Research Article

膳食黄酮类化合物对沃替西汀代谢的影响及其可能机制

卷 31, 期 23, 2024

发表于: 07 July, 2023

页: [3624 - 3630] 页: 7

弟呕挨: 10.2174/0929867330666230607104411

价格: $65

conference banner
摘要

介绍:槲皮素和芹菜素是两种常见的膳食类黄酮,广泛存在于食物和水果中。槲皮素和芹菜素可作为CYP450酶的抑制剂,影响临床药物的药代动力学。Vortioxetine (VOR)是一种治疗重度抑郁症(MDD)的新型临床药物,于2013年获得美国食品和药物管理局(FDA)批准上市。 目的:本实验旨在通过体内和体外实验研究槲皮素和芹菜素对VOR代谢的影响。 方法:将18只sd大鼠随机分为3组:对照组(VOR)、A组(VOR +槲皮素30 mg/kg)和B组(VOR +芹菜素20 mg/kg)。在最后一次口服2 mg/kg VOR前后的不同时间点采集血样。随后,我们进一步利用大鼠肝微粒体(RLMs)研究沃替西汀代谢的半最大抑制浓度(IC50)。最后,我们评估了两种黄酮类化合物对rlm中VOR代谢的抑制机制。 结果:在动物实验中,我们发现AUC(0-∞)(从0到∞的曲线下面积)和CLz/F(间隙)发生了明显的变化。与对照组相比,A组和B组的VOR AUC(0-∞)分别提高了2.22倍和3.54倍,而A组和B组的VOR CLz/F显著降低,分别降至近五分之二和三分之一。体外实验中槲皮素和芹菜素对沃替西汀代谢率的IC50值分别为5.323 μM和3.319 μM。槲皮素和芹菜素的Ki值分别为0.040和3.286,槲皮素和芹菜素的αKi值分别为0.170和2.876 μM。 结论:槲皮素和芹菜素对沃替西汀体内外代谢均有抑制作用。槲皮素和芹菜素对rlm中VOR代谢的影响机制是混合的。因此,在今后的临床应用中,我们应更加重视这些膳食类黄酮与VOR的联合使用。

关键词: 槲皮素,芹菜素,伏替西汀,代谢,大鼠,药代动力学。

[1]
Lu, J.; Xu, X.; Huang, Y.; Li, T.; Ma, C.; Xu, G.; Yin, H.; Xu, X.; Ma, Y.; Wang, L.; Huang, Z.; Yan, Y.; Wang, B.; Xiao, S.; Zhou, L.; Li, L.; Zhang, Y.; Chen, H.; Zhang, T.; Yan, J.; Ding, H.; Yu, Y.; Kou, C.; Shen, Z.; Jiang, L.; Wang, Z.; Sun, X.; Xu, Y.; He, Y.; Guo, W.; Jiang, L.; Li, S.; Pan, W.; Wu, Y.; Li, G.; Jia, F.; Shi, J.; Shen, Z.; Zhang, N. Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. Lancet Psychiatry, 2021, 8(11), 981-990.
[http://dx.doi.org/10.1016/S2215-0366(21)00251-0] [PMID: 34559991]
[2]
Dhir, A. Vortioxetine for the treatment of major depression. Drugs Today , 2013, 49(12), 781-790.
[http://dx.doi.org/10.1358/dot.2013.49.12.2058448] [PMID: 24524096]
[3]
Hvenegaard, M.G.; Bang-Andersen, B.; Pedersen, H.; Jørgensen, M.; Püschl, A.; Dalgaard, L. Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab. Dispos., 2012, 40(7), 1357-1365.
[http://dx.doi.org/10.1124/dmd.112.044610] [PMID: 22496396]
[4]
Xu, R.; Luo, S.; Lin, Q.; Shao, Y.; Chen, C.; Ye, X. Inhibitory effect of propafenone on vortioxetine metabolism in vitro and in vivo. Arab. J. Chem., 2021, 14(5), 103136.
[http://dx.doi.org/10.1016/j.arabjc.2021.103136]
[5]
Vissenaekens, H.; Grootaert, C.; Raes, K.; De Munck, J.; Smagghe, G.; Boon, N.; Van Camp, J. Quercetin mitigates endothelial activation in a novel intestinal-endothelialmonocyte/macrophage coculture setup. Inflammation, 2022, 45(4), 1600-1611.
[http://dx.doi.org/10.1007/s10753-022-01645-w] [PMID: 35352237]
[6]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[7]
Sang, A.; Wang, Y.; Wang, S.; Wang, Q.; Wang, X.; Li, X.; Song, X. Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways. Cell. Signal., 2022, 96, 110363.
[http://dx.doi.org/10.1016/j.cellsig.2022.110363] [PMID: 35644425]
[8]
Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol., 2022, 13, 943321.
[http://dx.doi.org/10.3389/fimmu.2022.943321] [PMID: 35935939]
[9]
Kuru Bektaşoğlu, P.; Demir, D.; Koyuncuoğlu, T.; Yüksel, M.; Peker Eyüboğlu, İ.; Karagöz Köroğlu, A.; Akakın, D.; Yıldırım, A.; Çelikoğlu, E.; Gürer, B. Possible anti-inflammatory, antioxidant, and neuroprotective effects of apigenin in the setting of mild traumatic brain injury: An investigation. Immunopharmacol. Immunotoxicol., 2022, 2022, 1-12.
[http://dx.doi.org/10.1080/08923973.2022.2130076] [PMID: 36168996]
[10]
Zhou, Y.; Hua, A.; Zhou, Q.; Geng, P.; Chen, F.; Yan, L.; Wang, S.; Wen, C. Inhibitory effect of Lygodium root on the cytochrome P450 3A enzyme in vitro and in vivo. Drug Des. Devel. Ther., 2020, 14, 1909-1919.
[http://dx.doi.org/10.2147/DDDT.S249308] [PMID: 32546958]
[11]
Rastogi, H.; Jana, S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities. Phytother. Res., 2014, 28(12), 1873-1878.
[http://dx.doi.org/10.1002/ptr.5220] [PMID: 25196644]
[12]
Gu, E-M.; Shao, Y.; Xu, W-F.; Ye, L.; Xu, R. UPLC-MS/MS for simultaneous quantification of vortioxetine and its metabolite Lu AA34443 in rat plasma and its application to drug interactions. Arab. J. Chem., 2020, 13(11), 8218-8225.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.056]
[13]
He, J.; Fang, P.; Zheng, X.; Wang, C.; Liu, T.; Zhang, B.; Wen, J.; Xu, R. Inhibitory effect of celecoxib on agomelatine metabolism in vitro and in vivo. Drug Des. Devel. Ther., 2018, 12, 513-519.
[http://dx.doi.org/10.2147/DDDT.S160316] [PMID: 29563776]
[14]
Huang, Y.; Zheng, S.; Pan, Y.; Li, T.; Xu, Z.; Shao, M. Simultaneous quantification of vortioxetine, carvedilol and its active metabolite 4-hydroxyphenyl carvedilol in rat plasma by UPLC–MS/MS: Application to their pharmacokinetic interaction study. J. Pharm. Biomed. Anal., 2016, 128, 184-190.
[http://dx.doi.org/10.1016/j.jpba.2016.05.029] [PMID: 27262994]
[15]
Chen, G.; Lee, R.; Højer, A.M.; Buchbjerg, J.K.; Serenko, M.; Zhao, Z. Pharmacokinetic drug interactions involving vortioxetine (Lu AA21004), a multimodal antidepressant. Clin. Drug Investig., 2013, 33(10), 727-736.
[http://dx.doi.org/10.1007/s40261-013-0117-6] [PMID: 23975654]
[16]
Zhang, Y.; Liu, Y.; Xie, S.; Xu, X.; Xu, R. Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay. Pharm. Biol., 2022, 60(1), 621-626.
[http://dx.doi.org/10.1080/13880209.2022.2048862] [PMID: 35289238]
[17]
Aleksandar, R.; Milica, P.K.; Gorana, M.; Boris, M.; Anastazija, S.M.; Mladena, L.P.; Snežana, S.; Nebojša, S.; Slobodan, G. Interaction between apigenin and sodium deoxycholate with raloxifene: A potential risk for clinical practice. Eur. J. Pharm. Sci., 2021, 161, 105809.
[http://dx.doi.org/10.1016/j.ejps.2021.105809] [PMID: 33741473]
[18]
Bhutani, P.; Rajanna, P.K.; Paul, A.T. Impact of quercetin on pharmacokinetics of quetiapine: Insights from in-vivo studies in wistar rats. Xenobiotica, 2020, 50(12), 1483-1489.
[http://dx.doi.org/10.1080/00498254.2020.1792002] [PMID: 32623931]
[19]
Elbarbry, F.; Ung, A.; Abdelkawy, K. Studying the inhibitory effect of Quercetin and Thymoquinone on human cytochrome P450 enzyme activities. Pharmacogn. Mag., 2018, 13(Suppl. 4), S895-S899.
[http://dx.doi.org/10.4103/0973-1296.224342] [PMID: 29491651]
[20]
Vijayakumar, T.M.; Kumar, R.M.; Agrawal, A.; Dubey, G.P.; Ilango, K. Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening. J. Food Sci. Technol., 2015, 52(7), 4537-4543.
[http://dx.doi.org/10.1007/s13197-014-1472-x] [PMID: 26139922]
[21]
Kondža, M.; Bojić, M.; Tomić, I.; Maleš, Ž.; Rezić, V.; Ćavar, I. Characterization of the CYP3A4 enzyme inhibition potential of selected flavonoids. Molecules, 2021, 26(10), 3018.
[http://dx.doi.org/10.3390/molecules26103018] [PMID: 34069400]
[22]
Zhao, Q.; Wei, J.; Zhang, H. Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. Xenobiotica, 2019, 49(5), 563-568.
[http://dx.doi.org/10.1080/00498254.2018.1478168] [PMID: 29768080]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy