Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Phytochemical-based Nanoformulations for Drug-resistant Brain Cancer

Author(s): Neha Saini, Shailendra Bhatt* and Manish Kumar

Volume 13, Issue 5, 2023

Published on: 03 August, 2023

Article ID: e090623217852 Pages: 13

DOI: 10.2174/2210681213666230609152755

Price: $65

Abstract

Background: Brain tumor is the deadliest to treat with conventional drug therapy as it has various side effects on patients leading to organ failure.

Objectives: It is difficult to treat brain cancers or deliver drugs to the targeted organ due to the numerous challenges faced. The current cytotoxic drugs have serious side effects, such as causing extreme damage to healthy cells, anemia associated with bone marrow suppression, constipation, small intestine infection, inflammatory responses, immunodeficiency, and multiorgan toxic effects. Low solubility, poor cell penetration, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues are also a few challenges. To overcome these issues, it is important to choose plant-based drugs in nano-formulations to inhibit tumor cell growth without harming the normal cells of an individual. The biggest challenge in treating tumors is multidrug resistance, which can be overcome by choosing combination therapies of drugs based on phytochemicals and chemotherapeutic agents, which may lead to minimized adverse effects on patients with brain tumors.

Results: As the use of nano-technology for targeted delivery enhances the performance of chemotherapeutic agents, the drugs with poor characteristics can further be encapsulated in nano-carriers and easily delivered to the poorly accessible areas of the brain.

Conclusion: Based on the current progression in nanoformulations, so many new therapeutic approaches are available to provide better therapeutic results. However, there seems to be a multitude of issues that need to be addressed in order to ensure efficient results in treating cancer and thus lessening the fatality rate.

Keywords: Brain, cancer, drug, nano-formulation, phytochemical, resistance.

Graphical Abstract
[1]
Pehlivan, S.B. Brain Tumors. In: Nanotechnology Methods for Neurological Diseases and Brain Tumors; Özdemir, Y.G.; Pehlivan, S.B.; Sekerdag, E., Eds.; Academic Press Elsevier, 2017; pp. 319-344.
[2]
Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: Current status and future prospects. J. Drug Target., 2018, 26(9), 731-752.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[3]
Seca, A.; Pinto, D. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[4]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[5]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[6]
Bredel, M. Anticancer drug resistance in primary human brain tumors. Brain Res. Brain Res. Rev., 2001, 35(2), 161-204.
[http://dx.doi.org/10.1016/S0165-0173(01)00045-5] [PMID: 11336781]
[7]
Cragg, G.M.; Kingston, D.G.I.; Newman, D.J. Anticancer Agents from Natural Products, 1st ed; Taylor & Francis Group: Boca Raton, FL, 2005.
[http://dx.doi.org/10.1201/9781420039658]
[8]
Blakeley, J. Drug delivery to brain tumors. Curr. Neurol. Neurosci. Rep., 2008, 8(3), 235-241.
[http://dx.doi.org/10.1007/s11910-008-0036-8] [PMID: 18541119]
[9]
Bhowmik, A.; Khan, R.; Ghosh, M.K. Blood brain barrier: A challenge for effectual therapy of brain tumors. BioMed Res. Int., 2015, 2015, 1-20.
[http://dx.doi.org/10.1155/2015/320941] [PMID: 25866775]
[10]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[11]
Garg, J.; Pathania, K.; Sah, S.P.; Pawar, S.V. Nanostructured lipid carriers: A promising drug carrier for targeting brain tumours. Future J. Pharm. Sci., 2022, 8(1), 25.
[http://dx.doi.org/10.1186/s43094-022-00414-8]
[12]
Alahmari, A. Blood-brain barrier overview: Structural and functional correlation. Neural Plast., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6564585] [PMID: 34912450]
[13]
Belykh, E.; Shaffer, K.V.; Lin, C.; Byvaltsev, V.A.; Preul, M.C.; Chen, L. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: Delivering optical labels to brain tumors. Front. Oncol., 2020, 10, 739.
[http://dx.doi.org/10.3389/fonc.2020.00739] [PMID: 32582530]
[14]
Mo, F.; Pellerino, A.; Soffietti, R.; Rudà, R. Blood–brain barrier in brain tumors: Biology and clinical relevance. Int. J. Mol. Sci., 2021, 22(23), 12654.
[http://dx.doi.org/10.3390/ijms222312654] [PMID: 34884457]
[15]
Kumar, P.; Yadav, N.; Chaudhary, B.; Jain, V.; Balaramnavar, V.M.; Alharbi, K.S.; Alenezi, S.K. Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem. Biol. Interact., 2022, 351, 109745.
[16]
Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer, 2020, 20(1), 26-41.
[http://dx.doi.org/10.1038/s41568-019-0205-x] [PMID: 31601988]
[17]
Woodworth, G.F.; Dunn, G.P.; Nance, E.A.; Hanes, J.; Brem, H. Emerging insights into barriers to effective brain tumor therapeutics. Front. Oncol., 2014, 4, 126.
[http://dx.doi.org/10.3389/fonc.2014.00126] [PMID: 25101239]
[18]
Agrahari, V. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches. Neural Regen. Res., 2017, 12(2), 197-200.
[http://dx.doi.org/10.4103/1673-5374.200796] [PMID: 28400793]
[19]
Giunchedi, P.; Gavini, E.; Bonferoni, M.C. Nose-to-Brain delivery. Pharmaceutics, 2020, 12(2), 138.
[http://dx.doi.org/10.3390/pharmaceutics12020138] [PMID: 32041344]
[20]
Liu, Q.; Zhang, Q. Nanoparticle systems for nose-to-brain delivery.Brain targeted drug delivery system; Gao, H.; Gao, X., Eds.; , 2019, pp. 219-239.
[21]
Dhuyvetter, D.; Tekle, F.; Nazarov, M.; Vreeken, R.J.; Borghys, H.; Rombouts, F.; Lenaerts, I.; Bottelbergs, A. Direct nose to brain delivery of small molecules: Critical analysis of data from a standardized in vivo screening model in rats. Drug Deliv., 2020, 27(1), 1597-1607.
[http://dx.doi.org/10.1080/10717544.2020.1837291] [PMID: 33169635]
[22]
Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; Jones, D.T.W.; Joyce, J.A.; Kearns, P.; Kieran, M.W.; Mellinghoff, I.K.; Merchant, M.; Pfister, S.M.; Pollard, S.M.; Ramaswamy, V.; Rich, J.N.; Robinson, G.W.; Rowitch, D.H.; Sampson, J.H.; Taylor, M.D.; Workman, P.; Gilbertson, R.J. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol., 2019, 16(8), 509-520.
[http://dx.doi.org/10.1038/s41571-019-0177-5] [PMID: 30733593]
[23]
Laquintana, V.; Trapani, A.; Denora, N.; Wang, F.; Gallo, J.M.; Trapani, G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin. Drug Deliv., 2009, 6(10), 1017-1032.
[http://dx.doi.org/10.1517/17425240903167942] [PMID: 19732031]
[24]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[25]
Haumann, R.; Videira, J.C.; Kaspers, G.J.L.; van Vuurden, D.G.; Hulleman, E. Overview of current drug delivery methods across the blood–brain barrier for the treatment of primary brain tumors. CNS Drugs, 2020, 34(11), 1121-1131.
[http://dx.doi.org/10.1007/s40263-020-00766-w] [PMID: 32965590]
[26]
Roda, E.; Bottone, M.G. Editorial: Brain cancers: New perspectives and therapies. Front. Neurosci., 2022, 16, 857408.
[http://dx.doi.org/10.3389/fnins.2022.857408] [PMID: 35237126]
[27]
Lyon, J.G.; Mokarram, N.; Saxena, T.; Carroll, S.L.; Bellamkonda, R.V. Engineering challenges for brain tumor immunotherapy. Adv. Drug Deliv. Rev., 2017, 114, 19-32.
[http://dx.doi.org/10.1016/j.addr.2017.06.006] [PMID: 28625831]
[28]
Fidler, I.J. The biology of brain metastasis. Cancer J., 2015, 21(4), 284-293.
[http://dx.doi.org/10.1097/PPO.0000000000000126] [PMID: 26222080]
[29]
Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol., 2019, 10(1), 11.
[http://dx.doi.org/10.1186/s12645-019-0055-y]
[30]
Menei, P.; Venier, M.C.; Gamelin, E.; Saint-André, J.P.; Hayek, G.; Jadaud, E.; Fournier, D.; Mercier, P.; Guy, G.; Benoit, J.P. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma: A pilot study. Cancer, 1999, 86(2), 325-330.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990715)86:2<325:AID-CNCR17>3.0.CO;2-S] [PMID: 10421269]
[31]
Madane, R.G.; Mahajan, H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv., 2016, 23(4), 1326-1334.
[http://dx.doi.org/10.3109/10717544.2014.975382] [PMID: 25367836]
[32]
Belhadj, Z.; Zhan, C.; Ying, M.; Wei, X.; Xie, C.; Yan, Z.; Lu, W. Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget, 2017, 8, 66889-66900.
[33]
Madala, H.R.; Punganuru, S.R.; Ali-Osman, F.; Zhang, R.; Srivenugopal, K.S. Brain- and brain tumor-penetrating disulfiram nanoparticles: Sequence of cytotoxic events and efficacy in human glioma cell lines and intracranial xenografts. Oncotarget, 2018, 9(3), 3459-3482.
[http://dx.doi.org/10.18632/oncotarget.23320] [PMID: 29423059]
[34]
Byeon, H.J.; Thao, L.Q.; Lee, S.; Min, S.Y.; Lee, E.S.; Shin, B.S.; Choi, H.G.; Youn, Y.S. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J. Control. Release, 2016, 225, 301-313.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.046] [PMID: 26826308]
[35]
Trapani, A.; Denora, N.; Iacobellis, G.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: A promising strategy for the administration of the anticancer drug to brain tumors. AAPS PharmSciTech, 2011, 12(4), 1302-1311.
[http://dx.doi.org/10.1208/s12249-011-9695-x] [PMID: 21948322]
[36]
Bonferoni, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “Nose-to-Brain” drug delivery. Pharmaceutics, 2019, 11(2), 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[37]
Koziara, J.M.; Lockman, P.R.; Allen, D.D.; Mumper, R.J. Paclitaxel nanoparticles for the potential treatment of brain tumors. J. Control. Release, 2004, 99(2), 259-269.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.006] [PMID: 15380635]
[38]
Reddy, G.R.; Bhojani, M.S.; McConville, P.; Moody, J.; Moffat, B.A.; Hall, D.E.; Kim, G.; Koo, Y.E.L.; Woolliscroft, M.J.; Sugai, J.V.; Johnson, T.D.; Philbert, M.A.; Kopelman, R.; Rehemtulla, A.; Ross, B.D. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res., 2006, 12(22), 6677-6686.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0946] [PMID: 17121886]
[39]
Shi, M.; Anantha, M.; Wehbe, M.; Bally, M.B.; Fortin, D.; Roy, L.O.; Charest, G.; Richer, M.; Paquette, B.; Sanche, L. Liposomal formulations of carboplatin injected by convection-enhanced delivery increases the median survival time of F98 glioma bearing rats. J. Nanobiotechnology, 2018, 16(1), 77.
[http://dx.doi.org/10.1186/s12951-018-0404-8] [PMID: 30290821]
[40]
Gaillard, P.J.; Appeldoorn, C.C.M.; Dorland, R.; van Kregten, J.V.; Manca, F.; Vugts, D.J.; Windhorst, B.; Van Dongen, G.A.; De Vries, H.E. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). Plosone J., 2014, 9(1), e82331.
[41]
Parikh, R.H.; Patel, B.K. Formulation development and evaluation of temozolomide loaded hydrogenated soya phosphatidylcholine liposomes for the treatment of brain cancer. As. J. Pharm. Clinic. Res., 2016, 9, 340-344.
[42]
Li, D.; Yang, K.; Li, J.S.; Ke, X.Y.; Duan, Y.; Du, R.; Song, P.; Yu, K.F.; Ren, W.; Huang, D.; Li, X.H.; Hu, X.; Zhang, X.; Zhang, Q. Antitumor efficacy of a novel CLA-PTX microemulsion against brain tumors: In vitro and in vivo findings. Int. J. Nanomedicine, 2012, 7, 6105-6114.
[PMID: 23269869]
[43]
De, A.; Venkatesh, N.; Senthil, M.; Sanapalli, B.; Shanmugham, R.; Karri, V. Smart niosomes of temozolomide for enhancement of brain targeting. Sage J. Nanobiomed., 2018, 2018(5), 1-11.
[44]
Gorain, B.; Choudhury, H.; Pandey, M.; Amin, M.C.I.M.; Singh, B.; Gupta, U.; Kesharwani, P. Dendrimers as Effective Carriers for the Treatment of Brain Tumor; Kesharwani, P; Gupta, U., Ed.; Academic Press, 2018, pp. 267-305.
[45]
Jiang, Y.; Lv, L.; Shi, H.; Hua, Y.; Lv, W.; Wang, X.; Xu, Q. PEGylated polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma; Colloids and Surfaces. B, Biointerfaces; Elsevier Science B.V., 2016, Vol. 147, pp. 242-249.
[46]
Teow, H.M.; Zhou, Z.; Najlah, M.; Yusof, S.R.; Abbott, N.J.; D’Emanuele, A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int. J. Pharm., 2013, 441(1-2), 701-711.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.024] [PMID: 23089576]
[47]
Hou, Z.; Li, Y.; Huang, Y.; Zhou, C.; Lin, J.; Wang, Y.; Cui, F.; Zhou, S.; Jia, M.; Ye, S.; Zhang, Q. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol. Pharm., 2013, 10(1), 90-101.
[http://dx.doi.org/10.1021/mp300489p] [PMID: 23194396]
[48]
Martins, S.M.; Sarmento, B.; Nunes, C.; Lúcio, M.; Reis, S.; Ferreira, D.C. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur. J. Pharm. Biopharm., 2013, 85(3), 488-502.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.011] [PMID: 23994244]
[49]
Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evidence-based complementary and alternative medicine. Hindawi, 2013, 15, 302426.
[50]
Thapa, R.K.; Khan, G.M.; Baral, K.P.; Thapa, P. Herbal medicine incorporated nanoparticles: Advancements in herbal treatment. As. J. Biomed. Pharm. Sci., 2013, 3(24), 7-14.
[51]
Mateti, T.; Aswath, S.; Vatti, A.K.; Kamath, A.; Laha, A. A review on allopathic and herbal nanofibrous drug delivery vehicles for cancer treatments. Biotechnol. Rep., 2021, 31, e00663.
[52]
Kianian, F.; Marefati, N.; Boskabady, M.; Ghasemi, S.Z.; Boskabady, M.H. Pharmacological properties of Allium cepa, preclinical and clinical evidences; a review. Iran. J. Pharm. Res., 2021, 20(2), 107-134.
[PMID: 34567150]
[53]
Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161.
[http://dx.doi.org/10.3390/biom10010161] [PMID: 31963897]
[54]
Chen, M.; Wu, J.; Luo, Q.; Mo, S.; Lyu, Y.; Wei, Y.; Dong, J. The anticancer properties of herba epimedii and its main bioactive componentsicariin and Icariside II. Nutrients, 2016, 8(9), 563.
[http://dx.doi.org/10.3390/nu8090563] [PMID: 27649234]
[55]
Tezcan, G.; Tunca, B.; Bekar, A.; Yalcin, M.; Sahin, S.; Budak, F.; Cecener, G.; Egeli, U.; Demir, C.; Guvenc, G.; Yilmaz, G.; Erkan, L.G.; Malyer, H.; Taskapilioglu, M.O.; Evrensel, T.; Bilir, A. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines. Cell. Mol. Neurobiol., 2015, 35(2), 175-187.
[http://dx.doi.org/10.1007/s10571-014-0109-y] [PMID: 25212824]
[56]
Małek, A.; Kocot, J.; Mitrowska, K.; Posyniak, A.; Kurzepa, J. Bee venom effect on glioblastoma cells viability and gelatinase secretion. Front. Neurosci., 2022, 16, 792970.
[http://dx.doi.org/10.3389/fnins.2022.792970] [PMID: 35221898]
[57]
Żukowska, R.M.; Borawska, M.H.; Fiedorowicz, A.; Naliwajko, S.K.; Sawicka, D.; Car, H. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line. BMC Complement. Altern. Med., 2013, 13, 50.
[58]
Aghamohammadi, A.; Hosseinimehr, S.J.; Ghasemi, A.; Azadbakht, M.; Pourfallah, T.A. Radiosensitization effects of a zataria multiflora extract on human glioblastoma cells. Asian Pac. J. Cancer Prev., 2015, 16(16), 7285-7290.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7285] [PMID: 26514525]
[59]
Liao, C.L.; Ma, Y.S.; Hsia, T.C.; Chou, Y.C.; Lien, J.C.; Peng, S.F.; Kuo, C.L.; Hsu, F.T. Tetrandrine suppresses human brain glioblastoma GBM 8401/luc2 cell-xenografted subcutaneous tumors in nude mice in vivo. Molecules, 2021, 26(23), 7105.
[60]
Chang, E.; Pohling, C.; Beygui, N.; Patel, C.B.; Rosenberg, J.; Ha, D.H.; Gambhir, S.S. Synergistic inhibition of glioma cell proliferation by Withaferin A and tumor treating fields. J. Neurooncol., 2017, 134(2), 259-268.
[http://dx.doi.org/10.1007/s11060-017-2534-5] [PMID: 28681243]
[61]
Sahin Yaglıoglu, A.; Eser, F.; Tekin, S.; Onal, A. Antiproliferative activities of several plant extracts from Turkey on rat brain tumor and human cervix carcinoma cell lines. Front. Life Sci., 2016, 9(1), 69-74.
[http://dx.doi.org/10.1080/21553769.2015.1089949]
[62]
Wang, S.; An, J.; Dong, W.; Wang, X.; Sheng, J.; Jia, Y.; He, Y.; Ma, X.; Wang, J.; Yu, D.; Jia, X.; Wang, B.; Yu, W.; Liu, K.; Zhao, Y.; Wu, Y.; Zhu, W.; Pan, Y. Glucose-coated berberine nanodrug for glioma therapy through mitochondrial pathway. Int. J. Nanomedicine, 2020, 15, 7951-7965.
[http://dx.doi.org/10.2147/IJN.S213079] [PMID: 33116511]
[63]
Raisova, M.; Hossini, A.M.; Eberle, J.; Riebeling, C.; Orfanos, C.E.; Geilen, C.C.; Wieder, T.; Sturm, I.; Daniel, P.T. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol., 2001, 117(2), 333-340.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01409.x] [PMID: 11511312]
[64]
Dhupal, M.; Chowdhury, D. Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. Int. J. Nanomedicine, 2020, 15, 9125-9157.
[http://dx.doi.org/10.2147/IJN.S259628] [PMID: 33244231]
[65]
Saif, M.W.; Sarantopoulos, J.; Patnaik, A.; Tolcher, A.W.; Takimoto, C.; Beeram, M. Tesetaxel, a new oral taxane, in combination with capecitabine: A phase I, dose-escalation study in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2011, 68(6), 1565-1573.
[http://dx.doi.org/10.1007/s00280-011-1639-3] [PMID: 21547572]
[66]
Oudard, S. TROPIC: Phase III trial of cabazitaxel for the treatment of metastatic castration-resistant prostate cancer. Future Oncol., 2011, 7(4), 497-506.
[http://dx.doi.org/10.2217/fon.11.23] [PMID: 21463139]
[67]
More, M.P.; Pardeshi, S.R.; Pardeshi, C.V.; Sonawane, G.A.; Shinde, M.N.; Deshmukh, P.K.; Naik, J.B.; Kulkarni, A.D. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med. Drug Discov., 2021, 10, 100082.
[http://dx.doi.org/10.1016/j.medidd.2021.100082]
[68]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[69]
Gong, J.; Jaiswal, R.; Mathys, J.M.; Combes, V.; Grau, G.E.R.; Bebawy, M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat. Rev., 2012, 38(3), 226-234.
[http://dx.doi.org/10.1016/j.ctrv.2011.06.005] [PMID: 21757296]
[70]
Giri, T.K. Breaking the barrier of cancer through liposome loaded with phytochemicals. Curr. Drug Deliv., 2018, 16(1), 3-17.
[http://dx.doi.org/10.2174/1567201815666180918112139]
[71]
Luciano, R.; Battafarano, G.; Saracino, R.; Rossi, M.; Perrotta, A.; Manco, M.; Muraca, M.; Fattore, A. New perspectives in glioblastoma: Nanoparticles-based approaches. Curr. Cancer Drug Targets, 2017, 17(3), 203-220.
[http://dx.doi.org/10.2174/1568009616666160813190732] [PMID: 27528362]
[72]
Giri, T.K.; Mukherjee, P.; Barman, T.K.; Maity, S. Nano-encapsulation of capsaicin on lipid vesicle and evaluation of their hepatocellular protective effect. Int. J. Biol. Macromol., 2016, 88, 236-243.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.056] [PMID: 27032489]
[73]
Kumar Giri, T.; Alexander, A. Ajazuddin; Kumar Barman, T.; Maity, S. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system. Curr. Drug Deliv., 2016, 13(1), 27-39.
[http://dx.doi.org/10.2174/1567201812666150603151250] [PMID: 26036845]
[74]
Liu, Y.; Song, X.; Wu, M.; Wu, J.; Liu, J. Synergistic effects of resveratrol and temozolomide against glioblastoma cells: Underlying mechanism and therapeutic implications. Cancer Manag. Res., 2020, 12, 8341-8354.
[http://dx.doi.org/10.2147/CMAR.S258584] [PMID: 32982428]
[75]
Yokoyama, S.; Hirano, H.; Wakimaru, N.; Sarker, K.P.; Kuratsu, J. Inhibitory effect of epigallocatechin-gallate on brain tumor cell lines in vitro. Neuro-oncol., 2001, 3(1), 22-28.
[http://dx.doi.org/10.1093/neuonc/3.1.22] [PMID: 11305413]
[76]
Granja, A.; Pinheiro, M.; Reis, S. Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients, 2016, 8(5), 307.
[http://dx.doi.org/10.3390/nu8050307] [PMID: 27213442]
[77]
Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomedicine, 2012, 7, 271-280.
[PMID: 22275840]
[78]
Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H.; Soltani, A.; Javid, H.; Afshari, A.R.; Sahebkar, A. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors, 2020, 46(3), 356-366.
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[79]
Annaji, M.; Poudel, I.; Boddu, S.H.S.; Arnold, R.D.; Tiwari, A.K.; Babu, R.J. Resveratrol‐loaded nanomedicines for cancer applications. Cancer Rep., 2021, 4(3), e1353.
[http://dx.doi.org/10.1002/cnr2.1353] [PMID: 33655717]
[80]
Wang, Y.; Ying, X.; Xu, H.; Yan, H.; Li, X.; Tang, H. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int. J. Nanomedicine, 2017, 12, 1369-1384.
[http://dx.doi.org/10.2147/IJN.S124276] [PMID: 28260885]
[81]
Li, X.Y. Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials, 2014, 35(21), 5591-5604.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.049]
[82]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-Based Nanoparticles: Application and recent advances in cancer treatment. Nanomaterials, 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[83]
Boyle, F.M.; Eller, S.L.; Grossman, S.A. Penetration of intra-arterially administered vincristine in experimental brain tumor. Neuro-oncol., 2004, 6(4), 300-306.
[http://dx.doi.org/10.1215/S1152851703000516] [PMID: 15494097]
[84]
Shrestha, B.; Pokhrel, A.R.; Darsandhari, S.; Parajuli, P.; Sohng, J.K.; Pandey, R.P. Engineering Streptomyces peucetius for Doxorubicin and Daunorubicin Biosynthesis.Pharmaceuticals from Microbes. Environmental Chemistry for a Sustainable World; Arora, D.; Sharma, C.; Jaglan, S.; Lichtfouse, E., Eds.; Springer: Cham, 2019, p. 26.
[http://dx.doi.org/10.1007/978-3-030-01881-8_7]
[85]
Li, X.T.; Ju, R.J.; Li, X.Y.; Zeng, F.; Shi, J.F.; Liu, L.; Zhang, C.X.; Sun, M.G.; Lou, J.N.; Lu, W.L. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget, 2014, 5(15), 6497-6511.
[http://dx.doi.org/10.18632/oncotarget.2267] [PMID: 25153726]
[86]
Wong, E.T.; Berkenblit, A. The role of topotecan in the treatment of brain metastases. Oncologist, 2004, 9(1), 68-79.
[http://dx.doi.org/10.1634/theoncologist.9-1-68] [PMID: 14755016]
[87]
Srivastava, S.; Arora, S.; Singh, S.; Singh, A. Phytochemicals, microRNAs, and Cancer: Implications for Cancer Prevention and Therapy. In: Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy; Chandra, D., Ed.; Springer: New York, 2013; pp. 187-206.
[http://dx.doi.org/10.1007/978-1-4614-9326-6_9]
[88]
González-Vallinas, M.; González-Castejón, M.; Rodríguez-Casado, A.; Ramírez de Molina, A. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr. Rev., 2013, 71(9), 585-599.
[http://dx.doi.org/10.1111/nure.12051] [PMID: 24032363]
[89]
Patra, S.; Nayak, R.; Patro, S.; Pradhan, B.; Sahu, B.; Behera, C.; Bhutia, S.K.; Jena, M. Chemical diversity of dietary phytochemicals and their mode of chemoprevention. Biotechnol. Rep., 2021, 30, e00633.
[http://dx.doi.org/10.1016/j.btre.2021.e00633] [PMID: 34094892]
[90]
Qi, Q.; Liu, X.; Li, S.; Joshi, H.C.; Ye, K. Synergistic suppression of noscapine and conventional chemotherapeutics on human glioblastoma cell growth. Acta Pharmacol. Sin., 2013, 34(7), 930-938.
[http://dx.doi.org/10.1038/aps.2013.40] [PMID: 23708557]
[91]
Cui, W.Q.; Wang, S.T.; Pan, D.; Chang, B.; Sang, L.X. Caffeine and its main targets of colorectal cancer. World J. Gastrointest. Oncol., 2020, 12(2), 149-172.
[http://dx.doi.org/10.4251/wjgo.v12.i2.149] [PMID: 32104547]
[92]
Nanoparticle for targeting brain tumors and delivery of o6- benzylguanine. available from: https://patents.justia.com/patent/20140286872 (Accessed on: June 01, 2022).
[93]
RNA nanoparticles for brain tumor treatment.US Patent US10584144B2. Available from: https://patents.google.com/patent/US10584144B2/en (Accessed on: June 02, 2022).
[94]
Xiyang, S.; Lijun, M. Nanometer drug delivery system targeted for brain tumors and tumor stem cells thereof and preparation and application of nanometer drug delivery system. CN Patent 11,0179,753, 2019.
[95]
Zhou, J.; Han, L.; Piepmeier, J.M. Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof. U.S. Patent 20,180,126,014, 2018.
[96]
Yun, L.D.; Jae, L.S.; Shik, K.H. Lactoferrin-conjugated nanoparticle complex and use thereof. U.S. Patent 20170,281,797, 2017.
[97]
Muheem, A.; Jahangir, M.A.; Jaiswal, C.P.; Jafar, M.; Ahmad, M.Z.; Ahmad, J.; Warsi, M.H. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders. Curr. Drug Metab., 2021, 22(4), 263-279.
[http://dx.doi.org/10.2174/18755453MTEyjMzIn3] [PMID: 33305703]
[98]
Sabel, B.; Walz, C.; Ringe, K. Use of NPs for the DNA administration to a target organ. US Patent: US7402573, 2008.
[99]
Mukherjee, P.; Bhattacharya, R.; Mukhopadhyay, D. NPs for therapeutic and diagnostic applications. US Patent: US20060222595, 2006.
[100]
Invernici, G.; Cristini, S.; Alessandri, G.; Navone, S.E.; Canzi, L.; Tavian, D.; Redaelli, C.; Acerbi, F.; Parati, E.A. Nanotechnology advances in brain tumors: The state of the art. Recent Patents Anticancer Drug Discov., 2011, 6(1), 58-69.
[http://dx.doi.org/10.2174/157489211793979990] [PMID: 21110824]
[101]
Use of boswellic acid for treating brain tumors. US Patent: US5919821A. Available from: https://patents.google.com/patent/US5919821A/en (Accessed on: June 04, 2022).
[102]
CSF-1R inhibitors for treatment of brain tumors. Patent # 10,537,561. Available from: https://patents.justia.com/patent/10537561 (Accessed on: June 04, 2022).
[103]
AGuIX Nanoparticles With Radiotherapy Plus Concomitant Temozolomide in the Treatment of Newly Diagnosed Glioblastoma (NANO-GBM). ClinicalTrials.gov Identifier: NCT04881032. Available from: https://clinicaltrials.gov/ct2/show/NCT04881032?term=nanoparticle&recrs=abcd&cond=Cancer+AND+%22Glioblastoma%22&draw=2&rank=1 (Accessed on: June 05, 2022).
[104]
Nab-sirolimus in Recurrent High Grade Glioma and Newly Diagnosed Glioblastoma. ClinicalTrials.gov Identifier: NCT03463265. Available from: https://clinicaltrials.gov/ct2/show/NCT03463265?term=nanoparticle&recrs=abcd&cond=Cancer+AND+%22Glioblastoma%22&draw=2&rank=2 (Accessed on: June 05, 2022).
[105]
Zeeshan, M.; Mukhtar, M.; Ain, Q.U.; Khan, S.; Ali, H. Nanopharmaceuticals: A boon to the brain-targeted drug delivery.In: Ahmad, U.; Akhtar, J., Eds. Pharmaceutical Formulation Design - Recent Practices; Intech Open, 2020.
[http://dx.doi.org/10.5772/intechopen.83040]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy