Review Article

抗不同类型癌症的天然产物及其衍生物的计算机研究

卷 31, 期 7, 2024

发表于: 10 August, 2023

页: [825 - 847] 页: 23

弟呕挨: 10.2174/0929867330666230614153430

价格: $65

conference banner
摘要

据世界卫生组织(世卫组织)称,癌症是全世界第二大死因,造成近1 000万人死亡,占死亡人数的六分之一。这是一种疾病,可以影响任何器官或组织,并迅速发展到最后阶段,即转移,疾病扩散到身体的不同部位。为了找到治疗癌症的方法,已经进行了许多研究。早期诊断有助于个体实现治愈;然而,由于诊断较晚,死亡人数正在大幅增加。因此,这篇文献综述讨论了几项科学研究工作,指出了针对胶质母细胞瘤、乳腺癌、结肠癌、前列腺癌和肺癌的新型抗肿瘤药物的硅分析,以及它们各自参与分子对接模拟和分子动力学的一些分子受体。本综述涉及的文章描述了计算技术对开发新药或具有生物活性的现有药物的贡献;因此,在每项研究中都强调了重要的数据,例如使用的技术,每项研究获得的结果以及结论。此外,还展示了具有最佳计算响应的分子的三维化学结构以及被测分子与PDB受体之间的显著相互作用。因此,预计这将有助于对抗癌症的新研究,新的抗肿瘤药物的创造,以及制药工业和对已研究肿瘤的科学知识的进步。

关键词: 分子对接,胶质母细胞瘤,肺癌,结肠癌,乳腺癌,前列腺癌,分子动力学。

[1]
NIH. What is Cancer?-NCI. Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (Accessed on: January 25, 2022).
[2]
Oliveira, A.F.; Quadros, C.A.; de Castro Ribeiro, H.S.; Wainstein, A.J.A.; de Queiroz Sarmento, B.J.; Lyra, J.; Baiocchi Neto, G.; Ribeiro, R.; Pinheiro, R.N.; da Silva Barreto, E.J.S.; Park, J.; McKay, A.; Gupta, A.; Savant, D.; Nissan, A.; Zippel, D.; Leon, A.; Bargallo-Rocha, J.E.; Martinez Said, H.; Kitagawa, Y.; Yoshida, K.; Lee, W.Y.; Park, D.J.; Zaghloul, A.; Gawad, W.A.; Chen, G.; Majid, H.J.; Cheema, M.A.; Gronchi, A.; Kovacs, T.; D’Ugo, D.; Bartlett, D.L.; Howe, J.R.; Are, C. Global Forum of Cancer Surgeons: Support for the Brazilian society of surgical oncology journey towards implementation of cytoreductive surgery/hyperthermic intraperitoneal chemotherapy in Brazil. Ann. Surg. Oncol., 2021, 28(4), 1892-1895.
[http://dx.doi.org/10.1245/s10434-020-09527-x] [PMID: 33462717]
[3]
WHO. Cancer. Available from: https://who.int/health-topics/cancer (Accessed on: January 30, 2022).
[4]
WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All. Available from: https://www.who.int/publications/i/item/9789240001299 (Accessed on: February 15, 2022).
[5]
WHO. Breast cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (Accessed on: May 30, 2022).
[6]
ACS. Breast Cancer Facts & Figures 2019-2020;; Atlanta Am. Cancer Soc., 2019, pp. 1-44.
[7]
Guennoun, R.; Hojanazarova, J.; Trerice, K.E.; Azin, M.; McGoldrick, M.T.; Schiferle, E.B.; Stover, M.P.; Demehri, S. Thymic stromal lymphopoietin induction suppresses lung cancer development. Cancers, 2022, 14(9), 2173.
[http://dx.doi.org/10.3390/cancers14092173] [PMID: 35565302]
[8]
Shi, J.; Li, Y.; Song, W.; Wang, M.; Zhang, L.; Lian, H.; He, Z.; Wei, N.; Zheng, Z.; Wen, J. Risk of colon cancer-related death in people who had cancer in the past. Int. J. Colorectal Dis., 2022, 37(8), 1785-1797.
[http://dx.doi.org/10.1007/s00384-022-04202-x] [PMID: 35796872]
[9]
Klein, R.J.; Vertosick, E.; Sjoberg, D.; Ulmert, D.; Rönn, A.C.; Häggström, C.; Thysell, E.; Hallmans, G.; Dahlin, A.; Stattin, P.; Melander, O.; Vickers, A.; Lilja, H. Prostate cancer polygenic risk score and prediction of lethal prostate cancer. NPJ Precis. Oncol., 2022, 6(1), 1-8.
[http://dx.doi.org/10.1038/s41698-022-00266-8]
[10]
Bueno-Martínez, E.; Lara-Almunia, M.; Rodríguez-Arias, C.; Otero-Rodríguez, A.; Garfias-Arjona, S.; González-Sarmiento, R. Polymorphisms in autophagy genes are genetic susceptibility factors in glioblastoma development. BMC Cancer, 2022, 22(1), 146.
[http://dx.doi.org/10.1186/s12885-022-09214-y] [PMID: 35123435]
[11]
Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma; Glioblastoma, 2017, pp. 143-153.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch8]
[12]
Mondal, P.; Natesh, J.; Penta, D.; Meeran, S.M. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin. Cancer Biol., 2022, 83, 503-522.
[http://dx.doi.org/10.1016/j.semcancer.2020.12.006] [PMID: 33309850]
[13]
Khaledi, F.; Ghasemi, S. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Curr. Mol. Med., 2022, 22(1), 8-24.
[http://dx.doi.org/10.2174/1566524021666210211112800] [PMID: 33573554]
[14]
Tybjerg, A.J.; Friis, S.; Brown, K.; Nilbert, M.C.; Morch, L.; Køster, B. Updated fraction of cancer attributable to lifestyle and environmental factors in Denmark in 2018. Sci. Rep., 2022, 12(1), 1-11.
[http://dx.doi.org/10.1038/s41598-021-04564-2]
[15]
Brunton, L.L.; Hilal-Dandan, R.; Knollmann, B.C. As Bases Farmacológicas Da Terapêutica de Goodman e Gilman; Artmed Editora, 2018.
[16]
Guo, M.; Jin, J.; Zhao, D.; Rong, Z.; Cao, L.Q.; Li, A.H.; Sun, X.Y.; Jia, L.Y.; Wang, Y.D.; Huang, L.; Li, Y.H.; He, Z.J.; Li, L.; Ma, R.K.; Lv, Y.F.; Shao, K.K.; Cao, H.L. Research advances on anti-cancer natural products. Front. Oncol., 2022, 12, 866154.
[http://dx.doi.org/10.3389/fonc.2022.866154] [PMID: 35646647]
[17]
Poustforoosh, A. Faramarz, S.; Nematollahi, M.H.; Hashemipour, H.; Tüzün, B.; Pardakhty, A.; Mehrabani, M. 3D‐QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl‐2 family proteins for targeting U‐87 glioblastoma. J. Cell. Biochem., 2022, 123(2), 390-405.
[http://dx.doi.org/10.1002/jcb.30178] [PMID: 34791695]
[18]
Pande, A.; Abdalla, M.; Madhavi, M.; Chopra, I.; Bhrdwaj, A.; Soni, L.; Vijayakumar, N.; Panwar, U.; Khan, M.A.; Prajapati, L. Structure-based virtual screening, molecular docking, molecular dynamics simulation of EGFR for the clinical treatment of glioblastoma. Appl. Biochem. Biotechnol., 2023.
[19]
Younus, S.; Vinod Chandra, S.S.; Nair, A.S.S. Docking and dynamic simulation study of crizotinib and temozolomide drug with glioblastoma and NSCLC target to identify better efficacy of the drug. Future J. Pharm. Sci., 2021, 7(1), 187.
[http://dx.doi.org/10.1186/s43094-021-00323-2]
[20]
Ghosh, A.; Chakraborty, D.; Mukerjee, N.; Baishya, D.; Chigurupati, S.; Felemban, S.G.; Almahmoud, S.A.; Almikhlafi, M.A.; Sehgal, A.; Singh, S.; Sharma, N.; Aleya, L.; Behl, T. Target-based virtual screening and molecular interaction studies for lead identification of natural olive compounds against glioblastoma multiforme. Environ. Sci. Pollut. Res. Int., 2022.
[http://dx.doi.org/10.1007/s11356-022-22401-5] [PMID: 35994146]
[21]
Huang, J.; Zhou, Y.; Zhong, X.; Su, F.; Xu, L. Effects of Vitexin, a natural flavonoid glycoside, on the proliferation, invasion, and apoptosis of human U251 glioblastoma cells. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/3129155] [PMID: 35281458]
[22]
Antika, G.; Cinar, Z.Ö.; Seçen, E.; Özbil, M.; Tokay, E.; Köçkar, F.; Prandi, C.; Tumer, T.B. Strigolactone analogs: Two new potential bioactiphores for glioblastoma. ACS Chem. Neurosci., 2022, 13(5), 572-580.
[http://dx.doi.org/10.1021/acschemneuro.1c00702] [PMID: 35138812]
[23]
Gholivand, K.; Faraghi, M.; Fallah, N.; Babaei, A.; Pirastehfar, F.; Dusek, M.; Eigner, V.; Salimi, F. Therapeutic potential of phospho-thiadiazole derivatives as anti-glioblastoma agents: Synthesis, biological assessment and computational study. Bioorg. Chem., 2022, 129, 106123.
[http://dx.doi.org/10.1016/j.bioorg.2022.106123] [PMID: 36108588]
[24]
Budama-Kilinc, Y.; Kecel-Gunduz, S.; Cakir-Koc, R.; Aslan, B.; Bicak, B.; Kokcu, Y.; Ozel, A.E.; Akyuz, S. Structural characterization and drug delivery system of natural growth-modulating peptide against glioblastoma cancer. Int. J. Pept. Res. Ther., 2021, 27(3), 2015-2028.
[http://dx.doi.org/10.1007/s10989-021-10229-5]
[25]
Netto, J.B.; Melo, E.S.A.; Oliveira, A.G.S.; Sousa, L.R.; Santiago, L.R.; Santos, D.M.; Chagas, R.C.R.; Gonçalves, A.S.; Thomé, R.G.; Santos, H.B.; Reis, R.M.; Ribeiro, R.I.M.A. Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: An in vitro, in silico, and in vivo study. Braz. J. Med. Biol. Res., 2022.
[26]
Wang, W.; Wu, Y.; Chen, S.; Liu, X.; He, J.; Wang, S.; Lu, W.; Tang, Y.; Huang, J. Shikonin is a novel and selective IMPDH2 inhibitor that target triple‐negative breast cancer. Phytother. Res., 2021, 35(1), 463-476.
[http://dx.doi.org/10.1002/ptr.6825] [PMID: 32779300]
[27]
Ibrahim, R.S.; El-Banna, A.A. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Advances, 2021, 11(19), 11610-11626.
[http://dx.doi.org/10.1039/D1RA01390D] [PMID: 35423607]
[28]
Jairajpuri, D.S.; Mohammad, T.; Adhikari, K.; Gupta, P.; Hasan, G.M.; Alajmi, M.F.; Rehman, M.T.; Hussain, A.; Hassan, M.I. Identification of Sphingosine Kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 2020, 5(24), 14720-14729.
[http://dx.doi.org/10.1021/acsomega.0c01511] [PMID: 32596609]
[29]
Saravanan, R.; Raja, K.; Shanthi, D. GC–MS analysis, molecular docking and pharmacokinetic properties of phytocompounds from solanum torvum unripe fruits and its effect on breast cancer target protein. Appl. Biochem. Biotechnol., 2022, 194(1), 529-555.
[http://dx.doi.org/10.1007/s12010-021-03698-3] [PMID: 34643844]
[30]
Kores, K.; Kolenc, Z.; Furlan, V.; Bren, U. Inverse molecular docking elucidating the anticarcinogenic potential of the hop natural product Xanthohumol and its metabolites. Foods, 2022, 11(9), 1253.
[http://dx.doi.org/10.3390/foods11091253] [PMID: 35563976]
[31]
Yousuf, M.; Shamsi, A.; Khan, P.; Shahbaaz, M.; AlAjmi, M.F.; Hussain, A.; Hassan, G.M.; Islam, A.; Rizwanul Haque, Q.M.; Hassan, M.I. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. Int. J. Mol. Sci., 2020, 21(10), 3526.
[http://dx.doi.org/10.3390/ijms21103526] [PMID: 32429317]
[32]
Pang, X.; Fu, W.; Wang, J.; Kang, D.; Xu, L.; Zhao, Y.; Liu, A.L.; Du, G.H. Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/6040149] [PMID: 29861831]
[33]
Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743.
[http://dx.doi.org/10.1038/s41598-019-52162-0] [PMID: 31673107]
[34]
Banik, A.; Ghosh, K.; Patil, U.K.; Gayen, S. Identification of molecular fingerprints of natural products for the inhibition of breast cancer resistance protein (BCRP). Phytomedicine, 2021, 85, 153523.
[http://dx.doi.org/10.1016/j.phymed.2021.153523] [PMID: 33662771]
[35]
Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS One, 2022, 17(5), e0267961.
[http://dx.doi.org/10.1371/journal.pone.0267961] [PMID: 35536789]
[36]
Govindarasu, M.; Ganeshan, S.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Alghamdi, S.; Almehmadi, M.; Rajakumar, G.; Thiruvengadam, M.; Vaiyapuri, M. In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. J. Saudi Chem. Soc., 2021, 25(9), 101319.
[http://dx.doi.org/10.1016/j.jscs.2021.101319]
[37]
Zhang, M.M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking. BioData Min., 2021, 14(1), 1-16.
[http://dx.doi.org/10.1186/s13040-020-00232-9] [PMID: 33430939]
[38]
Md Nesran, Z.N.; Shafie, N.H.; Md Tohid, S.F.; Norhaizan, M.E.; Ismail, A. Iron chelation properties of green tea epigallocatechin-3-Gallate (EGCG) in colorectal cancer cells: Analysis on Tfr/Fth regulations and molecular docking. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/7958041] [PMID: 32280356]
[39]
Larsen, C.A.; Bisson, W.H.; Dashwood, R.H. Tea catechins inhibit hepatocyte growth factor receptor (MET kinase) activity in human colon cancer cells: Kinetic and molecular docking studies. J. Med. Chem., 2009, 52(21), 6543-6545.
[http://dx.doi.org/10.1021/jm901330e] [PMID: 19839593]
[40]
Qi, X.; Xu, H.; Zhang, P.; Chen, G.; Chen, Z.; Fang, C.; Lin, L. Investigating the Mechanism of Scutellariae barbata herba in the treatment of colorectal cancer by network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/3905367] [PMID: 34381520]
[41]
Gouthami, K.; Veeraraghavan, V.; Lavanya, L.; Prashantha, C.N. Molecular docking studies for Vitex negundo (L) leaf extract compounds against Wnt- signalling proteins towards the treatment of colon cancer. Chem. Data Collect., 2022, 38, 100829.
[42]
Liñares-Blanco, J.; Munteanu, C.R.; Pazos, A.; Fernandez-Lozano, C. Molecular docking and machine learning analysis of Abemaciclib in colon cancer. BMC Mol. Cell Biol., 2020, 21(1), 52.
[http://dx.doi.org/10.1186/s12860-020-00295-w] [PMID: 32640984]
[43]
Abd El-Fadeal, N.M.; Nafie, M.S.; El-Kherbetawy, K. M.; El-Mistekawy, A.; Mohammad, H.M.F.; Elbahaie, A.M.; Hashish, A.A.; Alomar, S.Y.; Aloyouni, S.Y.; El-Dosoky, M.; Morsy, K.M.; Zaitone, S.A. Antitumor activity of nitazoxanide against colon cancers: Molecular docking and experimental studies based on Wnt/β-Catenin signaling inhibition. Int. J. Mol. Sci., 2021, 22(10), 5213.
[http://dx.doi.org/10.3390/ijms22105213] [PMID: 34069111]
[44]
Vlasiou, M.C.; Petrou, C.C.; Sarigiannis, Y.; Pafiti, K.S. Density functional theory studies and molecular docking on Xanthohumol, 8-Prenylnaringenin and their symmetric substitute diethanolamine derivatives as inhibitors for colon cancer-related proteins. Symmetry, 2021, 13(6), 948.
[http://dx.doi.org/10.3390/sym13060948]
[45]
Meng, X.; Cui, L.; Song, F.; Luan, M.; Ji, J.; Si, H.; Duan, Y.; Zhai, H. 3D-QSAR and molecular docking studies on design anti-prostate cancer curcumin analogues. Curr. Computeraided Drug Des., 2020, 16(3), 245-256.
[http://dx.doi.org/10.2174/18756697OTQwcNzA3TcVY] [PMID: 30370853]
[46]
Olubode, S.O.; Bankole, M.O.; Akinnusi, P.A.; Adanlawo, O.S.; Ojubola, K.I.; Nwankwo, D.O.; Edjebah, O.E.; Adebesin, A.O.; Ayodele, A.O. Molecular modeling studies of natural inhibitors of androgen signaling in prostate cancer. Cancer Inform., 2022, 21, 11769351221118556.
[http://dx.doi.org/10.1177/11769351221118556] [PMID: 35983016]
[47]
Ahmed, M.N.; Wahlsten, M.; Jokela, J.; Nees, M.; Stenman, U.H.; Alvarenga, D.O.; Strandin, T.; Sivonen, K.; Poso, A.; Permi, P.; Metsä-Ketelä, M.; Koistinen, H.; Fewer, D.P. Potent inhibitor of human trypsins from the aeruginosin family of natural products. ACS Chem. Biol., 2021, 16(11), 2537-2546.
[http://dx.doi.org/10.1021/acschembio.1c00611] [PMID: 34661384]
[48]
Yan, G.; Zhang, H.; Li, Y.; Miao, G.; Liu, X.; Lv, Q. Viscosalactone B, a natural LSD1 inhibitor, inhibits proliferation in vitro and in vivo against prostate. Cancer Cells, 2022, 1-15.
[http://dx.doi.org/10.21203/rs.3.rs-1831655/v1]
[49]
de Lima, C.A.; Cubero, M.C.Z.; Franco, Y.E.M.; Rodrigues, C.D.P.; do Nascimento, J.R.; Vendramini-Costa, D.B.; Sciani, J.M.; da Rocha, C.Q.; Longato, G.B. Antiproliferative activity of two unusual dimeric flavonoids, brachydin E and Brachydin F, isolated from Fridericia platyphylla (Cham.) L.G.Lohmann: In vitro and molecular docking evaluation. BioMed Res. Int., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/3319203] [PMID: 35187163]
[50]
Grande, F.; Rizzuti, B.; Occhiuzzi, M.A.; Ioele, G.; Casacchia, T.; Gelmini, F.; Guzzi, R.; Garofalo, A.; Statti, G. Identification by molecular docking ofhomoisoflavones from leopoldia comosa as ligands of estrogen receptors. Molecules, 2018, 23(4), 894.
[http://dx.doi.org/10.3390/molecules23040894] [PMID: 29649162]
[51]
Balusamy, S.R.; Perumalsamy, H.; Veerappan, K.; Huq, M.A.; Rajeshkumar, S.; Lakshmi, T.; Kim, Y.J. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed Res. Int., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/6040727] [PMID: 32258129]
[52]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One, 2021, 16(7), e0254035.
[http://dx.doi.org/10.1371/journal.pone.0254035] [PMID: 34260631]
[53]
Saffari Chaleshtori, J.; Heidari-Sureshjani, E.; Moradi, F.; Heidarian, E. The effects of thymoquinone on viability, and anti-apoptotic factors (BCL-XL, BCL-2, MCL-1) in Prostate Cancer (PC3) cells: An in vitro and computer-simulated environment study. Adv. Pharm. Bull., 2019, 9(3), 490-496.
[http://dx.doi.org/10.15171/apb.2019.058] [PMID: 31592099]
[54]
El Raey, M.A.; El-Hagrassi, A.M.; Osman, A.F.; Darwish, K.M.; Emam, M. Acalypha wilkesiana flowers: Phenolic profiling, cytotoxic activity of their biosynthesized silver nanoparticles and molecular docking study for its constituents as Topoisomerase-I inhibitors. Biocatal. Agric. Biotechnol., 2019, 20, 101243.
[http://dx.doi.org/10.1016/j.bcab.2019.101243]
[55]
Yuan, C.; Wang, M.H.; Wang, F.; Chen, P.Y.; Ke, X.G.; Yu, B.; Yang, Y.F.; You, P.T.; Wu, H.Z. Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci., 2021, 270, 119105.
[http://dx.doi.org/10.1016/j.lfs.2021.119105] [PMID: 33497736]
[56]
Reddy, P.S.; Lokhande, K.B.; Nagar, S.; Reddy, V.D.; Murthy, P.S.; Swamy, K.V. Molecular modeling, docking, dynamics and simulation of gefitinib and its derivatives with EGFR in non-small cell lung cancer. Curr. Computeraided Drug Des., 2018, 14(3), 246-252.
[http://dx.doi.org/10.2174/1573409914666180228111433] [PMID: 29493460]
[57]
Singh, P.K.; Silakari, O. Pharmacophore and molecular dynamics based activity profiling of natural products for kinases involved in lung cancer. J. Mol. Model., 2018, 24(11), 318.
[http://dx.doi.org/10.1007/s00894-018-3849-7] [PMID: 30343450]
[58]
Yan, Y.; Su, W.; Zeng, S.; Qian, L.; Chen, X.; Wei, J.; Chen, N.; Gong, Z.; Xu, Z. Effect and mechanism of Tanshinone I on the radiosensitivity of lung cancer cells. Mol. Pharm., 2018, 15(11), 4843-4853.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00489] [PMID: 30216081]
[59]
Zhang, Y.Y.; Chen, J.J.; Li, D.Q.; Zhang, Y.; Wang, X.B.; Yao, G.D.; Song, S.J. Network pharmacology uncovers anti-cancer activity of vibsane-type diterpenes from Viburnum odoratissimum. Nat. Prod. Res., 2021, 35(4), 637-640.
[http://dx.doi.org/10.1080/14786419.2019.1582047] [PMID: 30856004]
[60]
Anwar, S.; Mohammad, T.; Shamsi, A.; Queen, A.; Parveen, S.; Luqman, S.; Hasan, G.M.; Alamry, K.A.; Azum, N.; Asiri, A.M.; Hassan, M.I. Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 2020, 8(5), 119.
[http://dx.doi.org/10.3390/biomedicines8050119] [PMID: 32422877]
[61]
Jing, S.Y.; Wu, Z.D.; Zhang, T.H.; Zhang, J.; Wei, Z.Y. In vitro antitumor effect of cucurbitacin E on human lung cancer cell line and its molecular mechanism. Chin. J. Nat. Med., 2020, 18(7), 483-490.
[http://dx.doi.org/10.1016/S1875-5364(20)30058-3] [PMID: 32616188]
[62]
Chen, H.; Miao, L.; Huang, F.; Yu, Y.; Peng, Q.; Liu, Y.; Li, X.; Liu, H. Glochidiol, a natural triterpenoid, exerts its anti-cancer effects by targeting the colchicine binding site of tubulin. Invest. New Drugs, 2021, 39(2), 578-586.
[http://dx.doi.org/10.1007/s10637-020-01013-1] [PMID: 33026557]
[63]
Liu, X.; Chen, W.; Liu, Q.; Dai, J. Abietic acid suppresses non-small-cell lung cancer cell growth via blocking IKKβ/NF-κB signaling. OncoTargets Ther., 2019, 12, 4825-4837.
[http://dx.doi.org/10.2147/OTT.S199161] [PMID: 31354305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy