Review Article

无标记电化学方法用于传染病的超灵敏多重蛋白谱分析

卷 31, 期 25, 2024

发表于: 10 October, 2023

页: [3857 - 3869] 页: 13

弟呕挨: 10.2174/0929867330666230609112052

价格: $65

摘要

电化学检测方法在生物标志物的敏感性和特异性测定方面是比较合适的检测方法。生物标志物是疾病诊断和监测的生物学靶标。本文综述了传染病诊断中生物标志物无标记检测的最新进展。讨论了传染病快速检测技术的现状及其临床应用和面临的挑战。无标签电分析方法可能是实现这一目标最有希望的方法。我们目前正处于使用无标签蛋白质电化学来开发生物传感器的新兴技术的早期阶段。迄今为止,基于抗体的生物传感器已经得到了大量的开发,尽管在再现性和灵敏度方面仍需要许多改进。此外,毫无疑问,越来越多的适体和基于纳米材料的无标签生物传感器将很快用于疾病诊断和治疗监测。在这篇综述文章中,我们还讨论了细菌和病毒感染诊断的最新进展,以及使用无标记电化学方法监测炎症性疾病的现状。

关键词: 传染病,电化学,生物标志物,诊断,生物传感器,无标签。

Next »
[1]
Shiels, M.S.; Haque, A.T.; Berrington de González, A.; Freedman, N.D. Leading causes of death in the US during the COVID-19 Pandemic, March 2020 to October 2021. JAMA Intern. Med., 2022, 182(8), 883-886.
[http://dx.doi.org/10.1001/jamainternmed.2022.2476] [PMID: 35788262]
[2]
Kalashgrani, M.Y.; Babapoor, A. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Adv. Appl. NanoBio-Tech., 2022, 2022(1), 22-35.
[http://dx.doi.org/10.47227/AANBT/3(1)35]
[3]
Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett., 2021, 4(11), 309-334.
[http://dx.doi.org/10.1007/s13534-021-00204-w]
[4]
Jarockyte, G.; Karabanovas, V.; Rotomskis, R.; Mobasheri, A. Multiplexed nanobiosensors: Current trends in early diagnostics. Sensors, 2020, 20(23), 6890.
[http://dx.doi.org/10.3390/s20236890]
[5]
Pathogen testing: Immunoassay vs. molecular methods. 2020. Available from: https://www.eurofinsus.com/food-testing/resources/pathogen-testing-immunoassay-vs-molecular-methods/
[6]
Liu, R.; Ye, X.; Cui, T. Recent progress of biomarker detection sensors. Research, 2020, 2020, 2020/7949037.
[http://dx.doi.org/10.34133/2020/7949037] [PMID: 33123683]
[7]
Li, H.; Huang, Y.; Hou, G.; Xiao, A.; Chen, P.; Liang, H.; Huang, Y.; Zhao, X.; Liang, L.; Feng, X.; Guan, B-O. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Available from: https://www.science.org
[8]
Adeniyi, O.K.; Mashazi, P.N. Stable thin films of human P53 antigen on gold surface for the detection of tumour associated anti-P53 autoantibodies. Electrochim. Acta, 2020, 331, 135272.
[http://dx.doi.org/10.1016/j.electacta.2019.135272]
[9]
Gil Rosa, B.; Akingbade, O.E.; Guo, X.; Gonzalez-Macia, L.; Crone, M.A.; Cameron, L.P.; Freemont, P.; Choy, K.L.; Güder, F.; Yeatman, E.; Sharp, D.J.; Li, B. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens. Bioelectron., 2022, 203, 114050.
[http://dx.doi.org/10.1016/j.bios.2022.114050] [PMID: 35134685]
[10]
Haleem, A.; Javaid, M.; Singh, R. P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors Int., 2021, 2, 100100.
[http://dx.doi.org/10.1016/j.sintl.2021.100100]
[11]
Dennis, D.T. The biochemistry of energy utilization in plants; Springer Nature: Switzerland, 1987.
[12]
Narayan, R. Encyclopedia of Sensors, and Biosensors, 1st ed.; Elsevier: Amsterdam, 2022.
[13]
Sengupta, J.; Hussain, C. M. Decadal journey of CNT-based analytical biosensing platforms in the detection of human viruses. Nanomaterials, 2022, 12(23), 4132.
[http://dx.doi.org/10.3390/nano12234132]
[14]
Curulli, A. Electrochemical biosensors in food safety: Challenges and perspectives. Molecules, 2021, 26(10), 2940.
[http://dx.doi.org/10.3390/molecules26102940] [PMID: 34063344]
[15]
Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[16]
Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev., 2008, 108(2), 423-461.
[http://dx.doi.org/10.1021/cr068105t] [PMID: 18229952]
[17]
Cooper, M. A. Optical biosensors in drug discovery. Nat Rev Drug Discov., 2002, 1(7), 515-28.
[http://dx.doi.org/10.1038/nrd838]
[18]
Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M. Optical biosensors for label-free detection of small molecules. Sensors, 2018, 18(12), 4126.
[http://dx.doi.org/10.3390/s18124126] [PMID: 30477248]
[19]
Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst, 2020, 145(5), 1605-1628.
[http://dx.doi.org/10.1039/C9AN01998G] [PMID: 31970360]
[20]
Rezaei, B.; Irannejad, N. Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors; Elsevier Inc.: Amsterdam, 2019.
[http://dx.doi.org/10.1016/B978-0-12-816491-4.00002-4]
[21]
Schöning, M.J.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst, 2002, 127(9), 1137-1151.
[http://dx.doi.org/10.1039/B204444G] [PMID: 12375833]
[22]
Matsumoto, A.; Miyahara, Y. Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 2013, 5(22), 10702-10718.
[http://dx.doi.org/10.1039/c3nr02703a] [PMID: 24064964]
[23]
Tu, J.; Gan, Y.; Liang, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg2+ detection in environmental pollutants. Front Chem., 2018, 6(AUG), 333.
[http://dx.doi.org/10.3389/fchem.2018.00333] [PMID: 30155458]
[24]
Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.K.; Green, N.G. Field-effect sensors – from pH sensing to biosensing: Sensitivity enhancement using streptavidin–biotin as a model system. Analyst, 2017, 142(22), 4173-4200.
[http://dx.doi.org/10.1039/C7AN00455A] [PMID: 29072718]
[25]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[26]
Huang, X.; Zhu, Y.; Kianfar, E. Nano biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol., 2021, 12, 1649-1672.
[http://dx.doi.org/10.1016/j.jmrt.2021.03.048]
[27]
Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit Rev Biotechnol., 2016, 36(3), 465-81.
[http://dx.doi.org/10.3109/07388551.2014.991270]
[28]
Andryukov, B. G.; Besednova, N. N.; Romashko, R. V.; Zaporozhets, T. S.; Efimov, T. A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors, 2020, 10(2), 11.
[http://dx.doi.org/10.3390/bios10020011]
[29]
Hyun, J.J.; Seo, Y.S.; An, H.; Yim, S.Y.; Seo, M.H.; Kim, H.S.; Kim, C.H.; Kim, J.H.; Keum, B.; Kim, Y.S.; Yim, H.J.; Lee, H.S.; Um, S.H.; Kim, C.D.; Ryu, H.S. Optimal time for repeating the IgM anti-hepatitis A virus antibody test in acute hepatitis A patients with a negative initial test. Korean J. Hepatol., 2012, 18(1), 56-62.
[http://dx.doi.org/10.3350/kjhep.2012.18.1.56] [PMID: 22511904]
[30]
Skinhøj, P.; Mikkelsen, F.; Hollinger, F.B. Hepatitis ain greenland: Importance of specific antibody testing in epidemiologic surveillance. Am. J. Epidemiol., 1977, 105(2), 140-147.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a112366] [PMID: 189600]
[31]
Nainan, O.V.; Xia, G.; Vaughan, G.; Margolis, H.S. Diagnosis of hepatitis a virus infection: A molecular approach. Clin. Microbiol. Rev., 2006, 19(1), 63-79.
[http://dx.doi.org/10.1128/CMR.19.1.63-79.2006] [PMID: 16418523]
[32]
Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A label-free immunosensor based on Graphene Oxide/Fe3O4/Prussian Blue nanocomposites for the electrochemical determination of HBsAg. Biosensors, 2020, 10(3), 24.
[http://dx.doi.org/10.3390/bios10030024] [PMID: 32183297]
[33]
Vemula, S. V.; Zhao, J.; Liu, J.; Xue, X. W.; Biswas, S.; Hewlett, I. Current approaches for diagnosis of influenza virus infections in humans. Viruses, 2016, 8(4), 96.
[http://dx.doi.org/10.3390/v8040096]
[34]
Zhao, Y.; Zhang, Y.H.; Denney, L.; Young, D.; Powell, T.J.; Peng, Y.C.; Li, N.; Yan, H.P.; Wang, D.Y.; Shu, Y.L.; Kendrick, Y.; McMichael, A.J.; Ho, L.P.; Dong, T. High levels of virus-specific CD4+ T cells predict severe pandemic influenza A virus infection. Am. J. Respir. Crit. Care Med., 2012, 186(12), 1292-1297.
[http://dx.doi.org/10.1164/rccm.201207-1245OC] [PMID: 23087026]
[35]
Ingram, P.R.; Inglis, T.; Moxon, D.; Speers, D. Procalcitonin and C-reactive protein in severe 2009 H1N1 influenza infection. Intensive Care Med., 2010, 36(3), 528-532.
[http://dx.doi.org/10.1007/s00134-009-1746-3] [PMID: 20069274]
[36]
Lin, J.; Wang, R.; Jiao, P.; Li, Y.; Li, Y.; Liao, M.; Yu, Y.; Wang, M. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs. Biosens. Bioelectron., 2015, 67, 546-552.
[http://dx.doi.org/10.1016/j.bios.2014.09.037] [PMID: 25263315]
[37]
Louten, J. Detection and diagnosis of viral infections. Essential Human Virology; Elsevier: Amsterdam, 2016, pp. 111-132.
[http://dx.doi.org/10.1016/B978-0-12-800947-5.00007-7]
[38]
Long, L.; Cai, R.; Liu, J.; Wu, X. A novel nanoprobe based on core–shell Au@Pt@Mesoporous SiO2 nanozyme with enhanced activity and stability for mumps virus diagnosis. Front Chem., 2020, 8, 463.
[http://dx.doi.org/10.3389/fchem.2020.00463] [PMID: 32582637]
[39]
Zhang, L.; Yuan, R.; Huang, X.; Chai, Y.; Tang, D.; Cao, S. A new label-free amperometric immunosenor for rubella vaccine. Anal. Bioanal. Chem., 2005, 381(5), 1036-1040.
[http://dx.doi.org/10.1007/s00216-004-3021-3] [PMID: 15761742]
[40]
Sadique, M.A.; Yadav, S.; Ranjan, P.; Khan, R.; Khan, F.; Kumar, A.; Biswas, D. Highly sensitive electrochemical immunosensor platforms for dual detection of SARS-CoV-2 antigen and antibody based on gold nanoparticle functionalized graphene oxide nanocomposites. ACS Appl. Bio Mater., 2022, 5(5), 2421-2430.
[http://dx.doi.org/10.1021/acsabm.2c00301] [PMID: 35522141]
[41]
Soto, D.; Orozco, J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal. Chim. Acta, 2022, 1205, 339739.
[http://dx.doi.org/10.1016/j.aca.2022.339739] [PMID: 35414399]
[42]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Label-free and reagent-less electrochemical detection of nucleocapsid protein of SARS-CoV-2: An ultrasensitive and disposable biosensor. New J. Chem., 2022, 46(19), 9172-9183.
[http://dx.doi.org/10.1039/D2NJ00046F]
[43]
Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta, 2022, 403, 139581.
[http://dx.doi.org/10.1016/j.electacta.2021.139581] [PMID: 34898691]
[44]
Shahdeo, D.; Roberts, A.; Archana, G.J.; Shrikrishna, N.S.; Mahari, S.; Nagamani, K.; Gandhi, S. Label free detection of SARS CoV-2 Receptor Binding Domain (RBD) protein by fabrication of gold nanorods deposited on electrochemical immunosensor (GDEI). Biosens. Bioelectron., 2022, 212, 114406.
[http://dx.doi.org/10.1016/j.bios.2022.114406] [PMID: 35635976]
[45]
Peng, R.; Pan, Y.; Li, Z.; Qin, Z.; Rini, J.M.; Liu, X. SPEEDS: A portable serological testing platform for rapid electrochemical detection of SARS-CoV-2 antibodies. Biosens. Bioelectron., 2022, 197, 113762.
[http://dx.doi.org/10.1016/j.bios.2021.113762] [PMID: 34773750]
[46]
Deng, Y.; Peng, Y.; Wang, L.; Wang, M.; Zhou, T.; Xiang, L.; Li, J.; Yang, J.; Li, G. Target-triggered cascade signal amplification for sensitive electrochemical detection of SARS-CoV-2 with clinical application. Anal. Chim. Acta, 2022, 1208, 339846.
[http://dx.doi.org/10.1016/j.aca.2022.339846] [PMID: 35525596]
[47]
Hahm, J.B.; Breneman, J.W., IV; Liu, J.; Rabkina, S.; Zheng, W.; Zhou, S.; Walker, R.P.; Kaul, R. A fully automated multiplex assay for diagnosis of lyme disease with high specificity and improved early sensitivity. J. Clin. Microbiol., 2020, 58(5), e01785-19.
[http://dx.doi.org/10.1128/JCM.01785-19] [PMID: 32132190]
[48]
Lerner, M.B.; Dailey, J.; Goldsmith, B.R.; Brisson, D.; Charlie Johnson, A.T. Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors. Biosens. Bioelectron., 2013, 45(1), 163-167.
[http://dx.doi.org/10.1016/j.bios.2013.01.035] [PMID: 23475141]
[49]
Flynn, C.; Ignaszak, A. Lyme disease biosensors: A potential solution to a diagnostic dilemma Biosensors, 2020, 10(10), 197.
[http://dx.doi.org/10.3390/bios10100137]
[50]
Dou, M.; Sanchez, J.; Tavakoli, H.; Gonzalez, J.E.; Sun, J.; Dien Bard, J.; Li, X. A low-cost microfluidic platform for rapid and instrument-free detection of whooping cough. Anal. Chim. Acta, 2019, 1065, 71-78.
[http://dx.doi.org/10.1016/j.aca.2019.03.001] [PMID: 31005153]
[51]
Sun, C.; Xiao, F.; Fu, J.; Huang, X.; Jia, N.; Xu, Z.; Wang, Y.; Cui, X. Loop-mediated isothermal amplification coupled with nanoparticle-based lateral biosensor for rapid, sensitive, and specific detection of Bordetella pertussis. Front. Bioeng. Biotechnol., 2022, 9, 797957.
[http://dx.doi.org/10.3389/fbioe.2021.797957] [PMID: 35211469]
[52]
Rafique, S.; Idrees, M.; Bokhari, H.; Bhatti, A.S. Ellipsometric-based novel DNA biosensor for label-free, real-time detection of Bordetella parapertussis. J. Biol. Phys., 2019, 45(3), 275-291.
[http://dx.doi.org/10.1007/s10867-019-09528-2] [PMID: 31375953]
[53]
Bacchu, M.S.; Ali, M.R.; Das, S.; Akter, S.; Sakamoto, H.; Suye, S.I.; Rahman, M.M.; Campbell, K.; Khan, M.Z.H. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta, 2022, 1192, 339332.
[http://dx.doi.org/10.1016/j.aca.2021.339332] [PMID: 35057920]
[54]
Selvaraj, V.; Muthukumar, A.; Nagamony, P.; Chinnuswamy, V. Detection of typhoid fever by diatom-based optical biosensor. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20385-20390.
[http://dx.doi.org/10.1007/s11356-017-9362-1] [PMID: 28577141]
[55]
Prado, I.C.; Chino, M.E.T.A.; dos Santos, A.L.; Souza, A.L.A.; Pinho, L.G.; Lemos, E.R.S.; De-Simone, S.G. Development of an electrochemical immunosensor for the diagnostic testing of spotted fever using synthetic peptides. Biosens. Bioelectron., 2018, 100, 115-121.
[http://dx.doi.org/10.1016/j.bios.2017.08.029] [PMID: 28886455]
[56]
Ramos-Sono, D.; Laureano, R.; Rueda, D.; Gilman, R. H.; Rosa, A.; La; Ruiz, J.; León, R.; Sheen, P.; Zimic, M. An electrochemical biosensor for the detection of Mycobacterium tuberculosis dna from sputum and urine samples. PLoS One, 2020, 15(10), e0241067.
[http://dx.doi.org/10.1371/journal.pone.0241067]
[57]
Liu, Q.; Lim, B.K.L.; Lim, S.Y.; Tang, W.Y.; Gu, Z.; Chung, J.; Park, M.K.; Barkham, T. Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sens. Actuators B Chem., 2018, 255, 1595-1603.
[http://dx.doi.org/10.1016/j.snb.2017.08.181]
[58]
Jagannath, B.; Lin, K.C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. A sweat-based wearable enabling technology for real-time monitoring of il-1β and crp as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis., 2020, 26(10), 1533-1542.
[http://dx.doi.org/10.1093/ibd/izaa191] [PMID: 32720974]
[59]
Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens. Bioelectron., 2021, 171, 112726.
[http://dx.doi.org/10.1016/j.bios.2020.112726] [PMID: 33113386]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy