Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Insights into Nanoparticulate Carrier Systems of Curcumin and its Clinical Perspective in the Management of Various Health Issues

Author(s): Ranjit K. Harwansh*, Mukul Yadav, Rohitas Deshmukh and Akhlaquer Rahman

Volume 29, Issue 18, 2023

Published on: 23 June, 2023

Page: [1421 - 1440] Pages: 20

DOI: 10.2174/1381612829666230613115447

Price: $65

Abstract

Curcumin is a potent bioactive compound of Curcuma longa. Curcumin comprises a broad spectrum of biological activities, including hepatoprotective, anticancer, antimicrobial, anti-inflammatory, antitumor, anti- oxidant, etc. However, its low aqueous solubility, rapid excretion, and poor bioavailability restricted its therapeutic uses. To resolve these issues, novel nano-systems have now been developed to increase the bioactivity and bioavailability of curcumin by lowering the particle size, altering the surface, and increasing the efficacy of its encapsulation with various nanocarriers. Nanotechnology-based treatments can broaden the outlook for individuals with critical conditions. This article explores curcumin-based nanoparticulate carrier systems that should be employed to overcome this natural ingredient's inherent limitations. These nanocarriers also provide physical and chemical stability by encapsulating the drug into the core or matrix of the lipids or polymers. Nanotechnologists developed curcumin-encapsulated various nanoparticulate systems, including solid lipidic nanoparticles, polymeric nanoparticles, nano-structured lipid carriers, polymer conjugates, etc., to improve curcumin bioavailability and boost the sustained release of curcumin to target cells.

Keywords: Curcumin, nanoparticles, bioavailability, nanocarriers, solubility, herbal bioactives.

[1]
Araújo MC, Antunes LM, Takahashi CS. Protective effect of thiourea, a hydroxyl-radical scavenger, on curcumin-induced chromosomal aberrations in an in vitro mammalian cell system. Teratog Carcinog Mutagen 2001; 21(2): 175-80.
[http://dx.doi.org/10.1002/1520-6866(2001)21:2<175::AID-TCM6>3.0.CO;2-V] [PMID: 11223894]
[2]
Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: Common targets and common goals. Expert Opin Investig Drugs 2004; 13(10): 1327-38.
[http://dx.doi.org/10.1517/13543784.13.10.1327] [PMID: 15461561]
[3]
Basnet P, Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16(6): 4567-98.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[4]
Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern Med Rev 2009; 14(2): 141-53.
[PMID: 19594223]
[5]
Kádasi A, Sirotkin AV, Maruniaková N, Kolesárová A, Bulla J. Grossmann RJJoM, Biotechnology, Sciences F. The effect of curcumin on secretory activity, proliferation and apoptosis of the porcine ovarian granulosa cells. J Microbiol Biotechnol Food Sci 2021; 2021: 349-57.
[6]
Oglah MK, Mustafa YF, Bashir MK, Jasim MH, Mustafa YFJSRP. Curcumin and its derivatives: A review of their biological activities. Syst Rev Pharm 2020; 11: 472-81.
[7]
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and colorectal cancer: From basic to clinical evidences. Int J Mol Sci 2020; 21(7): 2364.
[http://dx.doi.org/10.3390/ijms21072364] [PMID: 32235371]
[8]
Khan MM, Madni A, Tahir N, et al. Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. Int J Nanomedicine 2020; 15: 2207-17.
[http://dx.doi.org/10.2147/IJN.S247893] [PMID: 32280215]
[9]
Khudhayer Oglah M, Fakri Mustafa Y. Curcumin analogs: Synthesis and biological activities. Med Chem Res 2020; 29(3): 479-86.
[http://dx.doi.org/10.1007/s00044-019-02497-0]
[10]
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin I: evidence from in vitro studies. Nutrients 2020; 12(1): 118.
[http://dx.doi.org/10.3390/nu12010118] [PMID: 31906278]
[11]
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin II: evidence from in vivo studies. Nutrients 2019; 12(1): 58.
[http://dx.doi.org/10.3390/nu12010058] [PMID: 31881654]
[12]
Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012; 35(11): 2121-7.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[13]
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124: 182-91.
[http://dx.doi.org/10.1016/j.fct.2018.12.002] [PMID: 30529260]
[14]
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: From chemistry to medicine. Compr Rev Food Sci Food Saf 2014; 13(1): 62-77.
[http://dx.doi.org/10.1111/1541-4337.12047] [PMID: 33412694]
[15]
Hu RW, Carey EJ, Lindor KD, Tabibian JH. Curcumin in hepatobiliary disease: Pharmacotherapeutic properties and emerging potential clinical applications. Ann Hepatol 2017; 16(6): 835-41.
[http://dx.doi.org/10.5604/01.3001.0010.5273] [PMID: 29055920]
[16]
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2020; 60(6): 887-939.
[http://dx.doi.org/10.1080/10408398.2018.1552244] [PMID: 30632782]
[17]
Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur J Nutr 2020; 59(2): 477-83.
[http://dx.doi.org/10.1007/s00394-019-01916-7] [PMID: 30796508]
[18]
Sirisidthi K, Kosai P, Jiraungkoorskul K. Jiraungkoorskul WJIJoar. Antithrombotic activity of turmeric (Curcuma longa): A review. Indian J Agric Res 2016; 50(2): 101-6.
[19]
Barchitta M, Maugeri A, Favara G, et al. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin. Int J Mol Sci 2019; 20(5): 1119.
[http://dx.doi.org/10.3390/ijms20051119] [PMID: 30841550]
[20]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 2019; 11(10): 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[21]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[22]
Cole GM, Teter B. Neuroprotective effects of curcumin. Adv Exp Med Biol 2007; 595(197): 212.
[23]
Yang C, Zhu K, Yuan X, Zhang X, Qian Y, Cheng T. Curcumin has immunomodulatory effects on RANKL-stimulated osteoclastogenesis in vitro and titanium nanoparticle-induced bone loss in vivo. J Cell Mol Med 2020; 24(2): 1553-67.
[http://dx.doi.org/10.1111/jcmm.14842] [PMID: 31845532]
[24]
Badran A. Effect of dietary curcumin and curcumin nanoparticles supplementation on growth performance, immune response and antioxidant of broilers chickens. Egypt Poult Sci 2020; 40(1): 325-43.
[http://dx.doi.org/10.21608/epsj.2020.81756]
[25]
Abo-Zaid MA, Shaheen ES, Ismail AH. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. J Food Biochem 2020; 44(6): e13219.
[http://dx.doi.org/10.1111/jfbc.13219] [PMID: 32215945]
[26]
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2019; 66: 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.005] [PMID: 30660832]
[27]
Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res 2017; 115: 133-48.
[http://dx.doi.org/10.1016/j.phrs.2016.11.017] [PMID: 27888157]
[28]
Araiza-Calahorra A, Akhtar M, Sarkar A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci Technol 2018; 71: 155-69.
[http://dx.doi.org/10.1016/j.tifs.2017.11.009]
[29]
Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem 2019; 49(2): 138-49.
[http://dx.doi.org/10.1080/10408347.2018.1489216] [PMID: 30252504]
[30]
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angew Chem Int Ed 2012; 51(22): 5308-32.
[http://dx.doi.org/10.1002/anie.201107724] [PMID: 22566109]
[31]
Rai M, Pandit R, Gaikwad S, Yadav A, Gade A. Potential applications of curcumin and curcumin nanoparticles: From traditional therapeutics to modern nanomedicine. Nanotechnol Rev 2015; 4(2): 161-72.
[http://dx.doi.org/10.1515/ntrev-2015-0001]
[32]
Aggarwal BB, Bhatt ID, Ichikawa H, et al. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 2022; 11(2): 135-72.
[33]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[34]
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46(1): 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[35]
Zheng B, Peng S, Zhang X, McClements DJ. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. J Agric Food Chem 2018; 66(41): 10816-26.
[http://dx.doi.org/10.1021/acs.jafc.8b03174] [PMID: 30252460]
[36]
Gera M, Sharma N, Ghosh M, et al. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017; 8(39): 66680-98.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[37]
Kharat M, McClements DJ. Recent advances in colloidal delivery systems for nutraceuticals: A case study – Delivery by Design of curcumin. J Colloid Interface Sci 2019; 557: 506-18.
[http://dx.doi.org/10.1016/j.jcis.2019.09.045] [PMID: 31542691]
[38]
Mukherjee PK, Harwansh RK, Bhattacharyya S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. Evidence-Based Validation of Herbal Medicine. 1st ed. USA: Elsevier 2015; pp. 217-45.
[39]
Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853(1-2): 183-9.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[40]
Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 1999; 27(4): 486-94.
[PMID: 10101144]
[41]
Rahmani M, Golian A, Kermanshahi H, Bassami MR. Effects of curcumin and nanocurcumin on growth performance, blood gas indices and ascites mortalities of broiler chickens reared under normal and cold stress conditions. Ital J Anim Sci 2017; 16(3): 438-46.
[http://dx.doi.org/10.1080/1828051X.2017.1290510]
[42]
Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. BioMed Res Int 2014; 2014: 1-23.
[http://dx.doi.org/10.1155/2014/394264] [PMID: 24995293]
[43]
Kurita T, Makino Y. Novel curcumin oral delivery systems. Anticancer Res 2013; 33(7): 2807-21.
[PMID: 23780965]
[44]
Hani U, Shivakumar HG. Solubility enhancement and delivery systems of curcumin a herbal medicine: A review. Curr Drug Deliv 2014; 11(6): 792-804.
[http://dx.doi.org/10.2174/1567201811666140825130003] [PMID: 25176028]
[45]
Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 2004; 44(2): 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[46]
Pignanelli C, Ma D, Noel M, et al. Selective targeting of cancer cells by oxidative vulnerabilities with novel curcumin analogs. Sci Rep 2017; 7(1): 1105.
[http://dx.doi.org/10.1038/s41598-017-01230-4] [PMID: 28439094]
[47]
Di Meo F, Margarucci S, Galderisi U, Crispi S, Peluso G. Curcumin, gut microbiota, and neuroprotection. Nutrients 2019; 11(10): 2426.
[http://dx.doi.org/10.3390/nu11102426] [PMID: 31614630]
[48]
Feng W, Wang H, Zhang P, et al. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta Gen Subj 2017; 1861(7): 1801-12.
[49]
McFadden R-MT, Larmonier CB, Shehab KW, et al. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis 2015; 21(11): 2483-94.
[50]
Bereswill S, Muñoz M, Fischer A, et al. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One 2010; 5(12): e15099.
[51]
Shimouchi A, Nose K, Takaoka M, Hayashi H. Effect of dietary turmeric on breath hydrogen. Dig Dis Sci 2009; 54(8): 1725-9.
[52]
Lopresti AL. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv Nutr 2018; 9(1): 41-50.
[http://dx.doi.org/10.1093/advances/nmx011] [PMID: 29438458]
[53]
Kevin T, Nur Idanis A, Anastasha B, Mohd Faris M, Faizah O, Taty Anna KJM. Curcumin minimises histopathological and immunological progression in the ankle joints of collagen-induced arthritis rats. Medicine & Health 2018; 15(2): 26-36.
[54]
Kamal DAM, Salamt N, Yusuf ANM, Kashim MIAM, Mokhtar MH. Potential health benefits of curcumin on female reproductive disorders. Nutrients 2021; 13(9): 3126.
[http://dx.doi.org/10.3390/nu13093126] [PMID: 34579002]
[55]
Sim RH, Sirasanagandla SR, Das S, Teoh SL. Treatment of glaucoma with natural products and their mechanism of action: An update. Nutrients 2022; 14(3): 534.
[http://dx.doi.org/10.3390/nu14030534] [PMID: 35276895]
[56]
Yue Y-K, Mo B, Zhao J, Yu Y-J, Liu L, Yue C-L. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model. J Ocul Pharmacol Ther 2014; 30(8): 657-4.
[57]
Buccarello L, Dragotto J, Hassanzadeh K, Maccarone R, Corbo M, Feligioni MJCDD. Retinal ganglion cell loss in an ex vivo mouse model of optic nerve cut is prevented by curcumin treatment. Cell Death Discov 2021; 7(1): 394.
[http://dx.doi.org/10.1038/s41420-021-00760-1]
[58]
Esfandiari A, Hashemi FJCCP. Protective effects of curcumin on ischemic reperfusion of rat retina. Comp Clin Pathol 2019; 28: 89-95.
[http://dx.doi.org/10.1007/s00580-019-02894-2]
[59]
Wang L, Li C, Guo H, Kern TS, Huang K, Zheng LJPO. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One 2011; 6(8): e23194.
[http://dx.doi.org/10.1371/journal.pone.0023194]
[60]
Lin C. Curcumin protects trabecular meshwork cells from oxidative stress. Invest Ophthalmol Vis Sci 2016; 57(10): 4327-32.
[61]
Luo Y, Ding H, Li D. Curcumin protects trabecular meshwork cells against hydrogen peroxide-induced oxidative stress and apoptosis via Nrf2-keap1 pathway. Invest Ophthalmol Vis Sci 2016; 57(10): 4327-32.
[62]
Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HGJM. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules 2020; 25(6): 1397.
[http://dx.doi.org/10.3390/molecules25061397]
[63]
Abolhassani H, Zaer M, Shojaosadati SA, Hashemi-Najafabadi S. Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine. PLoS One 2023; 18(2): e0282064.
[http://dx.doi.org/10.1371/journal.pone.0282064] [PMID: 36800370]
[64]
Chen X, Zhang H, Wang C, et al. Curcumin-encapsulated chitosan-coated nanoformulation as an improved otoprotective strategy for ototoxic hearing loss. Mol Pharm 2022; 19(7): 2217-30.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00067] [PMID: 35575590]
[65]
Teiten MH, Dicato M, Diederich MJM. Hybrid curcumin compounds: A new strategy for cancer treatment. Molecules 2014; 19(12): 20839-63.
[http://dx.doi.org/10.3390/molecules191220839]
[66]
Mahadik KR, Sreedharan S, Mhaske DB. Role of piperine as an effective bioenhancer in drug absorption. Pharmaceutica Analytica Acta 2018; 9(7): 1-4.
[67]
Pancholi V, Smina TP, Kunnumakkara AB, Maliakel B, Krishnakumar IMJTR. Safety assessment of a highly bioavailable curcumin-galactomannoside complex (CurQfen) in healthy volunteers, with a special reference to the recent hepatotoxic reports of curcumin supplements: A 90-days prospective study. Toxicol Rep 2021; 8: 1255-64.
[68]
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin formulations for better bioavailability: What we learned from clinical trials thus far? ACS Omega 2023; 8(12): 10713-46.
[http://dx.doi.org/10.1021/acsomega.2c07326] [PMID: 37008131]
[69]
Harwansh RK, Deshmukh R, Barkat MA, Rahman MA. Bioinspired polymeric-based core-shell smart nano-systems. Pharm Nanotechnol 2019; 7(3): 181-205.
[http://dx.doi.org/10.2174/2211738507666190429104550] [PMID: 31486750]
[70]
Harwansh RK, Bahadur S, Deshmukh R, Rahman MA. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr Pharm Des 2020; 26(11): 1191-205.
[http://dx.doi.org/10.2174/1381612826666200131101156] [PMID: 32003686]
[71]
Bajpai M, Shafi H. Nanoparticles: Importance and need for regulations. Nanoformulations in human health. Switzerland: Springer Nature 2020; pp. 93-107.
[72]
Deshmukh R, Jain AK, Singh R, Paul SD, Harwansh RK. Andrographis paniculata and andrographolide-a snapshot on recent advances in nano drug delivery systems against cancer. Curr Drug Deliv 2023.
[73]
Zielińska A, Nowak I. Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. Nanobiomaterials in Galenic Formulations and Cosmetics. Amsterdam: Elsevier 2016; pp. 231-55.
[http://dx.doi.org/10.1016/B978-0-323-42868-2.00010-3]
[74]
Salehi B, Calina D, Docea A, et al. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. J Clin Med 2020; 9(2): 430.
[http://dx.doi.org/10.3390/jcm9020430] [PMID: 32033365]
[75]
Sadegh Malvajerd S, Azadi A, Izadi Z, et al. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci 2019; 10(1): 728-39.
[http://dx.doi.org/10.1021/acschemneuro.8b00510] [PMID: 30335941]
[76]
Zeng N, Gao X, Hu Q, et al. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: Cellular interaction and in vivo absorption. Int J Nanomedicine 2012; 7: 3703-18.
[PMID: 22888230]
[77]
Doktorovová S, Kovačević AB, Garcia ML, Souto EB. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016; 108: 235-52.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.001] [PMID: 27519829]
[78]
Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data. Eur J Pharm Biopharm 2014; 87(1): 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.005] [PMID: 24530885]
[79]
Doktorovova S, Souto EB, Silva AM. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol 2018; 23(1): 96-105.
[http://dx.doi.org/10.1080/10837450.2017.1384491] [PMID: 28949267]
[80]
Cavendish M, Nalone L, Barbosa T, et al. Study of pre-formulation and development of solid lipid nanoparticles containing perillyl alcohol. J Therm Anal Calorim 2020; 141(2): 767-74.
[http://dx.doi.org/10.1007/s10973-019-09080-0]
[81]
Souto EB, Doktorovova S, Campos JR, Martins-Lopes P, Silva AM. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur J Pharm Sci 2019; 128: 27-35.
[http://dx.doi.org/10.1016/j.ejps.2018.11.022] [PMID: 30472221]
[82]
Souto EB, Baldim I, Oliveira WP, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17(3): 357-77.
[http://dx.doi.org/10.1080/17425247.2020.1727883] [PMID: 32064958]
[83]
Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res (Phila) 2011; 4(8): 1158-71.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0006] [PMID: 21546540]
[84]
Pathak K, Keshri L, Shah M. Lipid nanocarriers: Influence of lipids on product development and pharmacokinetics. Crit Rev Ther Drug Carrier Syst 2011; 28(4): 357-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i4.20] [PMID: 21967401]
[85]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[86]
Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood-brain barrier: Chemical modifications of drugs or drug- nanoparticles? Drug Discov Today 2008; 13(23-24): 1099-106.
[http://dx.doi.org/10.1016/j.drudis.2008.09.005] [PMID: 18848640]
[87]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[88]
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019; 51: 224-33.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[89]
Borrin TR, Georges EL, Moraes ICF, Pinho SC. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. J Food Eng 2016; 169: 1-9.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.08.012]
[90]
Li M, Ma Y, Cui J. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. Lebensm Wiss Technol 2014; 59(1): 49-58.
[http://dx.doi.org/10.1016/j.lwt.2014.04.054]
[91]
Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem 2012; 132(2): 799-807.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.039]
[92]
Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS. Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers (Basel) 2011; 3(1): 428-45.
[http://dx.doi.org/10.3390/cancers3010428] [PMID: 24212623]
[93]
Rahman MA, Ali A, Rahamathulla M, et al. Fabrication of Sustained release curcumin-loaded solid lipid nanoparticles (Cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: Optimization of formulation and in vitro biological evaluation. Polymers 2023; 15(3): 542.
[http://dx.doi.org/10.3390/polym15030542] [PMID: 36771843]
[94]
Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD- modified lipid–polymer hybrid nanoparticles. Biomed Mater 2013; 8(2): 025012.
[http://dx.doi.org/10.1088/1748-6041/8/2/025012] [PMID: 23507576]
[95]
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160: 130-42.
[http://dx.doi.org/10.1016/j.mimet.2019.03.017] [PMID: 30898602]
[96]
Mukherjee PK, Harwansh RK, Bhattacharyya S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. Evidence-Based Validation of Herbal Medicine. 1st ed. USA: Elsevier 2015; pp. 217-45.
[97]
Karewicz A, Bielska D, Loboda A, et al. Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids Surf B Biointerfaces 2013; 109: 307-16.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.059] [PMID: 23668985]
[98]
Peng S, Zou L, Liu W, et al. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydr Polym 2017; 156: 322-32.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.060] [PMID: 27842829]
[99]
Chen X, Zou LQ, Niu J, Liu W, Peng SF, Liu CM. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015; 20(8): 14293-311.
[http://dx.doi.org/10.3390/molecules200814293] [PMID: 26251892]
[100]
Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: Bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 2009; 57(19): 9141-6.
[http://dx.doi.org/10.1021/jf9013923] [PMID: 19757811]
[101]
Catalan-Latorre A, Ravaghi M, Manca ML, et al. Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin. Eur J Pharm Biopharm 2016; 107: 49-55.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.016] [PMID: 27349806]
[102]
Moussa Z, Chebl M, Patra D. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. Colloids Surf B Biointerfaces 2017; 149: 30-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.002] [PMID: 27716529]
[103]
Rachmawati H, Budiputra DK. Curcumin nanoemulsion for transdermal application: Formulation and evaluation. Drug Dev Ind Pharm 2015; 41(4): 560-6.
[104]
Neves AR, van der Putten L, Queiroz JF, Pinheiro M, Reis S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J Biotechnol 2021; 331: 108-17.
[http://dx.doi.org/10.1016/j.jbiotec.2021.03.010] [PMID: 33727082]
[105]
Ban C, Jo M, Park YH, et al. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem 2020; 302: 125328.
[http://dx.doi.org/10.1016/j.foodchem.2019.125328] [PMID: 31404868]
[106]
Chirio D, Peira E, Dianzani C, et al. Development of solid lipid nanoparticles by cold dilution of microemulsions: Curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials 2019; 9(2): 230.
[http://dx.doi.org/10.3390/nano9020230] [PMID: 30744025]
[107]
Xue J, Wang T, Hu Q, Zhou M, Luo Y. Insight into natural biopolymer-emulsified solid lipid nanoparticles for encapsulation of curcumin: Effect of loading methods. Food Hydrocoll 2018; 79: 110-6.
[http://dx.doi.org/10.1016/j.foodhyd.2017.12.018]
[108]
Guorgui J, Wang R, Mattheolabakis G, Mackenzie GG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch Biochem Biophys 2018; 648: 12-9.
[http://dx.doi.org/10.1016/j.abb.2018.04.012] [PMID: 29679536]
[109]
Luan L, Chi Z, Liu C. Chinese white wax solid lipid nanoparticles as a novel nanocarrier of curcumin for inhibiting the formation of Staphylococcus aureus biofilms. Nanomaterials (Basel) 2019; 9(5): 763.
[http://dx.doi.org/10.3390/nano9050763] [PMID: 31109013]
[110]
Lakhani P, Patil A, Taskar P, Ashour E, Majumdar S. Curcumin-loaded nanostructured lipid carriers for ocular drug delivery: Design optimization and characterization. J Drug Deliv Sci Technol 2018; 47: 159-66.
[http://dx.doi.org/10.1016/j.jddst.2018.07.010] [PMID: 32601526]
[111]
Dolatabadi S, Karimi M, Nasirizadeh S, Hatamipour M, Golmohammadzadeh S, Jaafari MR. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J Drug Deliv Sci Technol 2021; 62: 102352.
[http://dx.doi.org/10.1016/j.jddst.2021.102352]
[112]
Maiti K, Mukherjee K, Gantait A, Saha BP. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 2007; 330(1-2): 155-63.
[113]
Patel R, Singh S, Singh S, Sheth N. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech 2015; 16(2): 364-74.
[114]
Abbas H, El-Feky YA, Al-Sawahli MM, El-Deeb NM, El-Nassan HB, Zewail MJDD. Development and optimization of curcumin analog nano-bilosomes using 21.31 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma: In-vitro evaluation, in-vivo safety assay Drug Deliv 2022; 29(1): 714-27.
[115]
Yadav HK, Almokdad AA, Sumia I, Debe MS. Polymer-based nanomaterials for drug-delivery carriers. Nanocarriers for drug delivery. Amsterdam: Elsevier 2019; pp. 531-56.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00017-5]
[116]
Umerska A, Gaucher C, Oyarzun-Ampuero F, et al. Polymeric nanoparticles for increasing oral bioavailability of curcumin. Antioxidants 2018; 7(4): 46.
[http://dx.doi.org/10.3390/antiox7040046] [PMID: 29587350]
[117]
Yang C, Han M-M, Li R-Y, et al. Polymeric nanoparticles improved Curcumin brain delivery and its therapeutic efficacy against intracerebral hemorrhage. Research Square 2021; 2021: 1-32.
[http://dx.doi.org/10.21203/rs.3.rs-713424/v1]
[118]
Di Pompo GD, Cortini M, Palomba R, et al. Avnet SJIjoms. Curcumin-loaded nanoparticles impair the pro-tumor activity of acid-stressed MSC in an in vitro model of osteosarcoma. Int J Mol Sci 2021; 22(11): 5760.
[http://dx.doi.org/10.3390/ijms22115760] [PMID: 34071200]
[119]
Duse L, Agel MR, Pinnapireddy SR, et al. Photodynamic therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles. Pharmaceutics 2019; 11(6): 282.
[http://dx.doi.org/10.3390/pharmaceutics11060282] [PMID: 31208085]
[120]
Pacho MN, Pugni EN, Díaz Sierra JB, et al. Antiviral activity against Zika virus of a new formulation of curcumin in poly lactic- co -glycolic acid nanoparticles. J Pharm Pharmacol 2021; 73(3): 357-65.
[http://dx.doi.org/10.1093/jpp/rgaa045] [PMID: 33793877]
[121]
Sherin S, Sheeja S, Sudha Devi R, Balachandran S, Soumya RS, Abraham A. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications. Chem Biol Interact 2017; 275: 35-46.
[http://dx.doi.org/10.1016/j.cbi.2017.07.022] [PMID: 28757137]
[122]
Saha S, Pramanik K, Biswas A. Antibacterial activity and biocompatibility of curcumin/TiO2 nanotube array system on Ti6Al4V bone implants. Mater Technol 2021; 36(4): 221-32.
[http://dx.doi.org/10.1080/10667857.2020.1742984]
[123]
Oh SH, Na IY, Choi KH. The effect of curcumin against in vitro adhesion of implant device-associated bacteria on nanosized titanium dioxide. J Nano Res 2013; 23: 83-90.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.23.83]
[124]
Varaprasad K, Yallapu MM, Núñez D, et al. Generation of engineered core–shell antibiotic nanoparticles. RSC Advances 2019; 9(15): 8326-32.
[http://dx.doi.org/10.1039/C9RA00536F] [PMID: 31131098]
[125]
Varaprasad K, López M, Núñez D, et al. Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. J Mol Liq 2020; 300: 112353.
[http://dx.doi.org/10.1016/j.molliq.2019.112353]
[126]
Bhandari R, Gupta P, Dziubla T, Hilt JZ. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater Sci Eng C 2016; 67: 59-64.
[http://dx.doi.org/10.1016/j.msec.2016.04.093] [PMID: 27287099]
[127]
Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 2020; 10(2): 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[128]
Khan AK, Rashid R, Murtaza G, Zahra A. Zahra AJTjopr. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 2014; 13(7): 1169-77.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[129]
Farooq MU, Novosad V, Rozhkova EA, et al. RETRACTED ARTICLE: Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci Rep 2018; 8(1): 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[130]
Liang JJ, Zhou YY, Wu J, Ding Y. Gold nanoparticle-based drug delivery platform for antineoplastic chemotherapy. Curr Drug Metab 2014; 15(6): 620-31.
[http://dx.doi.org/10.2174/1389200215666140605131427] [PMID: 24909418]
[131]
Bednarski M, Dudek M, Knutelska J, et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies. Pharmacol Rep 2015; 67(3): 405-9.
[http://dx.doi.org/10.1016/j.pharep.2014.10.019] [PMID: 25933945]
[132]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[133]
Darwesh R, Elbialy NS. Iron oxide nanoparticles conjugated curcumin to promote high therapeutic efficacy of curcumin against hepatocellular carcinoma. Inorg Chem Commun 2021; 126: 108482.
[http://dx.doi.org/10.1016/j.inoche.2021.108482]
[134]
Al Shehab S, El Kurdi R, Patra D. Curcumin mediated PEG thiol acid conjugated gold nanoparticles for the determination of melamine. Microchem J 2020; 153: 104382.
[http://dx.doi.org/10.1016/j.microc.2019.104382]
[135]
Amanlou N, Parsa M, Rostamizadeh K, Sadighian S, Moghaddam F. Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Mater Chem Phys 2019; 226: 151-7.
[http://dx.doi.org/10.1016/j.matchemphys.2018.12.089]
[136]
Sun J, Chen F, Braun C, et al. Role of curcumin in the management of pathological pain. Phytomedicine 2018; 48: 129-40.
[http://dx.doi.org/10.1016/j.phymed.2018.04.045] [PMID: 30195871]
[137]
Alkhader E, Roberts CJ, Rosli R, et al. Pharmacokinetic and anti- colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles. J Biomater Sci Polym Ed 2018; 29(18): 2281-98.
[http://dx.doi.org/10.1080/09205063.2018.1541500] [PMID: 30376409]
[138]
Rastogi S, Pandey MM, Kumar Singh Rawat A. Spices: Therapeutic potential in cardiovascular health. Curr Pharm Des 2017; 23(7): 989-98.
[http://dx.doi.org/10.2174/1381612822666161021160009] [PMID: 27774899]
[139]
Ma Z, Wang N, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release 2019; 316: 359-80.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.053] [PMID: 31682912]
[140]
Janghel V, Patel P, Chandel SS. Plants used for the treatment of icterus (jaundice) in Central India: A review. Ann Hepatol 2019; 18(5): 658-72.
[http://dx.doi.org/10.1016/j.aohep.2019.05.003] [PMID: 31178344]
[141]
Arya P. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. Int J Pharm 2014; 460(1-2): 1-12.
[142]
Yallapu MM, Jaggi M. Curcumin nanomedicine: A road to cancer therapeutics Curr Pharm Des 2013; 19(11): 1994-2010.
[143]
Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144: 210-26.
[http://dx.doi.org/10.1016/j.phrs.2019.04.025] [PMID: 31022523]
[144]
Goel A, Kunnumakkara AB. Curcumin as "Curecumin": From kitchen to clinic. Biochem Pharmacol 2008; 75(4): 787-806.
[145]
Surh Y-J, Chun K-S, Cha H-H, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 2001; 480-481: 243-68.
[146]
Farhangkhoee H, Khan ZA, Chen S, Chakrabarti SJN. Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutr Metab 2006; 3: 27.
[147]
Kunnumakkara AB, Anand P, Aggarwal BBJCl. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269(2): 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009]
[148]
Clarke MA, Wentzensen N, Mirabello L, et al. Burk RDJCe, biomarkers, prevention. Human papillomavirus DNA methylation as a potential biomarker for cervical cancer HPV DNA methylation and cervical cancer 2012; 21: 2125-37.
[149]
Momtazi-Borojeni AA, Mosafer J, Nikfar B, Ekhlasi-Hundrieser M, Chaichian S, Mehdizadehkashi A. Curcumin in advancing treatment for gynecological cancers with developed drug- and radiotherapy-associated resistance. Rev Physiol Biochem Pharmacol 2019; 176: 107-29.
[150]
Singh M, Singh NJM. Curcumin counteracts the proliferative effect of estradiol and induces apoptosis in cervical cancer cells. Mol Cell Biochem 2011; 347(1-2): 1-11.
[151]
Chen S-Y, Chen Y, Li Y-P, et al. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2011; 19(18): 5596-604.
[152]
Suriati G, Mariatti M. Synthesis of silver nanoparticles by chemical reduction method: Effect of reducing agent and surfactant concentration. Int J Automot Mech Eng 2014; 10.
[153]
Kalska-Szostko B. Electrochemical methods in nanomaterials preparation. Recent Trend in Electrochemical Science and Technology. Intechopen 2012; pp. 261.
[154]
McGilvray KL, Decan MR, Wang D, Scaiano JC. Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 2006; 128(50): 15980-1.
[http://dx.doi.org/10.1021/ja066522h] [PMID: 17165719]
[155]
Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev 2013; 42(7): 2555-67.
[http://dx.doi.org/10.1039/C2CS35282F] [PMID: 23165883]
[156]
Kis-Csitári J, Kónya Z, Kiricsi I. Sonochemical synthesis of inorganic nanoparticles. Functionalized Nanoscale Materials, Devices and Systems. Heidelberg: Springer 2008; pp. 369-72.
[http://dx.doi.org/10.1007/978-1-4020-8903-9_33]
[157]
Daou TJ, Pourroy G, Bégin-Colin S, et al. Rogez GJCoM. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 2006; 18(18): 4399-404.
[http://dx.doi.org/10.1021/cm060805r]
[158]
Mascolo M, Pei Y, Ring T. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with different bases. Materials (Basel) 2013; 6(12): 5549-67.
[http://dx.doi.org/10.3390/ma6125549] [PMID: 28788408]
[159]
Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 2009; 321(12): 1838-42.
[http://dx.doi.org/10.1016/j.jmmm.2008.11.098]
[160]
Petcharoen K, Sirivat A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B 2012; 177(5): 421-7.
[http://dx.doi.org/10.1016/j.mseb.2012.01.003]
[161]
Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 2012; 5(4): 397-417.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.027]
[162]
López-Quintela M, Rivas J, Blanco M. Synthesis of nanoparticles in microemulsions. Nanoscale Materials 2004; 135-55.
[163]
Klinkova A, Therien-Aubin H, Klabunde KJ, Sergeev GB. Nanochemistry. Amsterdam: Elsevier 2013.
[164]
Urumese A, Jenjeti RN, Sampath S, Jagirdar BR. Colloidal europium nanoparticles via a solvated metal atom dispersion approach and their surface enhanced Raman scattering studies. J Colloid Interface Sci 2016; 476: 177-83.
[http://dx.doi.org/10.1016/j.jcis.2016.05.015] [PMID: 27214148]
[165]
Henam SD, Ahmad F, Shah MA, Parveen S, Wani AH. Microwave synthesis of nanoparticles and their antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc 2019; 213: 337-41.
[http://dx.doi.org/10.1016/j.saa.2019.01.071] [PMID: 30711904]
[166]
Souza JS, Hirata FTH, Corio P. Microwave-assisted synthesis of bismuth vanadate nanoflowers decorated with gold nanoparticles with enhanced photocatalytic activity. J Nanopart Res 2019; 21(2): 35.
[http://dx.doi.org/10.1007/s11051-019-4476-7]
[167]
Pauzi N, Mat Zain N, Ahmad Yusof NA. Microwave-assisted synthesis for environmentally ZnO nanoparticle synthesis. Proceedings of the 10th National Technical Seminar on Underwater System Technology. 2018; 541-6.
[168]
Meng X, Wang X, Geng D, Ozgit-Akgun C, Schneider N, Elam JW. Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Mater Horiz 2017; 4(2): 133-54.
[http://dx.doi.org/10.1039/C6MH00521G]
[169]
Lei Y, Lu J, Luo X, et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery. Nano Lett 2013; 13(9): 4182-9.
[http://dx.doi.org/10.1021/nl401833p] [PMID: 23927754]
[170]
Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 2007; 309(2): 307-11.
[http://dx.doi.org/10.1016/j.jmmm.2006.07.037]
[171]
Pradeep A, Priyadharsini P, Chandrasekaran G. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater 2008; 320(21): 2774-9.
[http://dx.doi.org/10.1016/j.jmmm.2008.06.012]
[172]
Manawi YM, Samara A, Al-Ansari T, Atieh MA. A review of carbon nanomaterials' synthesis via the Chemical Vapor Deposition (CVD) method. Materials 2018; 11(5): 822.
[173]
Lam C, Zhang YF, Tang YH, Lee CS, Bello I, Lee ST. Large-scale synthesis of ultrafine Si nanoparticles by ball milling. J Cryst Growth 2000; 220(4): 466-70.
[http://dx.doi.org/10.1016/S0022-0248(00)00882-4]
[174]
de Carvalho JF, de Medeiros SN, Morales MA, Dantas AL, Carriço AS. Synthesis of magnetite nanoparticles by high energy ball milling. Appl Surf Sci 2013; 275: 84-7.
[http://dx.doi.org/10.1016/j.apsusc.2013.01.118]
[175]
Kotov YA. Electric explosion of wires as a method for preparation of nanopowders. J Nanopart Res 2003; 5(5/6): 539-50.
[http://dx.doi.org/10.1023/B:NANO.0000006069.45073.0b]
[176]
Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv Colloid Interface Sci 2012; 170(1-2): 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[177]
Panahi Y, Saadat A, Beiraghdar F, Sahebkar A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: A randomized double-blind placebo-controlled trial. Phytother Res 2014; 28(10): 1461-7.
[http://dx.doi.org/10.1002/ptr.5149] [PMID: 24648302]
[178]
Steigerwalt R, Nebbioso M, Appendino G, et al. Meriva®, a lecithinized curcumin delivery system, in diabetic microangiopathy and retinopathy. Panminerva Med 2012; 54(1) (Suppl. 4): 11-6.
[PMID: 23241930]
[179]
Belcaro G, Cesarone MR, Dugall M, et al. Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients. Altern Med Rev 2010; 15(4): 337-44.
[PMID: 21194249]
[180]
Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 2013; 15(2): 324-36.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[181]
Mazzolani F. Pilot study of oral administration of a curcumin-phospholipid formulation for treatment of central serous chorioretinopathy. Clin Ophthalmol 2012; 6: 801-6.
[PMID: 22701080]
[182]
Belcaro G, Cesarone MR, Dugall M, et al. Product-evaluation registry of Meriva®, a curcumin-phosphatidylcholine complex, for the complementary management of osteoarthritis. Panminerva Med 2010; 52(2) (Suppl. 1): 55-62.
[PMID: 20657536]
[183]
Appendino G, Belcaro G, Cornelli U, et al. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med 2011; 53(3) (Suppl. 1): 43-9.
[PMID: 22108476]
[184]
Belcaro G, Hosoi M, Pellegrini L, et al. A controlled study of a lecithinized delivery system of curcumin (Meriva®) to alleviate the adverse effects of cancer treatment. Phytother Res 2014; 28(3): 444-50.
[http://dx.doi.org/10.1002/ptr.5014] [PMID: 23775598]
[185]
Di Pierro F, Settembre R. Safety and efficacy of an add-on therapy with curcumin phytosome and piperine and/or lipoic acid in subjects with a diagnosis of peripheral neuropathy treated with dexibuprofen. J Pain Res 2013; 6: 497-503.
[http://dx.doi.org/10.2147/JPR.S48432] [PMID: 23861596]
[186]
Kanai M, Imaizumi A, Otsuka Y, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 2012; 69(1): 65-70.
[http://dx.doi.org/10.1007/s00280-011-1673-1] [PMID: 21603867]
[187]
Nakagawa Y, Mukai S, Yamada S, et al. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: A randomized, double-blind, placebo-controlled prospective study. J Orthop Sci 2014; 19(6): 933-9.
[http://dx.doi.org/10.1007/s00776-014-0633-0] [PMID: 25308211]
[188]
Kakkar V, Kaur IP. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 2011; 49(11): 2906-13.
[http://dx.doi.org/10.1016/j.fct.2011.08.006] [PMID: 21889563]
[189]
Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 2013; 85(3): 339-45.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.005] [PMID: 23454202]
[190]
Zanotto-Filho A, Coradini K, Braganhol E, et al. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm 2013; 83(2): 156-67.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.019] [PMID: 23219677]
[191]
Liu Z, Smart JD, Pannala AS. Recent developments in formulation design for improving oral bioavailability of curcumin: A review. J Drug Deliv Sci Technol 2020; 60: 102082.
[http://dx.doi.org/10.1016/j.jddst.2020.102082]
[192]
Tsai YM, Chien CF, Lin LC, Tsai TH. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm 2011; 416(1): 331-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[193]
Khursheed R, Singh SK, Wadhwa S, et al. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. S Afr J Bot 2022; 149: 944-62.
[http://dx.doi.org/10.1016/j.sajb.2022.04.021]
[194]
Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater Sci Eng C 2017; 77: 1316-26.
[http://dx.doi.org/10.1016/j.msec.2017.03.226] [PMID: 28532009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy