Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Comprehensive Review of Herbal Medicines for the Treatment of Alzheimer's Disease

Author(s): Sumbul Shadab, GSN Koteswara Rao*, Deepika Paliwal, Devdhar Yadav, Aftab Alam, Amit Singh and Md Jaha Sultana

Volume 10, Issue 5, 2024

Published on: 19 July, 2023

Article ID: e080623217816 Pages: 19

DOI: 10.2174/2215083810666230608151821

Price: $65

Abstract

The choices of treatment for Alzheimer's are based on NMDA-receptor antagonists and cholinesterase inhibitors, although their efficacy as a therapy is still up for debate. BPSD (Behavioural and Psychological Symptoms of Dementia) have been treated using herbal medicine products, with varying degrees of success. This manuscript sets out to answer the question, "Can herbs be effective in the treatment of cognitive impairments in patients?" by examining evidences from controlled research. The process by which Alzheimer's disease develops remains a mystery, and the present Alzheimer's treatment strategy, which consists of administering a single medicine to treat a single target, appears to be clinically ineffective. AD treatment will require a combination of approaches that target many signs and causes of the disease. The results of currently available licensed therapies for AD are often disappointing, and alternative medicine, especially herbal therapy, may play a role. Over 80% of the world's population, particularly in developing nation, gets their main health care from herbal medicines. They have persisted through the years due to their low risk, high reward, widespread acceptance across cultures, and absence of detrimental side effects. In some cases, herbal remedies have proven to be more effective than conventional medical treatments. They are assumed to be natural unless proven otherwise by the presence of unnatural additives. The absence of adverse reactions is a major advantage of herbal treatment. In addition, they provide ongoing advantages to health. Salvia officinalis, Ginkgo biloba, Melissa officinalis, Panax ginseng, Coriandrum sativum, Curcuma longa, Ashwagandha, Uncaria Tomentosa, Crocus Sativus and Allium Sativum are all studied for their potential effects on Alzheimer's disease.

Keywords: Alzheimer’s disease, cerebral blood flow, memory, medicinal plants, active component, seniles plaque.

Graphical Abstract
[1]
Cummings JL, Vinters HV, Cole GM, Khachaturian ZS. Alzheimer’s disease: Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 1998; 51 (Suppl. 1): S2-S17.
[http://dx.doi.org/10.1212/WNL.51.1_Suppl_1.S2] [PMID: 9674758]
[2]
Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 2011; 10(9): 819-28.
[http://dx.doi.org/10.1016/S1474-4422(11)70072-2] [PMID: 21775213]
[3]
Singh SK, Sinha P, Mishra L, Srikrishna S. Neuroprotective role of a novel copper chelator against induced neurotoxicity. Int j Alzheimer’s dis 2013; 2013: 567128.
[4]
Kumar A, Srivastava S, Tripathi S, Singh SK, Srikrishna S, Sharma A. Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. J Biomol Struct Dyn 2016; 34(6): 1252-63.
[http://dx.doi.org/10.1080/07391102.2015.1074943] [PMID: 26208790]
[5]
Singh SK, Gaur R, Kumar A, Fatima R, Mishra L, Srikrishna S. The flavonoid derivative 2-(4′ Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic Drosophila: insights from in silico and in vivo studies. Neurotox Res 2014; 26(4): 331-50.
[http://dx.doi.org/10.1007/s12640-014-9466-z] [PMID: 24706035]
[6]
Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain 2006; 129(11): 2840-55.
[http://dx.doi.org/10.1093/brain/awl280] [PMID: 17018549]
[7]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[8]
Asadi S, Ahmadiani A, Esmaeili MA, Sonboli A, Ansari N, Khodagholi F. In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: A comparative study. Food Chem Toxicol 2010; 48(5): 1341-9.
[http://dx.doi.org/10.1016/j.fct.2010.02.035] [PMID: 20197079]
[9]
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Longev 2016; 2016: 7361613.
[10]
Sharma R, Kuca K, Nepovimova E, Kabra A, Rao MM, Prajapati PK. Traditional Ayurvedic and herbal remedies for Alzheimer’s disease: from bench to bedside. Expert Rev Neurother 2019; 19(5): 359-74.
[http://dx.doi.org/10.1080/14737175.2019.1596803] [PMID: 30884983]
[11]
Butterfield DA, Griffin S, Munch G, Pasinetti GM. Amyloid β-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis 2002; 4(3): 193-201.
[http://dx.doi.org/10.3233/JAD-2002-4309] [PMID: 12226538]
[12]
Zhu X, Raina AK, Smith MA. Cell cycle events in neurons. Proliferation or death? Am J Pathol 1999; 155(2): 327-9.
[http://dx.doi.org/10.1016/S0002-9440(10)65127-9] [PMID: 10433924]
[13]
Zhu X, Lee H, Casadesus G, et al. Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol 2005; 31(1-3): 205-18.
[http://dx.doi.org/10.1385/MN:31:1-3:205] [PMID: 15953822]
[14]
Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res 2005; 81(3): 302-13.
[http://dx.doi.org/10.1002/jnr.20562] [PMID: 15954124]
[15]
McGeer P, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 2001; 22(6): 799-809.
[http://dx.doi.org/10.1016/S0197-4580(01)00289-5] [PMID: 11754986]
[16]
Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[17]
Asllani I, Habeck C, Scarmeas N, Borogovac A, Brown TR, Stern Y. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab 2008; 28(4): 725-36.
[http://dx.doi.org/10.1038/sj.jcbfm.9600570] [PMID: 17960142]
[18]
Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21(10): 1133-45.
[http://dx.doi.org/10.1097/00004647-200110000-00001] [PMID: 11598490]
[19]
Fowler JC. Adenosine antagonists alter the synaptic response to in vitro ischemia in the rat hippocampus. Brain Res 1990; 509(2): 331-4.
[http://dx.doi.org/10.1016/0006-8993(90)90560-X] [PMID: 2322829]
[20]
Thiebaut AM, Hedou E, Marciniak SJ, Vivien D, Roussel BD. Proteostasis during cerebral ischemia. Front Neurosci 2019; 13: 637.
[http://dx.doi.org/10.3389/fnins.2019.00637] [PMID: 31275110]
[21]
de la Monte SM. Quantitation of cerebral atrophy in preclinical and end-stage alzheimer’s disease. Ann Neurol 1989; 25(5): 450-9.
[http://dx.doi.org/10.1002/ana.410250506] [PMID: 2774485]
[22]
Miners JS, Palmer JC, Love S. Pathophysiology of hypoperfusion of the precuneus in early Alzheimer’s Disease. Brain Pathol 2016; 26(4): 533-41.
[http://dx.doi.org/10.1111/bpa.12331] [PMID: 26452729]
[23]
Smith GS, de Leon MJ, George AE, et al. Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer’s disease. Pathophysiologic implications. Arch Neurol 1992; 49(11): 1142-50.
[http://dx.doi.org/10.1001/archneur.1992.00530350056020] [PMID: 1444881]
[24]
Kimura T, Hashimura T, Miyakawa T. Observations of microvessels in the brain with Alzheimer’s disease by the scanning electron microscopy. Psychiatry Clin Neurosci 1991; 45(3): 671-6.
[http://dx.doi.org/10.1111/j.1440-1819.1991.tb01189.x] [PMID: 1800815]
[25]
Estanga A, Ecay-Torres M, Ibañez A, et al. Beneficial effect of bilingualism on Alzheimer’s disease CSF biomarkers and cognition. Neurobiol Aging 2017; 50: 144-51.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.10.013] [PMID: 27916386]
[26]
Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 2006; 100(1): 328-35.
[http://dx.doi.org/10.1152/japplphysiol.00966.2005] [PMID: 16357086]
[27]
Tong XK, Lecrux C, Hamel E, Hamel E. Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 2012; 32(14): 4705-15.
[http://dx.doi.org/10.1523/JNEUROSCI.0169-12.2012] [PMID: 22492027]
[28]
Marshall RS, Lazar RM, Pile-Spellman J, et al. Recovery of brain function during induced cerebral hypoperfusion. Brain 2001; 124(6): 1208-17.
[http://dx.doi.org/10.1093/brain/124.6.1208] [PMID: 11353736]
[29]
Iturria-Medina Y, Sotero RC, Toussaint PJ, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 2016; 7(1): 11934.
[http://dx.doi.org/10.1038/ncomms11934] [PMID: 27327500]
[30]
Kennedy AM, Frackowiak RSJ, Newman SK, et al. Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 1995; 186(1): 17-20.
[http://dx.doi.org/10.1016/0304-3940(95)11270-7] [PMID: 7783942]
[31]
Ruitenberg A, den Heijer T, Bakker SLM, et al. Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam study. Ann Neurol 2005; 57(6): 789-94.
[http://dx.doi.org/10.1002/ana.20493] [PMID: 15929050]
[32]
Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol 2020; 140(6): 793-810.
[http://dx.doi.org/10.1007/s00401-020-02215-w] [PMID: 32865691]
[33]
Weidensteiner C, Metzger F, Bohrmann ABB, Kuennecke B, von Kienlin M, von Kienlin M. Cortical hypoperfusion in the B6.PS2APP mouse model for Alzheimer’s disease: Comprehensive phenotyping of vascular and tissular parameters by MRI. Magn Reson Med 2009; 62(1): 35-45.
[http://dx.doi.org/10.1002/mrm.21985] [PMID: 19449370]
[34]
Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem 2018; 144(5): 595-608.
[http://dx.doi.org/10.1111/jnc.14234] [PMID: 28986925]
[35]
Wiesmann M, Capone C, Zerbi V, et al. AHR Claassen J, J Kiliaan A. Hypertension impairs cerebral blood flow in a mouse model for Alzheimer’s disease. Curr Alzheimer Res 2015; 12(10): 914-22.
[http://dx.doi.org/10.2174/1567205012666151027130135] [PMID: 26502817]
[36]
Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 2020; 581(7806): 71-6.
[http://dx.doi.org/10.1038/s41586-020-2247-3] [PMID: 32376954]
[37]
Hébert F, Grand’Maison M, Ho MK, Lerch JP, Hamel E, Bedell BJ. Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 2013; 34(6): 1644-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.022] [PMID: 23273599]
[38]
Decker Y, Müller A, Németh E, et al. Analysis of the vasculature by immunohistochemistry in paraffin-embedded brains. Brain Struct Funct 2018; 223(2): 1001-15.
[http://dx.doi.org/10.1007/s00429-017-1595-8] [PMID: 29260371]
[39]
Cortes-Canteli M, Kruyer A, Fernandez-Nueda I, et al. Long-term dabigatran treatment delays Alzheimer’s disease pathogenesis in the TgCRND8 mouse model. J Am Coll Cardiol 2019; 74(15): 1910-23.
[http://dx.doi.org/10.1016/j.jacc.2019.07.081] [PMID: 31601371]
[40]
Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrityvia cyclophilin A. Nature 2012; 485(7399): 512-6.
[http://dx.doi.org/10.1038/nature11087] [PMID: 22622580]
[41]
Koizumi K, Hattori Y, Ahn SJ, et al. Apoε4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat Commun 2018; 9(1): 3816.
[http://dx.doi.org/10.1038/s41467-018-06301-2] [PMID: 29317637]
[42]
Hooijmans CR, Rutters F, Dederen PJ, et al. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD). Neurobiol Dis 2007; 28(1): 16-29.
[http://dx.doi.org/10.1016/j.nbd.2007.06.007] [PMID: 17720508]
[43]
Hooijmans CR, Van der Zee CEEM, Dederen PJ, et al. DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiol Dis 2009; 33(3): 482-98.
[http://dx.doi.org/10.1016/j.nbd.2008.12.002] [PMID: 19130883]
[44]
Cruz Hernández JC, Bracko O, Kersbergen CJ, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci 2019; 22(3): 413-20.
[http://dx.doi.org/10.1038/s41593-018-0329-4] [PMID: 30742116]
[45]
Lu X, Moeini M, Li B, et al. A pilot study investigating changes in capillary hemodynamics and its modulation by exercise in the APP-PS1 Alzheimer mouse model. Front Neurosci 2019; 13: 1261.
[http://dx.doi.org/10.3389/fnins.2019.01261] [PMID: 31920472]
[46]
Li H, Guo Q, Inoue T, et al. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 2014; 9(1): 28.
[http://dx.doi.org/10.1186/1750-1326-9-28] [PMID: 25108425]
[47]
Nicolakakis N, Aboulkassim T, Ongali B, et al. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor γ agonist. J Neurosci 2008; 28(37): 9287-96.
[http://dx.doi.org/10.1523/JNEUROSCI.3348-08.2008] [PMID: 18784309]
[48]
Iadecola C, Zhang F, Niwa K, et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999; 2(2): 157-61.
[http://dx.doi.org/10.1038/5715] [PMID: 10195200]
[49]
Niwa K, Younkin L, Ebeling C, et al. Aβ1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci 2000; 97(17): 9735-40.
[http://dx.doi.org/10.1073/pnas.97.17.9735] [PMID: 10944232]
[50]
Guo Y, Li X, Zhang M, et al. Age and brain region associated alterations of cerebral blood flow in early Alzheimer’s disease assessed in AβPPSWE/PS1ΔE9 transgenic mice using arterial spin labeling. Mol Med Rep 2019; 19(4): 3045-52.
[http://dx.doi.org/10.3892/mmr.2019.9950] [PMID: 30816468]
[51]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement 2018; 4(1): 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[52]
Zotova E, Nicoll JAR, Kalaria R, Holmes C, Boche D. Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2010; 2(1): 1-9.
[http://dx.doi.org/10.1186/alzrt24] [PMID: 20122289]
[53]
Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006; 38(4): 333-47.
[http://dx.doi.org/10.1038/emm.2006.40] [PMID: 16953112]
[54]
Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 2004; 295(1): 245-57.
[http://dx.doi.org/10.1016/j.yexcr.2004.01.002] [PMID: 15051507]
[55]
Das Sarma J. Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol 2014; 20(2): 122-36.
[http://dx.doi.org/10.1007/s13365-013-0188-4] [PMID: 23979705]
[56]
Glenn JA, Jordan FL, Thomas WE. Further studies on the identification of microglia in mixed brain cell cultures. Brain Res Bull 1989; 22(6): 1049-52.
[http://dx.doi.org/10.1016/0361-9230(89)90018-X] [PMID: 2551467]
[57]
Eyo UB, Dailey ME. Microglia: key elements in neural development, plasticity, and pathology. J Neuroimmune Pharmacol 2013; 8(3): 494-509.
[http://dx.doi.org/10.1007/s11481-013-9434-z] [PMID: 23354784]
[58]
Madry C, Attwell D. Receptors, ion channels, and signaling mechanisms underlying microglial dynamics. J Biol Chem 2015; 290(20): 12443-50.
[http://dx.doi.org/10.1074/jbc.R115.637157] [PMID: 25855789]
[59]
Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci 2007; 30(10): 527-35.
[http://dx.doi.org/10.1016/j.tins.2007.07.007] [PMID: 17904651]
[60]
Flynn G, Maru S, Loughlin J, Romero IA, Male D. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 2003; 136(1-2): 84-93.
[http://dx.doi.org/10.1016/S0165-5728(03)00009-2] [PMID: 12620646]
[61]
Harrison JK, Jiang Y, Chen S, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci 1998; 95(18): 10896-901.
[http://dx.doi.org/10.1073/pnas.95.18.10896] [PMID: 9724801]
[62]
Bolmont T, Haiss F, Eicke D, et al. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 2008; 28(16): 4283-92.
[http://dx.doi.org/10.1523/JNEUROSCI.4814-07.2008] [PMID: 18417708]
[63]
Brierley JB, Brown AW. The origin of lipid phagocytes in the central nervous system: II. The adventitia of blood vessels. J Comp Neurol 1982; 211(4): 407-17.
[http://dx.doi.org/10.1002/cne.902110407] [PMID: 7174902]
[64]
Graeber MB, Tetzlaff W, Streit WJ, Kreutzberg GW. Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett 1988; 85(3): 317-21.
[http://dx.doi.org/10.1016/0304-3940(88)90585-X] [PMID: 3362421]
[65]
Menghani YR, Bhattad DM, Chandak KK, Taksande JR, Umekar MJ. Review: Pharmacological and herbal remedies in the management of neurodegenerative disorder (alzheimer’s). Int J Pharmacog Life Sci 2021; 2(1): 18-27.
[http://dx.doi.org/10.33545/27072827.2021.v2.i1a.23]
[66]
Sivaraman D, Anbu N, Kabilan N, Kumar MP, Shanmugapriya P, Christian GJ. Review on current treatment strategy in Alzheimer’s disease and role of herbs in treating neurological disorders. Int J Trans Res Ind Med 2019; 1(1): 33-43.
[67]
Seltzer B. Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease. Clin Interv Aging 2010; 5: 1-6.
[PMID: 20169037]
[68]
Xing SH, Zhu CX, Zhang R, An L. Huperzine a in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid Based Complement Alternat Med 2014; 2014: 363985.
[http://dx.doi.org/10.1155/2014/363985]
[69]
Bar-On P, Millard CB, Harel M, et al. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 2002; 41(11): 3555-64.
[http://dx.doi.org/10.1021/bi020016x] [PMID: 11888271]
[70]
Kurz A, Farlow M, Lefèvre G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer’s disease: a review. Int J Clin Pract 2009; 63(5): 799-805.
[http://dx.doi.org/10.1111/j.1742-1241.2009.02052.x] [PMID: 19392927]
[71]
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. BioMed Res Int 2016; 216: 16.
[http://dx.doi.org/10.1155/2016/2589276]
[72]
Marum R. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 2009; 5: 237-47.
[http://dx.doi.org/10.2147/NDT.S4048] [PMID: 19557118]
[73]
Folch J, Busquets O, Ettcheto M, et al. Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimers Dis 2018; 62(3): 1223-40.
[http://dx.doi.org/10.3233/JAD-170672] [PMID: 29254093]
[74]
National policy on traditional medicine and regulation of herbal medicines: Report of a WHO global survey. World Health Organization 2005.
[75]
Verma S, Singh S. Current and future status of herbal medicines. Vet World 2008; 2(2): 347.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[76]
Becker R, Greig N. Alzheimer’s disease drug development in 2008 and beyond: problems and opportunities. Curr Alzheimer Res 2008; 5(4): 346-57.
[http://dx.doi.org/10.2174/156720508785132299] [PMID: 18690832]
[77]
Smach MA, Hafsa J, Charfeddine B, Dridi H, Limem K. Effects of sage extract on memory performance in mice and acetylcholinesterase activity. Ann Pharm Fr 2015; 73(4): 281-8.
[http://dx.doi.org/10.1016/j.pharma.2015.03.005]
[78]
Habtemariam S. Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs. Int J Mol Sci 2018; 19(2): 458.
[http://dx.doi.org/10.3390/ijms19020458] [PMID: 29401682]
[79]
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 2003; 28(1): 53-9.
[http://dx.doi.org/10.1046/j.1365-2710.2003.00463.x] [PMID: 12605619]
[80]
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22(3): 321-6.
[http://dx.doi.org/10.1016/j.nut.2005.06.010] [PMID: 16500558]
[81]
Hasanein P, Felehgari Z, Emamjomeh A. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms. Neurosci Lett 2016; 622: 72-7.
[http://dx.doi.org/10.1016/j.neulet.2016.04.045] [PMID: 27113201]
[82]
Gomar A, Hosseini A, Mirazi N. Evaluation of Salvia officinalis L. (sage) leaves on morphine-induced memory impairment in adult male rats. Focus Altern Complement Ther 2014; 19(3): 156-62.
[http://dx.doi.org/10.1111/fct.12132]
[83]
Miroddi M, Navarra M, Quattropani MC, Calapai F, Gangemi S, Calapai G. Systematic review of clinical trials assessing pharmacological properties of Salvia species on memory, cognitive impairment and Alzheimer’s disease. CNS Neurosci Ther 2014; 20(6): 485-95.
[http://dx.doi.org/10.1111/cns.12270] [PMID: 24836739]
[84]
Moss L, Rouse M, Wesnes KA, Moss M. Differential effects of the aromas of Salvia species on memory and mood. Hum Psychopharmacol 2010; 25(5): 388-96.
[http://dx.doi.org/10.1002/hup.1129] [PMID: 20589925]
[85]
Moss M, Rouse M, Moss L. Aromas of salvia species enhance everyday prospective memory performance in healthy young adults. Adv Chem Engin Sci 2014; 4(3): 339-46.
[http://dx.doi.org/10.4236/aces.2014.43037]
[86]
Scholey AB, Tildesley NTJ, Ballard CG, et al. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology 2008; 198(1): 127-39.
[http://dx.doi.org/10.1007/s00213-008-1101-3] [PMID: 18350281]
[87]
Russo P, Frustaci A, Del Bufalo A, Fini M, Cesario A. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: acetylcholinesterase inhibitors. Curr Med Chem 2013; 20(8): 976-83.
[PMID: 23210783]
[88]
Luo Y, Smith JV. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 2004; 64(4): 465-72.
[http://dx.doi.org/10.1007/s00253-003-1527-9] [PMID: 14740187]
[89]
Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from β-amyloid-induced cell death by inhibiting the formation of β-amyloid-derived diffusible neurotoxic ligands. Brain Res 2001; 889(1-2): 181-90.
[http://dx.doi.org/10.1016/S0006-8993(00)03131-0] [PMID: 11166702]
[90]
Shimada S, Tanaka Y, Waki H, Kon K, Iwamoto M, Maruyama N. Analysis of brain cell activation by nanosized particles of Ginkgo biloba extract. Int J Plant Physiol Biochem 2011; 3(3): 28-33.
[91]
Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res 2006; 20(12): 1023-35.
[http://dx.doi.org/10.1002/ptr.1970] [PMID: 16909441]
[92]
Kanowski S, Herrmann W, Stephan K, Wierich W, Hörr R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Pharmacopsychiatry 1996; 29(2): 47-56.
[http://dx.doi.org/10.1055/s-2007-979544] [PMID: 8741021]
[93]
Le Bars PL. Response patterns of EGb761® in Alzheimer’s disease: influence of neuropsychological profiles. Pharmacopsychiatry 2003; 36(S1): 50-5.
[94]
Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 2006; 13(9): 981-5.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01409.x] [PMID: 16930364]
[95]
DeKosky ST, Williamson JD, Fitzpatrick AL, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008; 300(19): 2253-62.
[http://dx.doi.org/10.1001/jama.2008.683] [PMID: 19017911]
[96]
Geun Kim H, Sook Oh M. Herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr Pharm Des 2012; 18(1): 57-75.
[http://dx.doi.org/10.2174/138161212798919002] [PMID: 22316321]
[97]
Arunima C, Julia J, Prasobh G. A review on role of ginkgo biloba in treating alzheimer’s disease
[98]
Halder S, Anand U, Nandy S, et al. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29(8): 879-907.
[http://dx.doi.org/10.1016/j.jsps.2021.07.003] [PMID: 34408548]
[99]
Wake G, Court J, Pickering A, Lewis R, Wilkins R, Perry E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol 2000; 69(2): 105-14.
[http://dx.doi.org/10.1016/S0378-8741(99)00113-0] [PMID: 10687867]
[100]
Kennedy DO, Scholey AB, Tildesley NTJ, Perry EK, Wesnes KA. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav 2002; 72(4): 953-64.
[http://dx.doi.org/10.1016/S0091-3057(02)00777-3] [PMID: 12062586]
[101]
Cerny A, Schmid K. Tolerability and efficacy of valerian/lemon balm in healthy volunteers (a double-blind, placebo-controlled, multicentre study). Fitoterapia 1999; 70(3): 221-8.
[http://dx.doi.org/10.1016/S0367-326X(99)00018-0]
[102]
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 2003; 74(7): 863-6.
[http://dx.doi.org/10.1136/jnnp.74.7.863] [PMID: 12810768]
[103]
Heo JH, Lee ST, Chu K, et al. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimers disease. Eur J Neurol 2008; 15(8): 865-8.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02157.x] [PMID: 18684311]
[104]
Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22(3): 222-6.
[http://dx.doi.org/10.1097/WAD.0b013e31816c92e6] [PMID: 18580589]
[105]
Seo JS, Yun JH, Baek IS, et al. Oriental medicine Jangwonhwan reduces Aβ(1–42) level and β-amyloid deposition in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease. J Ethnopharmacol 2010; 128(1): 206-12.
[http://dx.doi.org/10.1016/j.jep.2010.01.014] [PMID: 20079417]
[106]
Kim J, Kim SH, Lee DS, et al. Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer’s disease experimental models. J Ginseng Res 2013; 37(1): 100-7.
[http://dx.doi.org/10.5142/jgr.2013.37.100] [PMID: 23717163]
[107]
Lee MR, Yun BS, In OH, Sung CK. Comparative study of korean white, red, and black ginseng extract on cholinesterase inhibitory activity and cholinergic function. J Ginseng Res 2011; 35(4): 421-8.
[http://dx.doi.org/10.5142/jgr.2011.35.4.421] [PMID: 23717087]
[108]
Choi JG, Kim N, Huh E, et al. White ginseng protects mouse hippocampal cells against amyloid-beta oligomer toxicity. Phytother Res 2017; 31(3): 497-506.
[http://dx.doi.org/10.1002/ptr.5776] [PMID: 28112442]
[109]
Heo JH, Lee ST, Oh MJ, et al. Improvement of cognitive deficit in Alzheimer’s disease patients by long term treatment with korean red ginseng. J Ginseng Res 2011; 35(4): 457-61.
[http://dx.doi.org/10.5142/jgr.2011.35.4.457] [PMID: 23717092]
[110]
Salous AK, Panchatcharam M, Sunkara M, et al. Mechanism of rapid elimination of lysophosphatidic acid and related lipids from the circulation of mice. J Lipid Res 2013; 54(10): 2775-84.
[http://dx.doi.org/10.1194/jlr.M039685] [PMID: 23948545]
[111]
Heo JH, Park MH, Lee JH. Effect of Korean red ginseng on cognitive function and quantitative EEG in patients with Alzheimer’s disease: a preliminary study. J Altern Complement Med 2016; 22(4): 280-5.
[http://dx.doi.org/10.1089/acm.2015.0265] [PMID: 26974484]
[112]
Vasudevan MP. Memory-enhancing activity of Coriandrum Sativum in rats. Pharmacologyonline 2009; 2: 827-39.
[113]
Liu QF, Lee JH, Kim YM, et al. In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biol Pharm Bull 2015; 38(12): 1891-901.
[http://dx.doi.org/10.1248/bpb.b15-00459]
[114]
Nejad Ebrahimi S, Hadian J, Ranjbar H. Essential oil compositions of different accessions of Coriandrum sativum L. from Iran. Nat Prod Res 2010; 24(14): 1287-94.
[http://dx.doi.org/10.1080/14786410903132316] [PMID: 20803372]
[115]
Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 2012; 23(3): 241-9.
[http://dx.doi.org/10.1097/FBP.0b013e3283534301] [PMID: 22470103]
[116]
Patel D, Desai S, Devkar R, Ramachandran AV. Acute and sub-chronic toxicological evaluation of hydro-methanolic extract of Coriandrum sativum L. seeds. EXCLI J 2012; 11: 566-75.
[PMID: 27847445]
[117]
Mima Y, Izumo N, Chen JR, Yang SC, Furukawa M, Watanabe Y. Effects of Coriandrum sativumitalic seed extract on aging-induced memory impairment in Samp8 mice. Nutrients 2020; 12(2): 455.
[http://dx.doi.org/10.3390/nu12020455] [PMID: 32054079]
[118]
Wojtunik-Kulesza KA, Targowska-Duda K, Klimek K, et al. Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem 2017; 15(1): 332-43.
[http://dx.doi.org/10.1515/chem-2017-0040]
[119]
Picollo MI, Toloza AC, Mougabure Cueto G, Zygadlo J, Zerba E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 2008; 79(4): 271-8.
[http://dx.doi.org/10.1016/j.fitote.2008.01.005] [PMID: 18321657]
[120]
Majeed M, Badmaev V, Murray F. Turmeric and the healing curcuminoids: Their amazing antioxidant properties and protective powers. Keats Pub. 1996.
[121]
Aggarwal BB, Surh YJ, Shishodia S, Eds. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[122]
Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(1): 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[123]
Rajagopal PL, Ashlyjames K, PN Premaletha, kumar Sajith. Herbal options in alzheimer’s disease - a review J Int 2013; 1(9): 1-14.
[124]
Breitner J, Welsh KA, Helms MJ, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 1995; 16(4): 523-30.
[http://dx.doi.org/10.1016/0197-4580(95)00049-K] [PMID: 8544901]
[125]
Wang Y, Yin H, Lou J, et al. Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer’s disease*. Neural Regen Res 2011; 6(24): 1845-9.
[126]
Zhang L, Fang Y, Xu Y, et al. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 2015; 10(6): e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[127]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[128]
Zatta P, Drago D, Bolognin S, Sensi SL. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 2009; 30(7): 346-55.
[http://dx.doi.org/10.1016/j.tips.2009.05.002] [PMID: 19540003]
[129]
Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 2004; 6(4): 367-77.
[http://dx.doi.org/10.3233/JAD-2004-6403] [PMID: 15345806]
[130]
Yan FS, Sun JL, Xie WH, Shen L, Ji HF. Neuroprotective effects and mechanisms of curcumin–Cu (II) and–Zn (II) complexes systems and their pharmacological implications. Nutrients 2017; 10(1): 28.
[http://dx.doi.org/10.3390/nu10010028] [PMID: 29283372]
[131]
Mishra LC, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 2000; 5(4): 334-46.
[PMID: 10956379]
[132]
Wollen KA. Alzheimer’s disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev 2010; 15(3): 223-44.
[PMID: 21155625]
[133]
Jayaprakasam B, Padmanabhan K, Nair MG. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease. Phytother Res 2010; 24(6): 859-63.
[http://dx.doi.org/10.1002/ptr.3033] [PMID: 19957250]
[134]
Dhuley JN. Effect of ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 1998; 60(2): 173-8.
[http://dx.doi.org/10.1016/S0378-8741(97)00151-7] [PMID: 9582008]
[135]
Parihar MS, Hemnani T. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci 2003; 28(1): 121-8.
[http://dx.doi.org/10.1007/BF02970142] [PMID: 12682435]
[136]
Schliebs R, Liebmann A, Bhattacharya S, Kumar A, Ghosal S, Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 1997; 30(2): 181-90.
[http://dx.doi.org/10.1016/S0197-0186(96)00025-3] [PMID: 9017665]
[137]
Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 2005; 144(7): 961-71.
[http://dx.doi.org/10.1038/sj.bjp.0706122] [PMID: 15711595]
[138]
Sehgal A, Kumar M, Jain M, Dhawan DK. Piperine as an adjuvant increases the efficacy of curcumin in mitigating benzo(a)pyrene toxicity. Hum Exp Toxicol 2012; 31(5): 473-82.
[http://dx.doi.org/10.1177/0960327111421943] [PMID: 22027502]
[139]
Abbas SS, Singh N. 2006.
[140]
Ven Murthy MR, Ranjekar PK, Ramassamy C, Deshpande M. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha. Cent Nerv Syst Agents Med Chem 2010; 10(3): 238-46.
[http://dx.doi.org/10.2174/1871524911006030238] [PMID: 20528765]
[141]
Snow AD, Castillo GM, Nguyen BP, et al. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci Rep 2019; 9(1): 561.
[http://dx.doi.org/10.1038/s41598-019-38645-0] [PMID: 30728442]
[142]
Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, M Tsatsakis A. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed 2015; 5(5): 376-91.
[PMID: 26468457]
[143]
Gohari A, Saeidnia S, Mahmoodabadi M. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev 2013; 7(1): 61-6.
[http://dx.doi.org/10.4103/0973-7847.112850] [PMID: 23922458]
[144]
Adalier N, Parker H. Vitamin E, turmeric and saffron in treatment of Alzheimer’s disease. Antioxidants 2016; 5(4): 40.
[http://dx.doi.org/10.3390/antiox5040040] [PMID: 27792130]
[145]
Akhondzadeh S, Sabet MS, Harirchian MH, et al. ORIGINAL ARTICLE: Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther 2010; 35(5): 581-8.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01133.x] [PMID: 20831681]
[146]
Akhondzadeh S, Shafiee Sabet M, Harirchian MH, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology (Berl) 2010; 207(4): 637-43.
[http://dx.doi.org/10.1007/s00213-009-1706-1] [PMID: 19838862]
[147]
Farokhnia M, Shafiee Sabet M, Iranpour N, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol 2014; 29(4): 351-9.
[http://dx.doi.org/10.1002/hup.2412] [PMID: 25163440]
[148]
Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 2012; 37(9): 1829-42.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[149]
Borek C. Antioxidant health effects of aged garlic extract. J Nutr 2001; 131(3): 1010S-5S.
[http://dx.doi.org/10.1093/jn/131.3.1010S] [PMID: 11238807]
[150]
Borek C. Garlic reduces dementia and heart-disease risk. J Nutr 2006; 136(3) (Suppl.): 810S-2S.
[http://dx.doi.org/10.1093/jn/136.3.810S] [PMID: 16484570]
[151]
Qu Z, Mossine VV, Cui J, Sun GY, Gu Z. Protective effects of AGE and its components on neuroinflammation and neurodegeneration. Neuromolecular Med 2016; 18(3): 474-82.
[http://dx.doi.org/10.1007/s12017-016-8410-1] [PMID: 27263111]
[152]
Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: A neuropharmacological review of their bioactive constituents. Pharmacol Res 2018; 129: 115-27.
[http://dx.doi.org/10.1016/j.phrs.2017.12.003] [PMID: 29208493]
[153]
Chauhan A, Chauhan V. Beneficial effects of walnuts on cognition and brain health. Nutrients 2020; 12(2): 550.
[http://dx.doi.org/10.3390/nu12020550] [PMID: 32093220]
[154]
Spiridonov NA, Arkhipov VV, Foigel AG, Shipulina LD, Fomkina MG. Protonophoric and uncoupling activity of royleanones from Salvia offcinalis and euvimals from Eucalyptus viminalis. Phytother Res 2003; 17(10): 1228-30.
[http://dx.doi.org/10.1002/ptr.1403] [PMID: 14669263]
[155]
van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 2002; 967(1): 21-55.
[http://dx.doi.org/10.1016/S0021-9673(02)00172-3] [PMID: 12219929]
[156]
Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA 1997; 278(16): 1327-32.
[http://dx.doi.org/10.1001/jama.1997.03550160047037] [PMID: 9343463]
[157]
Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 2012; 46(6): 716-23.
[http://dx.doi.org/10.1016/j.jpsychires.2012.03.003] [PMID: 22459264]
[158]
Ozarowski M, Mikolajczak PL, Piasecka A, et al. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid Based Complement Alternat Med 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/9729818] [PMID: 27239217]
[159]
Henrotin Y, Clutterbuck AL, Allaway D, et al. Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage 2010; 18(2): 141-9.
[http://dx.doi.org/10.1016/j.joca.2009.10.002] [PMID: 19836480]
[160]
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann Indian Acad Neurol 2008; 11(1): 13-9.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[161]
Chang CL, Lin CS. Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts. Evid Based Complement Alternat Med 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/125247] [PMID: 21754945]
[162]
Matsuda H, Murakami T, Kishi A, Yoshikawa M. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 2001; 9(6): 1499-507.
[http://dx.doi.org/10.1016/S0968-0896(01)00024-4] [PMID: 11408168]
[163]
Funk JL, Frye JB, Oyarzo JN, et al. Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis. Arthritis Rheum 2006; 54(11): 3452-64.
[http://dx.doi.org/10.1002/art.22180] [PMID: 17075840]
[164]
Rafii MS, Walsh S, Little JT, et al. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 2011; 76(16): 1389-94.
[http://dx.doi.org/10.1212/WNL.0b013e318216eb7b] [PMID: 21502597]
[165]
Ali Z, Khan IA. Chemical constituents of Terminalia chebula. Planta Medica 2009; 75(4): 41.
[http://dx.doi.org/10.1055/s-2009-1216479]
[166]
Katerinopoulos H, Pagona G, Afratis A, Stratigakis N, Roditakis N. Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J Chem Ecol 2005; 31(1): 111-22.
[http://dx.doi.org/10.1007/s10886-005-0978-0] [PMID: 15839484]
[167]
Singh AK, Rai SN, Maurya A, et al. Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid Based Complement Alternat Med 2021; 2021: 5578574.
[http://dx.doi.org/10.1155/2021/5578574]
[168]
Yuan SQ, Zhao YM. A novel phlegmariurine type alkaloid from Huperzia serrata (Thunb.) Trev. Yao Xue Xue Bao 2003; 38(8): 596-8.
[PMID: 14628450]
[169]
Safarinejad MR. Urtica dioica for treatment of benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo-controlled, crossover study. J Herb Pharmacother 2005; 5(4): 1-11.
[http://dx.doi.org/10.1080/J157v05n04_01] [PMID: 16635963]
[170]
Rhode J, Fogoros S, Zick S, et al. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Altern Med 2007; 7(1): 44.
[http://dx.doi.org/10.1186/1472-6882-7-44] [PMID: 18096028]
[171]
Kulkarni PD, Ghaisas MM, Chivate ND, Sankpal PS. Memory enhancing activity of Cissampelos pariera in mice. Int J Pharm Pharm Sci 2011; 3(2): 206-11.
[172]
Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid Med Cell Longev 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/695936] [PMID: 24454988]
[173]
Parle M, Dhingra D, Kulkarni SK. Improvement of mouse memory by Myristica fragrans seeds. J Med Food 2004; 7(2): 157-61.
[http://dx.doi.org/10.1089/1096620041224193] [PMID: 15298762]
[174]
Joshi H, Parle M. Nardostachys jatamansi improves learning and memory in mice. J Med Food 2006; 9(1): 113-8.
[http://dx.doi.org/10.1089/jmf.2006.9.113] [PMID: 16579738]
[175]
Golechha M, Bhatia J, Arya DS. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice. J Environ Biol 2012; 33(1): 95-100.
[PMID: 23033650]
[176]
Fatima F, Rizvi DA, Abidi A, et al. A study of the neuroprotective role of Punica granatum and rosuvastatin in scopolamine induced cognitive deficit in rats. Int J Basic Clin Pharmacol 2017; 1773: 2319-003.
[177]
Saeedi M, Babaie K, Karimpour-Razkenari E, et al. In vitro cholinesterase inhibitory activity of some plants used in Iranian traditional medicine. Nat Prod Res 2017; 31(22): 2690-4.
[http://dx.doi.org/10.1080/14786419.2017.1290620] [PMID: 28278615]
[178]
Batiha GES, Magdy Beshbishy A, Wasef L, et al. Uncaria tomentosa (Willd. ex Schult.) DC.: A review on chemical constituents and biological activities. Appl Sci 2020; 10(8): 2668.
[http://dx.doi.org/10.3390/app10082668]
[179]
Hardin SR. Cat’s claw: An Amazonian vine decreases inflammation in osteoarthritis. Complement Ther Clin Pract 2007; 13(1): 25-8.
[http://dx.doi.org/10.1016/j.ctcp.2006.10.003] [PMID: 17210508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy