Review Article

多酚纳米制剂:抗细菌感染的新途径

卷 31, 期 37, 2024

发表于: 06 July, 2023

页: [6154 - 6171] 页: 18

弟呕挨: 10.2174/0929867330666230607125432

价格: $65

conference banner
摘要

对一种或多种抗生素不敏感的新菌株的逐渐出现需要发现和应用天然替代品。在天然产物中,多种多酚具有抗菌活性。然而,由于低水溶性和生物利用度,具有生物相容性和有效抗菌特性的多酚受到限制;因此,最近的研究正在考虑新的多酚配方。多酚的纳米配方,特别是金属纳米颗粒,目前正在研究其潜在的抗菌活性。这些产品的纳米化增加了它们的溶解度,并有助于获得高表面体积比,因此,纳米化产品的反应性更高,具有比非纳米化产品更好的治疗潜力。含有儿茶酚和邻苯三酚的多酚类化合物能有效地与许多金属离子结合,尤其是金和银。这些协同作用表现出抗菌、促氧化ROS生成、膜损伤和生物膜根除。本文综述了考虑多酚作为抗菌剂的各种纳米递送系统。

关键词: 抗菌、纳米金属、纳米配方、天然产物、多酚、协同效应、活性氧生成。

[1]
Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (pgpr)-pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res., 2014, 9(16), 1265-1277.
[2]
Li, J.; Huang, Q.; Zheng, X.; Ge, Z.; Lin, K.; Zhang, D.; Chen, Y.; Wang, B.; Shi, X. Investigation of the lactic acid bacteria in kazak cheese and their contributions to cheese fermentation. Front. Microbiol., 2020, 11, 228.
[http://dx.doi.org/10.3389/fmicb.2020.00228] [PMID: 32226414]
[3]
Yamano, Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin. Infect. Dis., 2019, 69(Suppl. 7), S544-S551.
[http://dx.doi.org/10.1093/cid/ciz827] [PMID: 31724049]
[4]
Ghosh, S.; Nandi, S.; Basu, T. Nano-Antibacterials using medicinal plant components: An overview. Front. Microbiol., 2021, 12, 768739.
[PMID: 35273578]
[5]
Crunkhorn, S. Predicting novel antibacterial agents. Nat. Rev. Drug Discov., 2020, 19(4), 238-239.
[PMID: 32152457]
[6]
Boy, H.I.A.; Rutilla, A.J.H.; Santos, K.A.; Ty, A.M.T.; Yu, A.I.; Mahboob, T.; Tangpoong, J.; Nissapatorn, V. Recommended medicinal plants as source of natural products: A review. DCM, 2018, 1(2), 131-142.
[http://dx.doi.org/10.1016/S2589-3777(19)30018-7]
[7]
Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20(2), 1700-1741.
[http://dx.doi.org/10.1080/10942912.2017.1354017]
[8]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[9]
Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol. Res., 2022, 184, 106414.
[http://dx.doi.org/10.1016/j.phrs.2022.106414] [PMID: 36028188]
[10]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr., 2010, 64(S3), S112-S120.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[11]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[12]
Polia, F.; Pastor-Belda, M.; Martínez-Blázquez, A.; Horcajada, M.N.; Tomás-Barberán, F.A.; García-Villalba, R. Technological and biotechnological processes to enhance the bioavailability of dietary (poly)phenols in humans. J. Agric. Food Chem., 2022, 70(7), 2092-2107.
[http://dx.doi.org/10.1021/acs.jafc.1c07198] [PMID: 35156799]
[13]
Amawi, H.; Ashby, C., Jr; Samuel, T.; Peraman, R.; Tiwari, A. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients, 2017, 9(8), 911.
[http://dx.doi.org/10.3390/nu9080911] [PMID: 28825675]
[14]
Carregosa, D.; Mota, S.; Ferreira, S.; Alves-Dias, B.; Loncarevic-Vasiljkovic, N.; Crespo, C.L.; Menezes, R.; Teodoro, R.; Santos, C.N. Overview of beneficial effects of (Poly)phenol metabolites in the context of neurodegenerative diseases on model organisms. Nutrients, 2021, 13(9), 2940.
[http://dx.doi.org/10.3390/nu13092940] [PMID: 34578818]
[15]
Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop., 2017, 20(8), 1689-1699.
[http://dx.doi.org/10.1080/10942912.2016.1220393]
[16]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[17]
Niranjan, A.; Prakash, D. Chemical constituents and biological activities of turmeric (Curcuma longa l.)- A review. J. Food Sci. Technol., 2008, 45(2), 109.
[18]
El Khawand, T.; Courtois, A.; Valls, J.; Richard, T.; Krisa, S. A review of dietary stilbenes: Sources and bioavailability. Phytochem. Rev., 2018, 17(5), 1007-1029.
[http://dx.doi.org/10.1007/s11101-018-9578-9]
[19]
Niesen, D.B.; Hessler, C.; Seeram, N.P. Beyond resveratrol: A review of natural stilbenoids identified from 2009–2013. J. Berry Res., 2013, 3(4), 181-196.
[http://dx.doi.org/10.3233/JBR-130062]
[20]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[21]
Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res., 2017, 7(2), 108-123.
[22]
Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release, 2019, 296, 190-201.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.029] [PMID: 30682442]
[23]
Baião, D.; de Freitas, C.; Gomes, L.; da Silva, D.; Correa, A.; Pereira, P.; Aguila, E.; Paschoalin, V. Polyphenols from root, tubercles and grains cropped in Brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients, 2017, 9(9), 1044.
[http://dx.doi.org/10.3390/nu9091044] [PMID: 28930173]
[24]
Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 818-836.
[http://dx.doi.org/10.1080/10408398.2011.561379] [PMID: 23768145]
[25]
Kondratyuk, T.P.; Pezzuto, J.M. Natural product polyphenols of relevance to human health. Pharm. Biol., 2004, 42(1), 46-63.
[26]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[27]
Yadav, A.K.; Thakur, J.; Prakash, O.; Khan, F.; Saikia, D.; Gupta, M.M. Screening of flavonoids for antitubercular activity and their structure–activity relationships. Med. Chem. Res., 2013, 22(6), 2706-2716.
[http://dx.doi.org/10.1007/s00044-012-0268-7]
[28]
Ya, C.; Gaffney, S.; Lilley, T.; Haslam, E. Carbohydrate polyphenol complexation. In: Chemistry and Significance of Condensed Tannins; Plenum Press: New York, USA, 1988.
[29]
Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014] [PMID: 21514796]
[30]
Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol., 2019, 10, 829.
[http://dx.doi.org/10.3389/fmicb.2019.00829] [PMID: 31057527]
[31]
Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[32]
Bjarnsholt, T. The role of bacterial biofilms in chronic infections. Acta Pathol. Microbiol. Scand. Suppl., 2013, 121(136), 1-58.
[http://dx.doi.org/10.1111/apm.12099] [PMID: 23635385]
[33]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(S12), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[34]
Taylor, D.W.; Hickey, L.J. An aptian plant with attached leaves and flowers: Implications for angiosperm origin. Science, 1990, 247(4943), 702-704.
[http://dx.doi.org/10.1126/science.247.4943.702] [PMID: 17771888]
[35]
Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6(5), 446-465.
[http://dx.doi.org/10.1016/j.nantod.2011.08.001]
[36]
Gibson, J.; Olivia, S.; Boe-Gibson, G. Night lights in economics: Sources and uses 1. J. Econ. Surv., 2020, 34(5), 955-980.
[http://dx.doi.org/10.1111/joes.12387]
[37]
Sarmukaddam, S.; Chopra, A.; Tillu, G. Efficacy and safety of Ayurvedic medicines: Recommending equivalence trial design and proposing safety index. Int. J. Ayurveda Res., 2010, 1(3), 175-180.
[http://dx.doi.org/10.4103/0974-7788.72491] [PMID: 21170211]
[38]
Karas, D.; Ulrichová, J.; Valentová, K. Galloylation of polyphenols alters their biological activity. Food Chem. Toxicol., 2017, 105, 223-240.
[http://dx.doi.org/10.1016/j.fct.2017.04.021] [PMID: 28428085]
[39]
Zanotti, I.; Dall’Asta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)phenols: A focus on cell cholesterol metabolism. Food Funct., 2015, 6(1), 13-31.
[http://dx.doi.org/10.1039/C4FO00670D] [PMID: 25367393]
[40]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int., 2015, 2015, 905215.
[http://dx.doi.org/10.1155/2015/905215]
[41]
Ribeiro, D.; Proenca, C.; Rocha, S.; Lima, J.L.F.C.; Carvalho, F.; Fernandes, E.; Freitas, M. Immunomodulatory effects of flavonoids in the prophylaxis and treatment of inflammatory bowel diseases: A comprehensive review. Curr. Med. Chem., 2018, 25(28), 3374-3412.
[http://dx.doi.org/10.2174/0929867325666180214121734] [PMID: 29446723]
[42]
Bowey, E.; Adlercreutz, H.; Rowland, I. Metabolism of isoflavones and lignans by the gut microflora: A study in germ-free and human flora associated rats. Food Chem. Toxicol., 2003, 41(5), 631-636.
[http://dx.doi.org/10.1016/S0278-6915(02)00324-1] [PMID: 12659715]
[43]
D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci., 2010, 11(4), 1321-1342.
[http://dx.doi.org/10.3390/ijms11041321] [PMID: 20480022]
[44]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8), 2073S-2085S.
[http://dx.doi.org/10.1093/jn/130.8.2073S] [PMID: 10917926]
[45]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[46]
Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspects Med., 2010, 31(6), 446-467.
[http://dx.doi.org/10.1016/j.mam.2010.09.007] [PMID: 20854839]
[47]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6), S3-S10.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.011] [PMID: 16735149]
[48]
Omosa, L.K.; Midiwo, J.O.; Mbaveng, A.T.; Tankeo, S.B.; Seukep, J.A.; Voukeng, I.K.; Dzotam, J.K.; Isemeki, J.; Derese, S.; Omolle, R.A.; Efferth, T.; Kuete, V. Antibacterial activities and structure–activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus, 2016, 5(1), 901.
[http://dx.doi.org/10.1186/s40064-016-2599-1] [PMID: 27386347]
[49]
Borges, A; Ferreira, C; Saavedra, MJ; Simões, M Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial drug resistance, 2013, 19(4), 256-265.
[http://dx.doi.org/10.1089/mdr.2012.0244]
[50]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[51]
Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118.
[http://dx.doi.org/10.1186/s13756-019-0559-6] [PMID: 31346459]
[52]
Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. 9 - Technological aspects and stability of polyphenols. In: Polyphenols: Properties, Recovery, and Applications; Elsevier, 2018; pp. 295-323.
[53]
Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem., 2020, 326, 126973.
[http://dx.doi.org/10.1016/j.foodchem.2020.126973] [PMID: 32413757]
[54]
Qin, R.; Xiao, K.; Li, B.; Jiang, W.; Peng, W.; Zheng, J.; Zhou, H. The combination of catechin and epicatechin callate from Fructus Crataegi potentiates β-lactam antibiotics against methicillin-resistant staphylococcus aureus (MRSA) in vitro and in vivo. Int. J. Mol. Sci., 2013, 14(1), 1802-1821.
[http://dx.doi.org/10.3390/ijms14011802] [PMID: 23325048]
[55]
Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[56]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141.
[http://dx.doi.org/10.1021/mp200394t] [PMID: 21974749]
[57]
Drug Products, Including Biological Products, that Contain Nanomaterials - Guidance for Industry. 2017. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-products-including-biological-products-contain-nanomaterials-guidance-industry
[58]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[59]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine, 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[60]
Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910.
[http://dx.doi.org/10.1002/jcp.26029] [PMID: 28543172]
[61]
Javid-Naderi, M.J.; Mahmoudi, A.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome. J. Drug Deliv. Sci. Technol., 2023, 79, 104014.
[http://dx.doi.org/10.1016/j.jddst.2022.104014]
[62]
Moosavian, S.A.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorg. Chem. Appl., 2021, 4041415.
[http://dx.doi.org/10.1155/2021/4041415]
[63]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[64]
Tran, T.T.; Hadinoto, K. A Potential Quorum-sensing inhibitor for bronchiectasis therapy: Quercetin–chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int. J. Mol. Sci., 2021, 22(4), 1541.
[http://dx.doi.org/10.3390/ijms22041541] [PMID: 33546487]
[65]
Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tăbăran, F.A.; Mocan, L. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci., 2021, 11(3), 1120.
[http://dx.doi.org/10.3390/app11031120]
[66]
Clinical toxicities encountered with paclitaxel (Taxol). Rowinsky, E.; Eisenhauer, E.; Chaudhry, V.; Arbuck, S.; Donehower, R., Eds.; Semin Oncol, 1993, 20(4 Suppl. 3), 1-15.
[67]
Yoon, H.S.; Cho, C.H.; Yun, M.S.; Jang, S.J.; You, H.J.; Kim, J.; Han, D.; Cha, K.H.; Moon, S.H.; Lee, K.; Kim, Y.J.; Lee, S.J.; Nam, T.W.; Ko, G. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol., 2021, 6(5), 563-573.
[http://dx.doi.org/10.1038/s41564-021-00880-5] [PMID: 33820962]
[68]
Bhatia, E.; Banerjee, R. Hybrid silver–gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4890-4898.
[http://dx.doi.org/10.1039/D0TB00158A] [PMID: 32285904]
[69]
Adnan, N.N.M.; Cheng, Y.Y.; Ong, N.M.N.; Kamaruddin, T.T.; Rozlan, E.; Schmidt, T.W.; Duong, H.T.T.; Boyer, C. Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym. Chem., 2016, 7(16), 2888-2903.
[http://dx.doi.org/10.1039/C6PY00465B]
[70]
Yougbaré, S.; Chou, H.L.; Yang, C.H.; Krisnawati, D.I.; Jazidie, A.; Nuh, M.; Kuo, T.R. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J. Hazard. Mater., 2021, 407, 124617.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124617] [PMID: 33359972]
[71]
Alsamhary, K.; Al-Enazi, N.; Alshehri, W.A.; Ameen, F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb. Pathog., 2020, 139, 103928.
[http://dx.doi.org/10.2217/fvl-2015-0010]
[72]
Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci., 2017, 8(1), 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[73]
Kumar, A.; Mazinder Boruah, B. Liang, X-J Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater., 2011, 2011, 202187.
[74]
Fan, F.R.F.; Bard, A.J. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. J. Phys. Chem. B, 2002, 106(2), 279-287.
[http://dx.doi.org/10.1021/jp012548d]
[75]
Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924.
[http://dx.doi.org/10.1021/pr0504079] [PMID: 16602699]
[76]
Varaprasad, K.; Mohan, Y.M.; Vimala, K.; Mohana Raju, K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci., 2011, 121(2), 784-796.
[http://dx.doi.org/10.1002/app.33508]
[77]
Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Adv. Powder Technol., 2018, 29(2), 407-415.
[http://dx.doi.org/10.1016/j.apt.2017.11.028]
[78]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141.
[http://dx.doi.org/10.1007/s10534-010-9381-6] [PMID: 20938718]
[79]
Tong, C.; Zhong, X.; Yang, Y.; Liu, X.; Zhong, G.; Xiao, C.; Liu, B.; Wang, W.; Yang, X.P.B. @PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials, 2020, 243, 119936.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119936] [PMID: 32171103]
[80]
Akintelu, S.A.; Bo, Y.; Folorunso, A.S. A review on synthesis, optimization, mechanism, characterization, and antibacterial application of silver nanoparticles synthesized from plants. J. Chem., 2020, 2020, 3189043.
[http://dx.doi.org/10.1155/2020/3189043]
[81]
Das, R.K.; Brar, S.K. Plant mediated green synthesis: Modified approaches. Nanoscale, 2013, 5(21), 10155-10162.
[http://dx.doi.org/10.1039/c3nr02548a] [PMID: 24056951]
[82]
Kim, J-H.; Eguchi, H.; Umemura, M.; Sato, I.; Yamada, S.; Hoshino, Y. Magnetic metal-complex-conducting copolymer core–shell nanoassemblies for a single-drug anticancer platform. NPG Asia Mater., 2017, 9(3), e367.
[http://dx.doi.org/10.1038/am.2017.29]
[83]
Aisida, S.O.; Ugwoke, E.; Uwais, A.; Iroegbu, C.; Botha, S.; Ahmad, I.; Maaza, M.; Ezema, F.I. Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J. Polym. Res., 2019, 26(9), 225.
[http://dx.doi.org/10.1007/s10965-019-1897-z]
[84]
Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape, size and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307.
[http://dx.doi.org/10.7150/thno.25220] [PMID: 29930730]
[85]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[86]
Igartúa, D.E.; Azcona, P.L.; Martinez, C.S.; Alonso, S.V.; Lassalle, V.L.; Prieto, M.J. Folic acid magnetic nanotheranostics for delivering doxorubicin: Toxicological and biocompatibility studies on Zebrafish embryo and larvae. Toxicol. Appl. Pharmacol., 2018, 358, 23-34.
[http://dx.doi.org/10.1016/j.taap.2018.09.009] [PMID: 30205093]
[87]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[88]
Zhang, M.; Zheng, Y.; Jin, Y.; Wang, D.; Wang, G.; Zhang, X.; Li, Y.; Lee, S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int. J. Biol. Macromol., 2022, 202, 80-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.074] [PMID: 35038467]
[89]
Ong, T.H.; Chitra, E.; Ramamurthy, S.; Siddalingam, R.P.; Yuen, K.H.; Ambu, S.P.; Davamani, F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One, 2017, 12(3), e0174888.
[http://dx.doi.org/10.1371/journal.pone.0174888] [PMID: 28362873]
[90]
Mirzahosseinipour, M.; Khorsandi, K.; Hosseinzadeh, R.; Ghazaeian, M.; Shahidi, F.K. Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagn. Photodyn. Ther., 2020, 29, 101639.
[http://dx.doi.org/10.1016/j.pdpdt.2019.101639] [PMID: 31899378]
[91]
Oves, M.; Rauf, M.A.; Ansari, M.O.; Aslam Parwaz Khan, A.; A Qari, H. Alajmi, M.F.; Sau, S.; Iyer, A.K. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials, 2020, 10(5), 1004.
[http://dx.doi.org/10.3390/nano10051004] [PMID: 32466085]
[92]
Della Rocca, J.; Liu, D.; Lin, W. Are high drug loading nanoparticles the next step forward for chemotherapy? Nanomedicine, 2012, 7(3), 303-305.
[http://dx.doi.org/10.2217/nnm.11.191] [PMID: 22385191]
[93]
Xu, L.; Liang, Y.; Chen, X.; Chen, B.; Han, Y.; Zhang, L. Hyperlipidemia affects the absorption, distribution and excretion of seven catechins in rats following oral administration of tea polyphenols. RSC Advances, 2015, 5(119), 97988-97994.
[http://dx.doi.org/10.1039/C5RA19699J]
[94]
Agrahari, V.; Agrahari, V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov. Today, 2018, 23(5), 974-991.
[http://dx.doi.org/10.1016/j.drudis.2018.01.047] [PMID: 29406263]
[95]
Raie, D.S.; Mhatre, E.; Thiele, M.; Labena, A.; El-Ghannam, G.; Farahat, L.A.; Youssef, T.; Fritzsche, W.; Kovács, Á.T. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Mater. Sci. Eng. C, 2017, 70(Pt 1), 753-762.
[http://dx.doi.org/10.1016/j.msec.2016.09.038] [PMID: 27770951]
[96]
Keihanian, F.; Saeidinia, A.; Bagheri, R.K.; Johnston, T.P.; Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell Physiol., 2018, 233(6), 4497-4511. Epub 2017 Dec 26.
[http://dx.doi.org/10.1002/jcp.26249.] [PMID: 29052850]
[97]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[98]
Heidari, H.; Bagherniya, M.; Majeed, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res., 2023, 37(4), 1462-1487.
[http://dx.doi.org/10.1002/ptr.7737] [PMID: 36720711]
[99]
Momtazi, A.A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des., 2016, 22(28), 4386-97.
[http://dx.doi.org/10.2174/1381612822666160527113501] [PMID: 27229723]
[100]
Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415.
[http://dx.doi.org/10.1097/CEJ.0b013e32832c389e] [PMID: 19531956]
[101]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e77.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071]
[102]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[103]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51. Epub 2017 Dec 14.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[104]
Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878.
[http://dx.doi.org/10.1002/ptr.6991] [PMID: 33464676]
[105]
Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol., 2018, 207(1), 39-53.
[http://dx.doi.org/10.1007/s00430-017-0525-y] [PMID: 29081001]
[106]
Shome, S.; Talukdar, A.D.; Tewari, S.; Choudhury, S.; Bhattacharya, M.K.; Upadhyaya, H. Conjugation of micro/nanocurcumin particles to ZNO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia Coli and Staphylococcus aureus. Biotechnol. Appl. Biochem., 2021, 68(3), 603-615.
[http://dx.doi.org/10.1002/bab.1968] [PMID: 32533898]
[107]
Fogacci, F.; Tocci, G.; Presta, V.; Fratter, A.; Borghi, C.; Cicero, A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr., 2019, 59(10), 1605-1618.
[http://dx.doi.org/10.1080/10408398.2017.1422480] [PMID: 29359958]
[108]
Haghighatdoost, F.; Hariri, M. Can resveratrol supplement change inflammatory mediators? A systematic review and meta-analysis on randomized clinical trials. Eur. J. Clin. Nutr., 2019, 73(3), 345-355.
[http://dx.doi.org/10.1038/s41430-018-0253-4] [PMID: 30013206]
[109]
Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[110]
Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835.
[http://dx.doi.org/10.1111/nure.12081] [PMID: 24111838]
[111]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors — Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.008] [PMID: 25885871]
[112]
Park, S.; Cha, S.H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C, 2016, 58, 1160-1169.
[http://dx.doi.org/10.1016/j.msec.2015.09.068] [PMID: 26478416]
[113]
Shukla, S.P.; Roy, M.; Mukherjee, P.; Das, L.; Neogy, S.; Srivastava, D.; Adhikari, S. Size selective green synthesis of silver and gold nanoparticles: Enhanced antibacterial efficacy of resveratrol capped silver sol. J. Nanosci. Nanotechnol., 2016, 16(3), 2453-2463.
[http://dx.doi.org/10.1166/jnn.2016.10772] [PMID: 27455655]
[114]
Riaz, S.; Fatima Rana, N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; Hameed, M.; Ali, S.M. Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials, 2020, 10(9), 1769.
[http://dx.doi.org/10.3390/nano10091769] [PMID: 32906828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy