.D.; Wang, H.; Chen, W.; Lee, S.T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Appl. Phys. Lett., 2008, 93(23), 233118-233118.
Ci, P.; Sun, M.; Upadhyaya, M.; Song, H.; Jin, L.; Sun, B.; Jones, M.R.; Ager, J.W.; Aksamija, Z.; Wu, J. Giant isotope effect of thermal conductivity in silicon nanowires. Phys. Rev. Lett., 2022, 128(8), 085901.
[] [PMID: 35275649]
Zheng, G. “Growth and characterization of silicon nanowires for biomedical applications”, Semiconducting Silicon Nanowires for Biomedical Applications, 2nd ed; Woodhead Publishing, 2022, pp. 7-24.
Zhang, W.; Huang, Y.; Yang, C. “Functional silicon nanowires for cellular binding and internalization”, Semiconducting Silicon Nanowires for Biomedical Applications, 2nd ed; Woodhead Publishing, 2022, pp. 111-136.
Nanoelectronics for Neuroscience In: Encyclopedia of Biomedical Engineering; Elsevier, 2019; pp. 631-649.
Lo Faro, M.; Leonardi, A.; Priolo, F.; Fazio, B.; Irrera, A. Future prospects of luminescent silicon nanowires biosensors. Biosensors, 2022, 12(11), 1052.
[] [PMID: 36421170]
Toyama, R.; Kawachi, S.; Yamaura, J.; Fujita, T.; Murakami, Y.; Hosono, H.; Majima, Y. Nanostructure-induced L 10-ordering of twinned single-crystals in CoPt ferromagnetic nanowires. Nanoscale Adv., 2022, 4(24), 5270-5280.
[] [PMID: 36540123]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy