Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal

Author(s): Adriana Romo-Perez, Guadalupe Domínguez-Gómez, Alma D. Chávez-Blanco, Aurora González-Fierro, José Correa-Basurto and Alfonso Dueñas-González*

Volume 31, Issue 22, 2024

Published on: 09 August, 2023

Page: [3265 - 3285] Pages: 21

DOI: 10.2174/0929867330666230607104441

Price: $65

Abstract

Background: Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO).

Objective: Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer.

Results: Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs.

Conclusion: We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.

Keywords: Prostate cancer, metabolic blockade, cancer drug repurposing, de novo fatty-acid synthesis, mevalonate pathway, fatty-acid oxidation.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur Urol Oncol., 2021, 4, 877-892.
[http://dx.doi.org/10.1016/j.euo.2021.09.006]
[3]
Tabayoyong, W.; Abouassaly, R. Prostate cancer screening and the associated controversy. Surg. Clin. North Am., 2015, 95(5), 1023-1039.
[http://dx.doi.org/10.1016/j.suc.2015.05.001] [PMID: 26315521]
[4]
Prostate Cancer Treatment (PDQ®): Health Professional Version In: PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda (MD), 2002.
[5]
Prager, G.W.; Braga, S.; Bystricky, B.; Qvortrup, C.; Criscitiello, C.; Esin, E.; Sonke, G.S.; Martínez, G.; Frenel, J.S.; Karamouzis, M.; Strijbos, M.; Yazici, O.; Bossi, P.; Banerjee, S.; Troiani, T.; Eniu, A.; Ciardiello, F.; Tabernero, J.; Zielinski, C.C.; Casali, P.G.; Cardoso, F.; Douillard, J.Y.; Jezdic, S.; McGregor, K.; Bricalli, G.; Vyas, M.; Ilbawi, A. Global cancer control: Responding to the growing burden, rising costs and inequalities in access. ESMO Open, 2018, 3(2), e000285.
[http://dx.doi.org/10.1136/esmoopen-2017-000285] [PMID: 29464109]
[6]
Yousuf, Z.S. Financial toxicity of cancer care: It’s time to intervene. J. Natl. Cancer Inst., 2016, 108(5), djv370.
[http://dx.doi.org/10.1093/jnci/djv370] [PMID: 26657334]
[7]
Ramsey, S.D.; Bansal, A.; Fedorenko, C.R.; Blough, D.K.; Overstreet, K.A.; Shankaran, V.; Newcomb, P. Financial insolvency as a risk factor for early mortality among patients with cancer. J. Clin. Oncol., 2016, 34(9), 980-986.
[http://dx.doi.org/10.1200/JCO.2015.64.6620] [PMID: 26811521]
[8]
Jayadevappa, R.; Schwartz, J.S.; Chhatre, S.; Gallo, J.J.; Wein, A.J.; Malkowicz, S.B. The burden of out-of-pocket and indirect costs of prostate cancer. Prostate, 2010, 70(11), 1255-1264.
[http://dx.doi.org/10.1002/pros.21161] [PMID: 20658653]
[9]
Gordon, L.G.; Walker, S.M.; Mervin, M.C.; Lowe, A.; Smith, D.P.; Gardiner, R.A.; Chambers, S.K. Financial toxicity: A potential side effect of prostate cancer treatment among Australian men. Eur. J. Cancer Care, 2017, 26(1), e12392.
[http://dx.doi.org/10.1111/ecc.12392] [PMID: 26423576]
[10]
Housser, E.; Mathews, M.; LeMessurier, J.; Young, S.; Hawboldt, J.; West, R. Responses by breast and prostate cancer patients to out-of-pocket costs in Newfoundland and Labrador. Curr. Oncol., 2013, 20(3), 158-165.
[http://dx.doi.org/10.3747/co.20.1197] [PMID: 23737684]
[11]
Koskinen, J.P.; Färkkilä, N.; Sintonen, H.; Saarto, T.; Taari, K.; Roine, R.P. The association of financial difficulties and out-of-pocket payments with health-related quality of life among breast, prostate and colorectal cancer patients. Acta Oncol., 2019, 58(7), 1062-1068.
[http://dx.doi.org/10.1080/0284186X.2019.1592218] [PMID: 30943813]
[12]
Xu, W.Y.; Retchin, S.M.; Seiber, E.E.; Li, Y. Income-based disparities in financial burdens of medical spending under the affordable care act in families with individuals having chronic conditions. Inquiry, 2019, 56, 0046958019871815.
[http://dx.doi.org/10.1177/0046958019871815] [PMID: 31455121]
[13]
Howard, D.H.; Quek, R.G.W.; Fox, K.M.; Arondekar, B.; Filson, C.P. The value of new drugs for advanced prostate cancer. Cancer, 2021, 127(18), 3457-3465.
[http://dx.doi.org/10.1002/cncr.33662] [PMID: 34062620]
[14]
E.O.-O. and M. Roser. OurWorldInData.org; Financ Healthc, 2017.
[15]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo e Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Bouzbid, S.; Hamdi-Chérif, M.; Zaidi, Z.; Meguenni, K.; Regagba, D.; Bayo, S.; Cheick Bougadari, T.; Manraj, S.S.; Bendahhou, K.; Fabowale, A.; Bradshaw, D.; Somdyala, N.I.M.; Kumcher, I.; Moreno, F.; Calabrano, G.H.; Espinola, S.B.; Carballo, Q.B.; Fita, R.; Diumenjo, M.C.; Laspada, W.D.; Ibañez, S.G.; Lima, C.A.; De Souza, P.C.F.; Del Pino, K.; Laporte, C.; Curado, M.P.; de Oliveira, J.C.; Veneziano, C.L.A.; Veneziano, D.B.; Latorre, M.R.D.O.; Tanaka, L.F.; Rebelo, M.S.; Santos, M.O.; Galaz, J.C.; Aparicio Aravena, M.; Sanhueza Monsalve, J.; Herrmann, D.A.; Vargas, S.; Herrera, V.M.; Uribe, C.J.; Bravo, L.E.; Garcia, L.S.; Arias-Ortiz, N.E.; Morantes, D.; Jurado, D.M.; Yépez Chamorro, M.C.; Delgado, S.; Ramirez, M.; Galán Alvarez, Y.H.; Torres, P.; Martínez-Reyes, F.; Jaramillo, L.; Quinto, R.; Castillo, J.; Mendoza, M.; Cueva, P.; Yépez, J.G.; Bhakkan, B.; Deloumeaux, J.; Joachim, C.; Macni, J.; Carrillo, R.; Shalkow Klincovstein, J.; Rivera Gomez, R.; Poquioma, E.; Tortolero-Luna, G.; Zavala, D.; Alonso, R.; Barrios, E.; Eckstrand, A.; Nikiforuk, C.; Noonan, G.; Turner, D.; Kumar, E.; Zhang, B.; McCrate, F.R.; Ryan, S.; MacIntyre, M.; Saint-Jacques, N.; Nishri, D.E.; McClure, C.A.; Vriends, K.A.; Kozie, S.; Stuart-Panko, H.; Freeman, T.; George, J.T.; Brockhouse, J.T.; O’Brien, D.K.; Holt, A.; Almon, L.; Kwong, S.; Morris, C.; Rycroft, R.; Mueller, L.; Phillips, C.E.; Brown, H.; Cromartie, B.; Schwartz, A.G.; Vigneau, F.; Levin, G.M.; Wohler, B.; Bayakly, R.; Ward, K.C.; Gomez, S.L.; McKinley, M.; Cress, R.; Green, M.D.; Miyagi, K.; Ruppert, L.P.; Lynch, C.F.; Huang, B.; Tucker, T.C.; Deapen, D.; Liu, L.; Hsieh, M.C.; Wu, X.C.; Schwenn, M.; Gershman, S.T.; Knowlton, R.C.; Alverson, G.; Copeland, G.E.; Bushhouse, S.; Rogers, D.B.; Jackson-Thompson, J.; Lemons, D.; Zimmerman, H.J.; Hood, M.; Roberts-Johnson, J.; Rees, J.R.; Riddle, B.; Pawlish, K.S.; Stroup, A.; Key, C.; Wiggins, C.; Kahn, A.R.; Schymura, M.J.; Radhakrishnan, S.; Rao, C.; Giljahn, L.K.; Slocumb, R.M.; Espinoza, R.E.; Khan, F.; Aird, K.G.; Beran, T.; Rubertone, J.J.; Slack, S.J.; Garcia, L.; Rousseau, D.L.; Janes, T.A.; Schwartz, S.M.; Bolick, S.W.; Hurley, D.M.; Whiteside, M.A.; Miller-Gianturco, P.; Williams, M.A.; Herget, K.; Sweeney, C.; Johnson, A.T.; Keitheri Cheteri, M.B.; Migliore Santiago, P.; Blankenship, S.E.; Farley, S.; Borchers, R.; Malicki, R.; Espinoza, J.R.; Grandpre, J.; Wilson, R.; Edwards, B.K.; Mariotto, A.; Lei, Y.; Wang, N.; Chen, J.S.; Zhou, Y.; He, Y.T.; Song, G.H.; Gu, X.P.; Mei, D.; Mu, H.J.; Ge, H.M.; Wu, T.H.; Li, Y.Y.; Zhao, D.L.; Jin, F.; Zhang, J.H.; Zhu, F.D.; Junhua, Q.; Yang, Y.L.; Jiang, C.X.; Biao, W.; Wang, J.; Li, Q.L.; Yi, H.; Zhou, X.; Dong, J.; Li, W.; Fu, F.X.; Liu, S.Z.; Chen, J.G.; Zhu, J.; Li, Y.H.; Lu, Y.Q.; Fan, M.; Huang, S.Q.; Guo, G.P.; Zhaolai, H.; Wei, K.; Zeng, H.; Demetriou, A.V.; Mang, W.K.; Ngan, K.C.; Kataki, A.C.; Krishnatreya, M.; Jayalekshmi, P.A.; Sebastian, P.; Nandakumar, A.; Malekzadeh, R.; Roshandel, G.; Keinan-Boker, L.; Silverman, B.G.; Ito, H.; Nakagawa, H.; Sato, M.; Tobori, F.; Nakata, I.; Teramoto, N.; Hattori, M.; Kaizaki, Y.; Moki, F.; Sugiyama, H.; Utada, M.; Nishimura, M.; Yoshida, K.; Kurosawa, K.; Nemoto, Y.; Narimatsu, H.; Sakaguchi, M.; Kanemura, S.; Naito, M.; Narisawa, R.; Miyashiro, I.; Nakata, K.; Sato, S.; Yoshii, M.; Oki, I.; Fukushima, N.; Shibata, A.; Iwasa, K.; Ono, C.; Nimri, O.; Jung, K.W.; Won, Y.J.; Alawadhi, E.; Elbasmi, A.; Ab Manan, A.; Adam, F.; Sanjaajmats, E.; Tudev, U.; Ochir, C.; Al Khater, A.M.; El Mistiri, M.M.; Teo, Y.Y.; Chiang, C.J.; Lee, W.C.; Buasom, R.; Sangrajrang, S.; Kamsa-ard, S.; Wiangnon, S.; Daoprasert, K.; Pongnikorn, D.; Leklob, A.; Sangkitipaiboon, S.; Geater, S.L.; Sriplung, H.; Ceylan, O.; Kög, I.; Dirican, O.; Köse, T.; Gurbuz, T.; Karaşahin, F.E.; Turhan, D.; Aktaş, U.; Halat, Y.; Yakut, C.I.; Altinisik, M.; Cavusoglu, Y.; Türkköylü, A.; Üçüncü, N.; Hackl, M.; Zborovskaya, A.A.; Aleinikova, O.V.; Henau, K.; Van Eycken, L.; Valerianova, Z.; Yordanova, M.R.; Šekerija, M.; Dušek, L.; Zvolský, M.; Storm, H.; Innos, K.; Mägi, M.; Malila, N.; Seppä, K.; Jégu, J.; Velten, M.; Cornet, E.; Troussard, X.; Bouvier, A.M.; Guizard, A.V.; Bouvier, V.; Launoy, G.; Arveux, P.; Maynadié, M.; Mounier, M.; Woronoff, A.S.; Daoulas, M.; Robaszkiewicz, M.; Clavel, J.; Goujon, S.; Lacour, B.; Baldi, I.; Pouchieu, C.; Amadeo, B.; Coureau, G.; Orazio, S.; Preux, P.M.; Rharbaoui, F.; Marrer, E.; Trétarre, B.; Colonna, M.; Delafosse, P.; Ligier, K.; Plouvier, S.; Cowppli-Bony, A.; Molinié, F.; Bara, S.; Ganry, O.; Lapôtre-Ledoux, B.; Grosclaude, P.; Bossard, N.; Uhry, Z.; Bray, F.; Piñeros, M.; Stabenow, R.; Wilsdorf-Köhler, H.; Eberle, A.; Luttmann, S.; Löhden, I.; Nennecke, A.L.; Kieschke, J.; Sirri, E.; Emrich, K.; Zeissig, S.R.; Holleczek, B.; Eisemann, N.; Katalinic, A.; Asquez, R.A.; Kumar, V.; Petridou, E.; Ólafsdóttir, E.J.; Tryggvadóttir, L.; Clough-Gorr, K.; Walsh, P.M.; Sundseth, H.; Mazzoleni, G.; Vittadello, F.; Coviello, E.; Cuccaro, F.; Galasso, R.; Sampietro, G.; Giacomin, A.; Magoni, M.; Ardizzone, A.; D’Argenzio, A.; Castaing, M.; Grosso, G.; Lavecchia, A.M.; Sutera Sardo, A.; Gola, G.; Gatti, L.; Ricci, P.; Ferretti, S.; Serraino, D.; Zucchetto, A.; Celesia, M.V.; Filiberti, R.A.; Pannozzo, F.; Melcarne, A.; Quarta, F.; Russo, A.G.; Carrozzi, G.; Cirilli, C.; Cavalieri d’Oro, L.; Rognoni, M.; Fusco, M.; Vitale, M.F.; Usala, M.; Cusimano, R.; Mazzucco, W.; Michiara, M.; Sgargi, P.; Boschetti, L.; Borciani, E.; Seghini, P.; Maule, M.M.; Merletti, F.; Tumino, R.; Mancuso, P.; Vicentini, M.; Cassetti, T.; Sassatelli, R.; Falcini, F.; Giorgetti, S.; Caiazzo, A.L.; Cavallo, R.; Cesaraccio, R.; Pirino, D.R.; Contrino, M.L.; Tisano, F.; Fanetti, A.C.; Maspero, S.; Carone, S.; Mincuzzi, A.; Candela, G.; Scuderi, T.; Gentilini, M.A.; Piffer, S.; Rosso, S.; Barchielli, A.; Caldarella, A.; Bianconi, F.; Stracci, F.; Contiero, P.; Tagliabue, G.; Rugge, M.; Zorzi, M.; Beggiato, S.; Brustolin, A.; Berrino, F.; Gatta, G.; Sant, M.; Buzzoni, C.; Mangone, L.; Capocaccia, R.; De Angelis, R.; Zanetti, R.; Maurina, A.; Pildava, S.; Lipunova, N.; Vincerževskiené, I.; Agius, D.; Calleja, N.; Siesling, S.; Larønningen, S.; Møller, B.; Dyzmann-Sroka, A.; Trojanowski, M.; Góźdź, S.; Mężyk, R.; Mierzwa, T.; Molong, L.; Rachtan, J.; Szewczyk, S.; Błaszczyk, J.; Kępska, K.; Kościańska, B.; Tarocińska, K.; Zwierko, M.; Drosik, K.; Maksimowicz, K.M.; Purwin-Porowska, E.; Reca, E.; Wójcik-Tomaszewska, J.; Tukiendorf, A.; Grądalska-Lampart, M.; Radziszewska, A.U.; Gos, A.; Talerczyk, M.; Wyborska, M.; Didkowska, J.A.; Wojciechowska, U.; Bielska-Lasota, M.; Forjaz de Lacerda, G.; Rego, R.A.; Bastos, J.; Silva, M.A.; Antunes, L.; Laranja Pontes, J.; Mayer-da-Silva, A.; Miranda, A.; Blaga, L.M.; Coza, D.; Gusenkova, L.; Lazarevich, O.; Prudnikova, O.; Vjushkov, D.M.; Egorova, A.G.; Orlov, A.E.; Kudyakov, L.A.; Pikalova, L.V.; Adamcik, J.; Safaei Diba, C.; Primic-Žakelj, M.; Zadnik, V.; Larrañaga, N.; Lopez de Munain, A.; Herrera, A.A.; Redondas, R.; Marcos-Gragera, R.; Vilardell Gil, M.L.; Molina, E.; Sánchez Perez, M.J.; Franch Sureda, P.; Ramos Montserrat, M.; Chirlaque, M.D.; Navarro, C.; Ardanaz, E.E.; Guevara, M.M.; Fernández-Delgado, R.; Peris-Bonet, R.; Carulla, M.; Galceran, J.; Alberich, C.; Vicente-Raneda, M.; Khan, S.; Pettersson, D.; Dickman, P.; Avelina, I.; Staehelin, K.; Camey, B.; Bouchardy, C.; Schaffar, R.; Frick, H.; Herrmann, C.; Bulliard, J.L.; Maspoli-Conconi, M.; Kuehni, C.E.; Redmond, S.M.; Bordoni, A.; Ortelli, L.; Chiolero, A.; Konzelmann, I.; Matthes, K.L.; Rohrmann, S.; Broggio, J.; Rashbass, J.; Fitzpatrick, D.; Gavin, A.; Clark, D.I.; Deas, A.J.; Huws, D.W.; White, C.; Montel, L.; Rachet, B.; Turculet, A.D.; Stephens, R.; Chalker, E.; Phung, H.; Walton, R.; You, H.; Guthridge, S.; Johnson, F.; Gordon, P.; D’Onise, K.; Priest, K.; Stokes, B.C.; Venn, A.; Farrugia, H.; Thursfield, V.; Dowling, J.; Currow, D.; Hendrix, J.; Lewis, C. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[16]
Gonzalez-Fierro, A.; Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol., 2021, 68, 123-131.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.012] [PMID: 31877340]
[17]
Tallman, M.; Lo-Coco, F.; Barnes, G.; Kruse, M.; Wildner, R.; Martin, M.; Mueller, U.; Tang, B. Cost-effectiveness analysis of treating acute promyelocytic leukemia patients with arsenic trioxide and retinoic acid in the United States. Clin. Lymphoma Myeloma Leuk, 2015, 15(2015), 771-777.
[http://dx.doi.org/10.1016/j.clml.2015.07.634]
[18]
Zhang, Y.; Yang, J.M. Altered energy metabolism in cancer. Cancer Biol. Ther., 2013, 14(2), 81-89.
[http://dx.doi.org/10.4161/cbt.22958] [PMID: 23192270]
[19]
Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The warburg effect 97 years after its discovery. Cancers, 2020, 12(10), 2819.
[http://dx.doi.org/10.3390/cancers12102819] [PMID: 33008042]
[20]
Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; Chinopoulos, C. On the origin of ATP synthesis in cancer. iScience, 2020, 23(11), 101761.
[http://dx.doi.org/10.1016/j.isci.2020.101761] [PMID: 33251492]
[21]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[22]
Kodama, M.; Nakayama, K.I. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen. BioEssays, 2020, 42(12), 2000169.
[http://dx.doi.org/10.1002/bies.202000169] [PMID: 33165972]
[23]
Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; Schwartz, L.H.; Ali, H.S.; Ahmed, A.; Forde, P.F.; Devesa, J.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metabolites, 2020, 10(7), 285.
[http://dx.doi.org/10.3390/metabo10070285] [PMID: 32664469]
[24]
Matés, J.M.; Campos-Sandoval, J.A.; de los Santos-Jiménez, J.; Márquez, J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch. Toxicol., 2020, 94(8), 2603-2623.
[http://dx.doi.org/10.1007/s00204-020-02838-8] [PMID: 32681190]
[25]
Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516.
[http://dx.doi.org/10.1038/s12276-020-00504-8] [PMID: 32943735]
[26]
Zhu, L.; Ploessl, K.; Zhou, R.; Mankoff, D.; Kung, H.F. Metabolic imaging of glutamine in cancer. J. Nucl. Med., 2017, 58(4), 533-537.
[http://dx.doi.org/10.2967/jnumed.116.182345] [PMID: 28232608]
[27]
Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res., 1953, 13(1), 27-29.
[PMID: 13032945]
[28]
Pizer, E.S.; Kurman, R.J.; Pasternack, G.R.; Kuhajda, F.P. Expression of fatty acid synthase is closely linked to proliferation and stromal decidualization in cycling endometrium. Int. J. Gynecol. Pathol., 1997, 16(1), 45-51.
[http://dx.doi.org/10.1097/00004347-199701000-00008] [PMID: 8986532]
[29]
Maningat, P.D.; Sen, P.; Rijnkels, M.; Sunehag, A.L.; Hadsell, D.L.; Bray, M.; Haymond, M.W. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol. Genomics, 2009, 37(1), 12-22.
[http://dx.doi.org/10.1152/physiolgenomics.90341.2008] [PMID: 19018045]
[30]
Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab., 2021, 9(1), 2.
[http://dx.doi.org/10.1186/s40170-020-00237-2] [PMID: 33413672]
[31]
Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Varney, B.; Liu-Fu, F.; Lee, L.S.; Nagarajan, S.R.; Shearer, R.F.; Hardie, R.A.; Raftopulos, N.L.; Kakani, M.S.; Saunders, D.N.; Holst, J.; Horvath, L.G.; Butler, L.M.; Hoy, A.J. Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol. Cancer Res., 2019, 17(4), 949-962.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0347] [PMID: 30647103]
[32]
Vance, D.V.E. Biochemistry of Lipids, Lipoproteins and Membranes, 4th ed.; , 2022.
[33]
Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The mevalonate pathway, a metabolic target in cancer therapy. Front Oncol., 2021, 11, 626971.
[http://dx.doi.org/10.3389/fonc.2021.626971]
[34]
Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta - Rev Cancer., 2020, 1873(2020), 188351.
[http://dx.doi.org/10.1016/j.bbcan.2020.188351]
[35]
De Oliveira, M.P.; Liesa, M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells, 2020, 9(2020), 2600.
[http://dx.doi.org/10.3390/cells9122600]
[36]
Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: Emerging therapeutic targets in cancer. Cell Death Dis., 2016, 7(5), e2226-e2226.
[http://dx.doi.org/10.1038/cddis.2016.132] [PMID: 27195673]
[37]
Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer, 2013, 13(4), 227-232.
[http://dx.doi.org/10.1038/nrc3483] [PMID: 23446547]
[38]
Kwee, S.A.; Lim, J. Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis. World J. Radiol., 2016, 8(11), 851-856.
[http://dx.doi.org/10.4329/wjr.v8.i11.851] [PMID: 27928466]
[39]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[40]
Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: New players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(4), 358-365.
[http://dx.doi.org/10.1097/01.mco.0000232894.28674.30] [PMID: 16778563]
[41]
Labbé, D.P.; Zadra, G.; Yang, M.; Reyes, J.M.; Lin, C.Y.; Cacciatore, S.; Ebot, E.M.; Creech, A.L.; Giunchi, F.; Fiorentino, M.; Elfandy, H.; Syamala, S.; Karoly, E.D.; Alshalalfa, M.; Erho, N.; Ross, A.; Schaeffer, E.M.; Gibb, E.A.; Takhar, M.; Den, R.B.; Lehrer, J.; Karnes, R.J.; Freedland, S.J.; Davicioni, E.; Spratt, D.E.; Ellis, L.; Jaffe, J.D.; DʼAmico, A.V.; Kantoff, P.W.; Bradner, J.E.; Mucci, L.A.; Chavarro, J.E.; Loda, M.; Brown, M. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun., 2019, 10(1), 4358.
[http://dx.doi.org/10.1038/s41467-019-12298-z] [PMID: 31554818]
[42]
Purcell, S.A.; Oliveira, C.L.P.; Mackenzie, M.; Robson, P.; Lewis, J.; Prado, C.M. Body composition and prostate cancer risk: A systematic review of observational studies. Adv. Nutr., 2021.
[http://dx.doi.org/10.1093/advances/nmab153] [PMID: 34918023]
[43]
Van Blarigan, E.L.; Kenfield, S.A.; Yang, M.; Sesso, H.D.; Ma, J.; Stampfer, M.J.; Chan, J.M.; Chavarro, J.E. Fat intake after prostate cancer diagnosis and mortality in the physicians’ health study. Cancer Causes Control, 2015, 26(8), 1117-1126.
[http://dx.doi.org/10.1007/s10552-015-0606-4] [PMID: 26047644]
[44]
Kuhajda, F.P.; Jenner, K.; Wood, F.D.; Hennigar, R.A.; Jacobs, L.B.; Dick, J.D.; Pasternack, G.R. Fatty acid synthesis: A potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci., 1994, 91(14), 6379-6383.
[http://dx.doi.org/10.1073/pnas.91.14.6379] [PMID: 8022791]
[45]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Mol, 2020, 25(2020), 3935.
[http://dx.doi.org/10.3390/molecules25173935]
[46]
Fiorentino, M.; Zadra, G.; Palescandolo, E.; Fedele, G.; Bailey, D.; Fiore, C.; Nguyen, P.L.; Migita, T.; Zamponi, R.; Di Vizio, D.; Priolo, C.; Sharma, C.; Xie, W.; Hemler, M.E.; Mucci, L.; Giovannucci, E.; Finn, S.; Loda, M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of β- catenin in prostate cancer. Lab. Invest., 2008, 88(12), 1340-1348.
[http://dx.doi.org/10.1038/labinvest.2008.97] [PMID: 18838960]
[47]
Migita, T.; Ruiz, S.; Fornari, A.; Fiorentino, M.; Priolo, C.; Zadra, G.; Inazuka, F.; Grisanzio, C.; Palescandolo, E.; Shin, E.; Fiore, C.; Xie, W.; Kung, A.L.; Febbo, P.G.; Subramanian, A.; Mucci, L.; Ma, J.; Signoretti, S.; Stampfer, M.; Hahn, W.C.; Finn, S.; Loda, M. Fatty acid synthase: A metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst., 2009, 101(7), 519-532.
[http://dx.doi.org/10.1093/jnci/djp030] [PMID: 19318631]
[48]
Hsieh, A.C.; Small, E.J.; Ryan, C.J. Androgen-response elements in hormone-refractory prostate cancer: Implications for treatment development. Lancet Oncol., 2007, 8(10), 933-939.
[http://dx.doi.org/10.1016/S1470-2045(07)70316-9] [PMID: 17913662]
[49]
Shah, U.; Dhir, R.; Gollin, S.; Chandran, U.; Lewis, D.; Acquafondata, M.; Pflug, B. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum. Pathol., 2006, 37(4), 401-409.
[http://dx.doi.org/10.1016/j.humpath.2005.11.022]
[50]
Antonarakis, E.S.; Armstrong, A.J.; Dehm, S.M.; Luo, J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis., 2016, 19(3), 231-241.
[http://dx.doi.org/10.1038/pcan.2016.17] [PMID: 27184811]
[51]
Ettinger, S.L.; Sobel, R.; Whitmore, T.G.; Akbari, M.; Bradley, D.R.; Gleave, M.E.; Nelson, C.C. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res., 2004, 64(6), 2212-2221.
[http://dx.doi.org/10.1158/0008-5472.CAN-2148-2] [PMID: 15026365]
[52]
Chen, M.; Zhang, J.; Sampieri, K.; Clohessy, J.G.; Mendez, L.; Gonzalez-Billalabeitia, E.; Liu, X.S.; Lee, Y.R.; Fung, J.; Katon, J.M.; Menon, A.V.; Webster, K.A.; Ng, C.; Palumbieri, M.D.; Diolombi, M.S.; Breitkopf, S.B.; Teruya-Feldstein, J.; Signoretti, S.; Bronson, R.T.; Asara, J.M.; Castillo-Martin, M.; Cordon-Cardo, C.; Pandolfi, P.P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet., 2018, 50(2), 206-218.
[http://dx.doi.org/10.1038/s41588-017-0027-2] [PMID: 29335545]
[53]
Zadra, G.; Photopoulos, C.; Loda, M. The fat side of prostate cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(10), 1518-1532.
[http://dx.doi.org/10.1016/j.bbalip.2013.03.010] [PMID: 23562839]
[54]
Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics, 2019, 9(17), 4893-4908.
[http://dx.doi.org/10.7150/thno.36037] [PMID: 31410189]
[55]
Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183.
[http://dx.doi.org/10.1016/j.gene.2018.07.035] [PMID: 30021130]
[56]
Anderson, C.M.; Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med., 2013, 34(2-3), 516-528.
[http://dx.doi.org/10.1016/j.mam.2012.07.010] [PMID: 23506886]
[57]
Liu, Y.; Zuckier, L.S.; Ghesani, N.V. Dominant uptake of fatty acid over glucose by prostate cells: A potential new diagnostic and therapeutic approach. Anticancer Res., 2010, 30(2), 369-374.
[PMID: 20332441]
[58]
Tang, N-T.; D Snook, R.; Brown, M.D.; Haines, B.A.; Ridley, A.; Gardner, P.; Denbigh, J.L. Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology. Molecules, 2020, 25(7), 1652.
[http://dx.doi.org/10.3390/molecules25071652] [PMID: 32260207]
[59]
Tousignant, K.D.; Rockstroh, A.; Taherian Fard, A.; Lehman, M.L.; Wang, C.; McPherson, S.J.; Philp, L.K.; Bartonicek, N.; Dinger, M.E.; Nelson, C.C.; Sadowski, M.C. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol Cancer Res., 2019, 17(2019), 1166-1179.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-1147]
[60]
Watt, M.J.; Clark, A.K.; Selth, L.A.; Haynes, V.R.; Lister, N.; Rebello, R.; Porter, L.H.; Niranjan, B.; Whitby, S.T.; Lo, J.; Huang, C.; Schittenhelm, R.B.; Anderson, K.E.; Furic, L.; Wijayaratne, P.R.; Matzaris, M.; Montgomery, M.K.; Papargiris, M.; Norden, S.; Febbraio, M.; Risbridger, G.P.; Frydenberg, M.; Nomura, D.K.; Taylor, R.A. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl. Med., 2019, 11(478), eaau5758.
[http://dx.doi.org/10.1126/scitranslmed.aau5758] [PMID: 30728288]
[61]
Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev., 2020, 159, 245-293.
[http://dx.doi.org/10.1016/j.addr.2020.07.013] [PMID: 32711004]
[62]
Brohée, L.; Demine, S.; Willems, J.; Arnould, T.; Colige, A.C.; Deroanne, C.F. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget, 2015, 6(13), 11264-11280.
[http://dx.doi.org/10.18632/oncotarget.3595] [PMID: 25834103]
[63]
Challapalli, A.; Trousil, S.; Hazell, S.; Kozlowski, K.; Gudi, M.; Aboagye, E.O.; Mangar, S. Exploiting altered patterns of choline kinase-alpha expression on human prostate tissue to prognosticate prostate cancer. J. Clin. Pathol., 2015, 68(9), 703-709.
[http://dx.doi.org/10.1136/jclinpath-2015-202859] [PMID: 26041862]
[64]
Ramírez de Molina, A.; Gallego-Ortega, D.; Sarmentero, J.; Bañez-Coronel, M.; Martín-Cantalejo, Y.; Lacal, J.C. Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res., 2005, 65(13), 5647-5653.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4416] [PMID: 15994937]
[65]
Daaka, Y. G proteins in cancer: The prostate cancer paradigm. Sci. STKE, 2004, 2004(216), re2.
[http://dx.doi.org/10.1126/stke.2162004re2] [PMID: 14734786]
[66]
Koizumi, A.; Narita, S.; Nakanishi, H.; Ishikawa, M.; Eguchi, S.; Kimura, H.; Takasuga, S.; Huang, M.; Inoue, T.; Sasaki, J.; Yoshioka, T.; Habuchi, T.; Sasaki, T. Increased fatty acyl saturation of phosphatidylinositol phosphates in prostate cancer progression. Sci. Rep., 2019, 9(1), 13257.
[http://dx.doi.org/10.1038/s41598-019-49744-3] [PMID: 31520002]
[67]
Ingram, L.M.; Finnerty, M.C.; Mansoura, M.; Chou, C.W.; Cummings, B.S. Identification of lipidomic profiles associated with drug-resistant prostate cancer cells. Lipids Health Dis., 2021, 20(1), 15.
[http://dx.doi.org/10.1186/s12944-021-01437-5] [PMID: 33596934]
[68]
Resh, M.D. Fatty acylation of proteins: The long and the short of it. Prog. Lipid Res., 2016, 63, 120-131.
[http://dx.doi.org/10.1016/j.plipres.2016.05.002] [PMID: 27233110]
[69]
Goligorsky, M.S.; Li, H.; Brodsky, S.; Chen, J. Relationships between caveolae and eNOS: Everything in proximity and the proximity of everything. Am. J. Physiol. Renal Physiol., 2002, 283(1), F1-F10.
[http://dx.doi.org/10.1152/ajprenal.00377.2001] [PMID: 12060581]
[70]
Li, T.; Li, D.; Sha, J.; Sun, P.; Huang, Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun., 2009, 383(3), 280-285.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.077] [PMID: 19302977]
[71]
Tan, Y.; Sementino, E.; Liu, Z.; Cai, K.Q.; Testa, J.R. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci. Rep., 2020, 10(1), 15837.
[http://dx.doi.org/10.1038/s41598-020-72822-w] [PMID: 32985581]
[72]
Kim, S.; Yang, X.; Li, Q.; Wu, M.; Costyn, L.; Beharry, Z.; Bartlett, M.G.; Cai, H. Myristoylation of Src kinase mediates Src-induced and high-fat diet–accelerated prostate tumor progression in mice. J. Biol. Chem., 2017, 292(45), 18422-18433.
[http://dx.doi.org/10.1074/jbc.M117.798827] [PMID: 28939770]
[73]
Yang, X.; Ma, Y.; Li, N.; Cai, H.; Bartlett, M.G. Development of a method for the determination of Acyl-CoA compounds by liquid chromatography mass spectrometry to probe the metabolism of fatty acids. Anal Chem., 2017, 89(2017), 813-821.
[http://dx.doi.org/10.1021/acs.analchem.6b03623]
[74]
Fhu, C.W.; Ali, A. Protein lipidation by palmitoylation and myristoylation in cancer. Front. Cell Dev. Biol., 2021, 9, 673647.
[http://dx.doi.org/10.3389/fcell.2021.673647] [PMID: 34095144]
[75]
Kurayoshi, M.; Yamamoto, H.; Izumi, S.; Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J., 2007, 402(3), 515-523.
[http://dx.doi.org/10.1042/BJ20061476] [PMID: 17117926]
[76]
Goodwin, J.S.; Drake, K.R.; Rogers, C.; Wright, L.; Lippincott-Schwartz, J.; Philips, M.R.; Kenworthy, A.K. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol., 2005, 170(2), 261-272.
[http://dx.doi.org/10.1083/jcb.200502063] [PMID: 16027222]
[77]
Cuiffo, B.; Ren, R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood, 2010, 115(17), 3598-3605.
[http://dx.doi.org/10.1182/blood-2009-03-213876] [PMID: 20200357]
[78]
Azbazdar, Y.; Ozalp, O.; Sezgin, E.; Veerapathiran, S.; Duncan, A.L.; Sansom, M.S.P.; Eggeling, C.; Wohland, T.; Karaca, E.; Ozhan, G. More favorable palmitic acid over palmitoleic acid modification of Wnt3 ensures its localization and activity in plasma membrane domains. Front. Cell Dev. Biol., 2019, 7, 281.
[http://dx.doi.org/10.3389/fcell.2019.00281] [PMID: 31803740]
[79]
Price, D.T.; Coleman, R.E.; Liao, R.P.; Robertson, C.N.; Polascik, T.J.; Degrado, T.R. Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J. Urol., 2002, 168(1), 273-280.
[http://dx.doi.org/10.1016/S0022-5347(05)64906-3] [PMID: 12050555]
[80]
Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis., 2006, 9(3), 230-234.
[http://dx.doi.org/10.1038/sj.pcan.4500879] [PMID: 16683009]
[81]
Zha, S.; Ferdinandusse, S.; Denis, S.; Wanders, R.J.; Ewing, C.M.; Luo, J.; De Marzo, A.M.; Isaacs, W.B. Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res., 2003, 63(21), 7365-7376.
[PMID: 14612535]
[82]
Lin, J.; Xu, J.; Tian, H.; Gao, X.; Chen, Q.; Gu, Q.; Xu, G.; Song, J.; Zhao, F. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int. J. Cancer, 2007, 121(12), 2596-2605.
[http://dx.doi.org/10.1002/ijc.23016] [PMID: 17722004]
[83]
Nassar, Z.D.; Mah, C.Y.; Dehairs, J.; Burvenich, I.J.G.; Irani, S.; Centenera, M.M.; Helm, M.; Shrestha, R.K.; Moldovan, M.; Don, A.S.; Holst, J.; Scott, A.M.; Horvath, L.G.; Lynn, D.J.; Selth, L.A.; Hoy, A.J.; Swinnen, J.V.; Butler, L.M. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife, 2020, 9, e54166.
[http://dx.doi.org/10.7554/eLife.54166] [PMID: 32686647]
[84]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[85]
Iglesias-Gato, D.; Thysell, E.; Tyanova, S.; Crnalic, S.; Santos, A.; Lima, T.S.; Geiger, T.; Cox, J.; Widmark, A.; Bergh, A.; Mann, M.; Flores-Morales, A.; Wikström, P. The proteome of prostate cancer bone metastasis reveals heterogeneity with prognostic implications. Clin. Cancer Res., 2018, 24(2018), 5433-5444.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1229]
[86]
Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; Xu, C.; Xu, G.; Sun, Y. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol. Cell. Proteomics, 2016, 15(1), 154-163.
[http://dx.doi.org/10.1074/mcp.M115.052381] [PMID: 26545398]
[87]
Andersen, M.K.; Høiem, T.S.; Claes, B.S.R.; Balluff, B.; Martin-Lorenzo, M.; Richardsen, E.; Krossa, S.; Bertilsson, H.; Heeren, R.M.A.; Rye, M.B.; Giskeødegård, G.F.; Bathen, T.F.; Tessem, M.B. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab., 2021, 9(1), 9.
[http://dx.doi.org/10.1186/s40170-021-00242-z] [PMID: 33514438]
[88]
Xue, L.; Qi, H.; Zhang, H.; Ding, L.; Huang, Q.; Zhao, D.; Wu, B.J.; Li, X. Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy. Front. Oncol., 2020, 10, 1510.
[http://dx.doi.org/10.3389/fonc.2020.01510] [PMID: 32974183]
[89]
Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 751-759.
[http://dx.doi.org/10.1016/j.coph.2012.07.006] [PMID: 22824430]
[90]
Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 2004, 86(11), 839-848.
[http://dx.doi.org/10.1016/j.biochi.2004.09.018] [PMID: 15589694]
[91]
Li, X.; Wu, J.B.; Li, Q.; Shigemura, K.; Chung, L.W.K.; Huang, W.C. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget, 2016, 7(11), 12869-12884.
[http://dx.doi.org/10.18632/oncotarget.7331] [PMID: 26883200]
[92]
Chandra, N.C.; Singh, G.; Sankanagoudar, S.; Dogra, P. Interlink between cholesterol & cell cycle in prostate carcinoma. Indian J. Med. Res., 2017, 146(S8), 38.
[http://dx.doi.org/10.4103/ijmr.IJMR_1639_15] [PMID: 29578193]
[93]
Staubach, S.; Hanisch, F.G. Lipid rafts: Signaling and sorting platforms of cells and their roles in cancer. Expert Rev. Proteomics, 2011, 8(2), 263-277.
[http://dx.doi.org/10.1586/epr.11.2] [PMID: 21501018]
[94]
Oh, H.Y.; Lee, E.J.; Yoon, S.; Chung, B.H.; Cho, K.S.; Hong, S.J. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate, 2007, 67(10), 1061-1069.
[http://dx.doi.org/10.1002/pros.20593] [PMID: 17469127]
[95]
Karpen, H.E.; Bukowski, J.T.; Hughes, T.; Gratton, J.P.; Sessa, W.C.; Gailani, M.R. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem., 2001, 276(22), 19503-19511.
[http://dx.doi.org/10.1074/jbc.M010832200] [PMID: 11278759]
[96]
Hyuga, T.; Alcantara, M.; Kajioka, D.; Haraguchi, R.; Suzuki, K.; Miyagawa, S.; Kojima, Y.; Hayashi, Y.; Yamada, G. Hedgehog signaling for urogenital organogenesis and prostate cancer: An implication for the epithelial–mesenchyme interaction (EMI). Int. J. Mol. Sci., 2019, 21(1), 58.
[http://dx.doi.org/10.3390/ijms21010058] [PMID: 31861793]
[97]
Chen, P.; Zhang, Y.; Xue, B.; Xu, G. Association of Caveolin-1 expression with prostate cancer: A systematic review and meta-analysis. Front. Oncol., 2021, 10, 562774.
[http://dx.doi.org/10.3389/fonc.2020.562774] [PMID: 33489874]
[98]
Williams, T.M.; Hassan, G.S.; Li, J.; Cohen, A.W.; Medina, F.; Frank, P.G.; Pestell, R.G.; Di Vizio, D.; Loda, M.; Lisanti, M.P. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J. Biol. Chem., 2005, 280(26), 25134-25145.
[http://dx.doi.org/10.1074/jbc.M501186200] [PMID: 15802273]
[99]
Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res., 2008, 68(11), 4447-4454.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0249] [PMID: 18519708]
[100]
Mostaghel, E.A.; Page, S.T.; Lin, D.W.; Fazli, L.; Coleman, I.M.; True, L.D.; Knudsen, B.; Hess, D.L.; Nelson, C.C.; Matsumoto, A.M.; Bremner, W.J.; Gleave, M.E.; Nelson, P.S. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res., 2007, 67(10), 5033-5041.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3332] [PMID: 17510436]
[101]
Locke, J.A.; Guns, E.S.; Lubik, A.A.; Adomat, H.H.; Hendy, S.C.; Wood, C.A.; Ettinger, S.L.; Gleave, M.E.; Nelson, C.C. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res., 2008, 68(15), 6407-6415.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5997] [PMID: 18676866]
[102]
Dillard, P.R.; Lin, M.F.; Khan, S.A. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol. Cell. Endocrinol., 2008, 295(1-2), 115-120.
[http://dx.doi.org/10.1016/j.mce.2008.08.013] [PMID: 18782595]
[103]
Griffiths, M.; Keast, D.; Crawford, M.; Palmer, T.N.; Patrick, G. The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int. J. Biochem., 1993, 25(12), 1749-1755.
[http://dx.doi.org/10.1016/0020-711X(88)90303-5] [PMID: 8138012]
[104]
Meijer, T.W.H.; Peeters, W.J.M.; Dubois, L.J.; van Gisbergen, M.W.; Biemans, R.; Venhuizen, J.H.; Span, P.N.; Bussink, J. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer, 2018, 126, 32-40.
[http://dx.doi.org/10.1016/j.lungcan.2018.10.016] [PMID: 30527190]
[105]
Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A.Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jackson, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget, 2017, 8(38), 63551-63561.
[http://dx.doi.org/10.18632/oncotarget.18854] [PMID: 28969010]
[106]
Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.024] [PMID: 25041845]
[107]
Schlaepfer, I.R.; Glodé, L.M.; Hitz, C.A.; Pac, C.T.; Boyle, K.E.; Maroni, P.; Deep, G.; Agarwal, R.; Lucia, S.M.; Cramer, S.D.; Serkova, N.J.; Eckel, R.H. Inhibition of lipid oxidation increases glucose metabolism and enhances 2-Deoxy-2-[18F]Fluoro-d-glucose uptake in prostate cancer mouse xenografts. Mol. Imaging Biol., 2015, 17(4), 529-538.
[http://dx.doi.org/10.1007/s11307-014-0814-4] [PMID: 25561013]
[108]
Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; Socorro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol., 2021, 44(2), 385-403.
[http://dx.doi.org/10.1007/s13402-020-00575-9] [PMID: 33464483]
[109]
Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.5615] [PMID: 28454342]
[110]
Kendir, C.; van den Akker, M.; Vos, R.; Metsemakers, J. Cardiovascular disease patients have increased risk for comorbidity: A cross-sectional study in the Netherlands. Eur. J. Gen. Pract., 2018, 24(1), 45-50.
[http://dx.doi.org/10.1080/13814788.2017.1398318] [PMID: 29168400]
[111]
Singh, S.; Karthikeyan, C.; Moorthy, N.S.H.N. Recent advances in the development of fatty acid synthase inhibitors as anticancer agents. Mini Rev. Med. Chem., 2020, 20(18), 1820-1837.
[http://dx.doi.org/10.2174/1389557520666200811100845] [PMID: 32781957]
[112]
Fako, V.E.; Wu, X.; Pflug, B.; Liu, J.Y.; Zhang, J.T. Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J. Med. Chem., 2015, 58(2), 778-784.
[http://dx.doi.org/10.1021/jm501543u] [PMID: 25513712]
[113]
Fitton, A.; Wiseman, L. Pantoprazole. Drugs, 1996, 51(3), 460-482.
[http://dx.doi.org/10.2165/00003495-199651030-00012] [PMID: 8882382]
[114]
Patel, K.J.; Lee, C.; Tan, Q.; Tannock, I.F. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors. Clin. Cancer Res., 2013, 19(24), 6766-6776.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0128] [PMID: 24141627]
[115]
Brana, I.; Ocana, A.; Chen, E.X.; Razak, A.R.A.; Haines, C.; Lee, C.; Douglas, S.; Wang, L.; Siu, L.L.; Tannock, I.F.; Bedard, P.L. A phase I trial of pantoprazole in combination with doxorubicin in patients with advanced solid tumors: evaluation of pharmacokinetics of both drugs and tissue penetration of doxorubicin. Invest. New Drugs, 2014, 32(6), 1269-1277.
[http://dx.doi.org/10.1007/s10637-014-0159-5] [PMID: 25213162]
[116]
Tan, Q.; Joshua, A.M.; Saggar, J.K.; Yu, M.; Wang, M.; Kanga, N.; Zhang, J.Y.; Chen, X.; Wouters, B.G.; Tannock, I.F. Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy. Br. J. Cancer, 2015, 112(5), 832-840.
[http://dx.doi.org/10.1038/bjc.2015.17] [PMID: 25647012]
[117]
Hansen, A.R.; Tannock, I.F.; Templeton, A.; Chen, E.; Evans, A.; Knox, J.; Prawira, A.; Sridhar, S.S.; Tan, S.; Vera-Badillo, F.; Wang, L.; Wouters, B.G.; Joshua, A.M. Pantoprazole affecting docetaxel resistance pathways via autophagy (PANDORA): Phase II trial of high dose pantoprazole (Autophagy Inhibitor) with docetaxel in metastatic castration-resistant prostate cancer (mCRPC). Oncologist, 2019, 24(9), 1188-1194.
[http://dx.doi.org/10.1634/theoncologist.2018-0621] [PMID: 30952818]
[118]
Li, Z.; He, P.; Long, Y.; Yuan, G.; Shen, W.; Chen, Z.; Zhang, B.; Wang, Y.; Yue, D.; Seidl, C.; Zhang, X. Drug repurposing of pantoprazole and vitamin C targeting tumor microenvironment conditions improves anticancer effect in metastatic castration-resistant prostate cancer. Front. Oncol., 2021, 11, 660320.
[http://dx.doi.org/10.3389/fonc.2021.660320] [PMID: 34307134]
[119]
Kochuparambil, S.T.; Al-Husein, B.; Goc, A.; Soliman, S.; Somanath, P.R. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J. Pharmacol. Exp. Ther., 2011, 336(2), 496-505.
[http://dx.doi.org/10.1124/jpet.110.174870] [PMID: 21059805]
[120]
Park, Y.H.; Seo, S.Y.; Lee, E.; Ku, J.H.; Kim, H.H.; Kwak, C. Simvastatin induces apoptosis in castrate resistant prostate cancer cells by deregulating nuclear factor-κB pathway. J. Urol., 2013, 189(4), 1547-1552.
[http://dx.doi.org/10.1016/j.juro.2012.10.030] [PMID: 23085058]
[121]
Goc, A.; Kochuparambil, S.T.; Al-Husein, B.; Al-Azayzih, A.; Mohammad, S.; Somanath, P.R. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer, 2012, 12(1), 409.
[http://dx.doi.org/10.1186/1471-2407-12-409] [PMID: 22974127]
[122]
Oliveira, K.A.P.; Zecchin, K.G.; Alberici, L.C.; Castilho, R.F.; Vercesi, A.E. Simvastatin inducing PC3 prostate cancer cell necrosis mediated by calcineurin and mitochondrial dysfunction. J. Bioenerg. Biomembr., 2008, 40(4), 307-314.
[http://dx.doi.org/10.1007/s10863-008-9155-9] [PMID: 18679777]
[123]
Sekine, Y.; Furuya, Y.; Nishii, M.; Koike, H.; Matsui, H.; Suzuki, K. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor. Biochem. Biophys. Res. Commun., 2008, 372(2), 356-361.
[http://dx.doi.org/10.1016/j.bbrc.2008.05.043] [PMID: 18489904]
[124]
Furuya, Y.; Sekine, Y.; Kato, H.; Miyazawa, Y.; Koike, H.; Suzuki, K. Low-density lipoprotein receptors play an important role in the inhibition of prostate cancer cell proliferation by statins. Prostate Int., 2016, 4(2), 56-60.
[http://dx.doi.org/10.1016/j.prnil.2016.02.003] [PMID: 27358845]
[125]
Murtola, T.J.; Pennanen, P.; Syvälä, H.; Bläuer, M.; Ylikomi, T.; Tammela, T.L.J. Effects of simvastatin, acetylsalicylic acid, and rosiglitazone on proliferation of normal and cancerous prostate epithelial cells at therapeutic concentrations. Prostate, 2009, 69(9), 1017-1023.
[http://dx.doi.org/10.1002/pros.20951] [PMID: 19301305]
[126]
Iannelli, F.; Roca, M.S.; Lombardi, R.; Ciardiello, C.; Grumetti, L.; De Rienzo, S.; Moccia, T.; Vitagliano, C.; Sorice, A.; Costantini, S.; Milone, M.R.; Pucci, B.; Leone, A.; Di Gennaro, E.; Mancini, R.; Ciliberto, G.; Bruzzese, F.; Budillon, A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J. Exp. Clin. Cancer Res., 2020, 39(1), 213.
[http://dx.doi.org/10.1186/s13046-020-01723-7] [PMID: 33032653]
[127]
Gordon, J.A.; Midha, A.; Szeitz, A.; Ghaffari, M.; Adomat, H.H.; Guo, Y.; Klassen, T.L.; Guns, E.S.; Wasan, K.M.; Cox, M.E. Oral simvastatin administration delays castration-resistant progression and reduces intratumoral steroidogenesis of LNCaP prostate cancer xenografts. Prostate Cancer Prostatic Dis., 2016, 19(1), 21-27.
[http://dx.doi.org/10.1038/pcan.2015.37] [PMID: 26238234]
[128]
Thysell, E.; Surowiec, I.; Hörnberg, E.; Crnalic, S.; Widmark, A.; Johansson, A.I.; Stattin, P.; Bergh, A.; Moritz, T.; Antti, H.; Wikström, P. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One, 2010, 5(12), e14175.
[http://dx.doi.org/10.1371/journal.pone.0014175] [PMID: 21151972]
[129]
Nordstrand, A.; Lundholm, M.; Larsson, A.; Lerner, U.H.; Widmark, A.; Wikström, P. Inhibition of the insulin-like growth factor-1 receptor enhances effects of simvastatin on prostate cancer cells in co-culture with bone. Cancer Microenviron., 2013, 6(3), 231-240.
[http://dx.doi.org/10.1007/s12307-013-0129-z] [PMID: 23335094]
[130]
Murtola, T.J.; Syvälä, H.; Tolonen, T.; Helminen, M.; Riikonen, J.; Koskimäki, J.; Pakarainen, T.; Kaipia, A.; Isotalo, T.; Kujala, P.; Tammela, T.L.J. Atorvastatin versus placebo for prostate cancer before radical prostatectomy-a randomized, double-blind, placebo-controlled clinical trial. Eur. Urol., 2018, 74(6), 697-701.
[http://dx.doi.org/10.1016/j.eururo.2018.06.037] [PMID: 30031572]
[131]
Knuuttila, E.; Riikonen, J.; Syvälä, H.; Auriola, S.; Murtola, T.J. Access and concentrations of atorvastatin in the prostate in men with prostate cancer. Prostate, 2019, 79(12), 1427-1434.
[http://dx.doi.org/10.1002/pros.23863] [PMID: 31231865]
[132]
Allott, E.H.; Csizmadi, I.; Howard, L.E.; Muller, R.L.; Moreira, D.M.; Andriole, G.L.; Roehrborn, C.G.; Freedland, S.J. Statin use and longitudinal changes in prostate volume; results from the REduction by DUtasteride of prostate Cancer Events (REDUCE) trial. BJU Int., 2020, 125(2), 226-233.
[http://dx.doi.org/10.1111/bju.14905] [PMID: 31479563]
[133]
Hamilton, R.J.; Ding, K.; Crook, J.M.; O’Callaghan, C.J.; Higano, C.S.; Dearnaley, D.P.; Horwitz, E.M.; Goldenberg, S.L.; Gospodarowicz, M.K.; Klotz, L. The association between statin use and outcomes in patients initiating androgen deprivation therapy. Eur Urol., 2021, 79(2021), 446-452.
[http://dx.doi.org/10.1016/j.eururo.2020.12.031]
[134]
Peltomaa, A.I.; Raittinen, P.; Talala, K.; Taari, K.; Tammela, T.L.J.; Auvinen, A.; Murtola, T.J. Prostate cancer prognosis after initiation of androgen deprivation therapy among statin users. A population-based cohort study. Prostate Cancer Prostatic Dis., 2021, 24(3), 917-924.
[http://dx.doi.org/10.1038/s41391-021-00351-2] [PMID: 33790420]
[135]
Moon, S.J.; Lee, S.; Jang, K.; Yu, K.S.; Yim, S.V.; Kim, B.H. Comparative pharmacokinetic and tolerability evaluation of two simvastatin 20 mg formulations in healthy Korean male volunteers. Transl. Clin. Pharmacol., 2017, 25(1), 10-14.
[http://dx.doi.org/10.12793/tcp.2017.25.1.10] [PMID: 32095453]
[136]
Rupp, H.; Zarain-Herzberg, A. Therapeutic potential of CPT I inhibitors: cardiac gene transcription as a target. Expert Opin. Investig. Drugs, 2002, 11(3), 345-356.
[http://dx.doi.org/10.1517/13543784.11.3.345] [PMID: 11866664]
[137]
Chong, C.R.; Sallustio, B.; Horowitz, J.D. Drugs that affect cardiac metabolism: Focus on perhexiline. Cardiovasc. Drugs Ther., 2016, 30(4), 399-405.
[http://dx.doi.org/10.1007/s10557-016-6664-3] [PMID: 27106834]
[138]
Liu, Z.; Wang, D.; Liu, D.; Liu, J.; Zhou, G. Trimetazidine protects against LPS-induced acute lung injury through mTOR/SGK1 pathway. Int. J. Clin. Exp. Med., 2016, 9, 13950-13957.
[139]
Singh, D.; Chander, V.; Chopra, K. Carvedilol and trimetazidine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats. Toxicology, 2003, 191(2-3), 143-151.
[http://dx.doi.org/10.1016/S0300-483X(03)00259-2] [PMID: 12965117]
[140]
Tikhaze, A.K.; Lankin, V.Z.; Zharova, E.A.; Kolycheva, S.V. Trimetazidine as indirect antioxidant. Bull. Exp. Biol. Med., 2000, 130(10), 951-953.
[http://dx.doi.org/10.1023/A:1002801504611] [PMID: 11177290]
[141]
Lestuzzi, C.; Crivellari, D.; Rigo, F.; Viel, E.; Meneguzzo, N. Capecitabine cardiac toxicity presenting as effort angina: A case report. J. Cardiovasc. Med., 2010, 11(9), 700-703.
[http://dx.doi.org/10.2459/JCM.0b013e328332e873] [PMID: 20093950]
[142]
Tallarico, D.; Rizzo, V.; di Maio, F.; Petretto, F.; Bianco, G.; Placanica, G.; Marziali, M.; Paravati, V.; Gueli, N.; Meloni, F.; Campbell, S.V. Myocardial cytoprotection by trimetazidine against anthracycline-induced cardiotoxicity in anticancer chemotherapy. Angiology, 2003, 54(2), 219-227.
[http://dx.doi.org/10.1177/000331970305400212] [PMID: 12678198]
[143]
Ferraro, E.; Pin, F.; Gorini, S.; Pontecorvo, L.; Ferri, A.; Mollace, V.; Costelli, P.; Rosano, G. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine. J. Cachexia Sarcopenia Muscle, 2016, 7(4), 449-457.
[http://dx.doi.org/10.1002/jcsm.12097] [PMID: 27239426]
[144]
Gatta, L.; Vitiello, L.; Gorini, S.; Chiandotto, S.; Costelli, P.; Giammarioli, A.M.; Malorni, W.; Rosano, G.; Ferraro, E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget, 2017, 8(69), 113938-113956.
[http://dx.doi.org/10.18632/oncotarget.23044] [PMID: 29371959]
[145]
Molinari, F.; Pin, F.; Gorini, S.; Chiandotto, S.; Pontecorvo, L.; Penna, F.; Rizzuto, E.; Pisu, S.; Musarò, A.; Costelli, P.; Rosano, G.; Ferraro, E. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26-bearing mice. J. Cachexia Sarcopenia Muscle, 2017, 8(6), 954-973.
[http://dx.doi.org/10.1002/jcsm.12226] [PMID: 29130633]
[146]
Andela, V.B.; Altuwaijri, S.; Wood, J.; Rosier, R.N. Inhibition of β-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARγ agonists. FEBS Lett., 2005, 579(7), 1765-1769.
[http://dx.doi.org/10.1016/j.febslet.2005.01.082] [PMID: 15757673]
[147]
Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; Uddin, S.; Kastenmüller, G.; Elemento, O.; Gross, S.S.; Suhre, K. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett., 2018, 430, 133-147.
[http://dx.doi.org/10.1016/j.canlet.2018.05.017] [PMID: 29777783]
[148]
Lee, J.S.; Oh, S.J.; Choi, H.J.; Kang, J.H.; Lee, S.H.; Ha, J.S.; Woo, S.M.; Jang, H.; Lee, H.; Kim, S.Y. ATP production relies on fatty acid oxidation rather than glycolysis in pancreatic ductal adenocarcinoma. Cancers, 2020, 12(9), 2477.
[http://dx.doi.org/10.3390/cancers12092477] [PMID: 32882923]
[149]
Atlı Şekeroğlu, Z.; Şekeroğlu, V.; Işık, S.; Aydın, B. Trimetazidine alone or in combination with gemcitabine and/or abraxane decreased cell viability, migration and ATP levels and induced apoptosis of human pancreatic cells. Clin. Res. Hepatol. Gastroenterol., 2021, 45(6), 101632.
[http://dx.doi.org/10.1016/j.clinre.2021.101632] [PMID: 33662778]
[150]
Amoedo, N.D.; Sarlak, S.; Obre, E.; Esteves, P.; Bégueret, H.; Kieffer, Y.; Rousseau, B.; Dupis, A.; Izotte, J.; Bellance, N.; Dard, L.; Redonnet-Vernhet, I.; Punzi, G.; Rodrigues, M.F.; Dumon, E.; Mafhouf, W.; Guyonnet-Dupérat, V.; Gales, L.; Palama, T.; Bellvert, F.; Dugot-Senan, N.; Claverol, S.; Baste, J.M.; Lacombe, D.; Rezvani, H.R.; Pierri, C.L.; Mechta-Grigoriou, F.; Thumerel, M.; Rossignol, R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J. Clin. Invest., 2021, 131(1), e133081.
[http://dx.doi.org/10.1172/JCI133081] [PMID: 33393495]
[151]
Nenchev, N.; Skopek, J.; Arora, D.; Samad, A.; Kaplan, S.; Domahidy, M.; Voogd, H.; Böhmert, S.; Ramos, R.S.; Jain, S. Effect of age and renal impairment on the pharmacokinetics and safety of trimetazidine: An open-label multiple-dose study. Drug Dev. Res., 2020, 81(5), 564-572.
[http://dx.doi.org/10.1002/ddr.21654] [PMID: 32128844]
[152]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[153]
Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[154]
Turanli, B.; Zhang, C.; Kim, W.; Benfeitas, R.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine, 2019, 42, 386-396.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.009] [PMID: 30905848]
[155]
Yang, Y.; Mamouni, K.; Li, X.; Chen, Y.; Kavuri, S.; Du, Y.; Fu, H.; Kucuk, O.; Wu, D. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther., 2018, 17(9), 1859-1870.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1176] [PMID: 29907594]
[156]
Wang, M.; Shim, J.S.; Li, R.J.; Dang, Y.; He, Q.; Das, M.; Liu, J.O. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol., 2014, 171(19), 4478-4489.
[http://dx.doi.org/10.1111/bph.12800] [PMID: 24903412]
[157]
Gayvert, K.M.; Dardenne, E.; Cheung, C.; Boland, M.R.; Lorberbaum, T.; Wanjala, J.; Chen, Y.; Rubin, M.A.; Tatonetti, N.P.; Rickman, D.S.; Elemento, O. A computational drug repositioning approach for targeting oncogenic transcription factors. Cell Rep., 2016, 15(11), 2348-2356.
[http://dx.doi.org/10.1016/j.celrep.2016.05.037] [PMID: 27264179]
[158]
Platz, E.A.; Yegnasubramanian, S.; Liu, J.O.; Chong, C.R.; Shim, J.S.; Kenfield, S.A.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E.; Nelson, W.G. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov., 2011, 1(1), 68-77.
[http://dx.doi.org/10.1158/2159-8274.CD-10-0020] [PMID: 22140654]
[159]
Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol., 2021, 87(2), 159-172.
[http://dx.doi.org/10.1007/s00280-020-04216-8] [PMID: 33426580]
[160]
Kondratskyi, A.; Kondratska, K.; Vanden Abeele, F.; Gordienko, D.; Dubois, C.; Toillon, R.A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7(1), 15896.
[http://dx.doi.org/10.1038/s41598-017-16154-2] [PMID: 29162859]
[161]
Elhasasna, H.; Khan, R.; Bhanumathy, K.K.; Vizeacoumar, F.S.; Walke, P.; Bautista, M.; Dahiya, D.K.; Maranda, V.; Patel, H.; Balagopal, A.; Alli, N.; Krishnan, A.; Freywald, A.; Vizeacoumar, F.J. A drug repurposing screen identifies fludarabine phosphate as a potential therapeutic agent for N-MYC overexpressing neuroendocrine prostate cancers. Cells, 2022, 11(14), 2246.
[http://dx.doi.org/10.3390/cells11142246] [PMID: 35883689]
[162]
Qi, C.; Bin Li; Yang, Y.; Yang, Y.; Li, J.; Zhou, Q.; Wen, Y.; Zeng, C.; Zheng, L.; Zhang, Q.; Li, J.; He, X.; Zhou, J.; Shao, C.; Wang, L. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci. Rep., 2016, 6(1), 27819.
[http://dx.doi.org/10.1038/srep27819] [PMID: 27292155]
[163]
Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett., 2017, 14(2), 1240-1246.
[http://dx.doi.org/10.3892/ol.2017.6325] [PMID: 28789339]
[164]
Sulsenti, R.; Frossi, B.; Bongiovanni, L.; Cancila, V.; Ostano, P.; Fischetti, I.; Enriquez, C.; Guana, F.; Chiorino, G.; Tripodo, C.; Pucillo, C.E.; Colombo, M.P.; Jachetti, E. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front. Immunol., 2021, 12, 622001.
[http://dx.doi.org/10.3389/fimmu.2021.622001] [PMID: 33737929]
[165]
Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527.
[http://dx.doi.org/10.1038/s41416-019-0681-5] [PMID: 31844184]
[166]
Albayrak, G.; Konac, E.; Dikmen, A.U.; Bilen, C.Y. Memantine induces apoptosis and inhibits cell cycle progression in LNCaP prostate cancer cells. Hum. Exp. Toxicol., 2018, 37(9), 953-958.
[http://dx.doi.org/10.1177/0960327117747025] [PMID: 29226720]
[167]
Gillessen, S.; Gilson, C.; James, N.; Adler, A.; Sydes, M.R.; Clarke, N. Repurposing metformin as therapy for prostate cancer within the STAMPEDE trial platform. Eur. Urol., 2016, 70(6), 906-908.
[http://dx.doi.org/10.1016/j.eururo.2016.07.015] [PMID: 27450106]
[168]
Iwamoto, Y.; Ishii, K.; Kanda, H.; Kato, M.; Miki, M.; Kajiwara, S.; Arima, K.; Shiraishi, T.; Sugimura, Y. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J. Cancer Res. Clin. Oncol., 2017, 143(6), 933-939.
[http://dx.doi.org/10.1007/s00432-017-2367-9] [PMID: 28243746]
[169]
Florent, R.; Poulain, L.; N’Diaye, M. Drug repositioning of the α1-adrenergic receptor antagonist naftopidil: A potential new anti-cancer drug? Int. J. Mol. Sci., 2020, 21(15), 5339.
[http://dx.doi.org/10.3390/ijms21155339] [PMID: 32727149]
[170]
Guan, M.; Su, L.; Yuan, Y.C.; Li, H.; Chow, W.A. Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci. Rep., 2015, 5(1), 9698.
[http://dx.doi.org/10.1038/srep09698] [PMID: 25880275]
[171]
Lu, W.; Lin, C.; Roberts, M.J.; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS One, 2011, 6(12), e29290.
[http://dx.doi.org/10.1371/journal.pone.0029290] [PMID: 22195040]
[172]
Chang, W.L.; Hsu, L.C.; Leu, W.J.; Chen, C.S.; Guh, J.H. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer - a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget, 2015, 6(37), 39806-39820.
[http://dx.doi.org/10.18632/oncotarget.5655] [PMID: 26447757]
[173]
Hafeez, B.B.; Ganju, A.; Sikander, M.; Kashyap, V.K.; Hafeez, Z.B.; Chauhan, N.; Malik, S.; Massey, A.E.; Tripathi, M.K.; Halaweish, F.T.; Zafar, N.; Singh, M.M.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Ormeloxifene suppresses prostate tumor growth and metastatic phenotypes via inhibition of oncogenic β-catenin signaling and EMT progression. Mol. Cancer Ther., 2017, 16(10), 2267-2280.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0157] [PMID: 28615299]
[174]
Ho, C.H.; Hsu, J.L.; Liu, S.P.; Hsu, L.C.; Chang, W.L.; Chao, C.C.K.; Guh, J.H. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: A central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate, 2015, 75(13), 1454-1466.
[http://dx.doi.org/10.1002/pros.23033] [PMID: 26180030]
[175]
Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol., 2021, 68, 75-83.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.007] [PMID: 31618686]
[176]
Dilly, S.J.; Clark, A.J.; Marsh, A.; Mitchell, D.A.; Cain, R.; Fishwick, C.W.G.; Taylor, P.C. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment. Cancer Lett., 2017, 393, 16-21.
[http://dx.doi.org/10.1016/j.canlet.2017.01.042] [PMID: 28188816]
[177]
Sadowski, M.C.; Pouwer, R.H.; Gunter, J.H.; Lubik, A.A.; Quinn, R.J.; Nelson, C.C. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5(19), 9362-9381.
[http://dx.doi.org/10.18632/oncotarget.2433] [PMID: 25313139]
[178]
Turanli, B.; Gulfidan, G.; Arga, K.Y. Transcriptomic-guided drug repositioning supported by a new bioinformatics search tool: geneXpharma. OMICS, 2017, 21(10), 584-591.
[http://dx.doi.org/10.1089/omi.2017.0127] [PMID: 29049014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy