Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Continuous-flow Synthesis of Ruthenium Nanoparticles using a Microreactor for the Selective Hydrogenation Reaction

Author(s): Vivek Srivastava*

Volume 20, Issue 11, 2023

Published on: 10 July, 2023

Page: [1077 - 1088] Pages: 12

DOI: 10.2174/1570178620666230606110243

Price: $65

Open Access Journals Promotions 2
Abstract

In this study, a continuous flow reactor was used to synthesize Ru nanoparticles with a well-distributed size and good stability. The effects of reactant dilution and flow rate on the synthesis were investigated, and it was found that optimization of these parameters was critical in obtaining small-sized Ru nanoparticles using a solution of 0.00025 M RuCl3.3H2O and 0.001M NaBH4 at a flow rate of 30mL/h. The Ru nanoparticles obtained were coated with CTAB surfactant, which was confirmed by TEM and PSD studies. The interaction between the surfactant and the nanoparticles was also confirmed by FTIR analysis. The synthesized Ru nanoparticles were then tested for their catalytic activity in high-pressure alkene hydrogenation and were found to be effective in producing the corresponding hydrogenated products in good yields. Furthermore, the catalytic effect of Ru nanoparticles was utilized for the synthesis of two natural products, brittonin A and dehydrobrittonin A. Both products were successfully isolated in measurable yields. This synthesis protocol had several advantages, including low catalyst loading, no use of additives, wide substrate scope, simple product separation, and catalyst recovery up to 8 times. Overall, this study demonstrated the potential of continuous flow reactor technology for synthesizing stable and well-distributed nanoparticles, and the effectiveness of Ru nanoparticles as catalysts in various chemical reactions. The study's findings have important implications for the development of more efficient and sustainable chemical synthesis protocols.

Keywords: Brittonin A, dehydrobrittonin A, CATB, Ru NPs, continuous flow reactor, nanoparticles.

Graphical Abstract
[1]
Xu, Q.; Song, Y.; Li, Y.; Liu, Z. Nanocatalysis for organic chemistry. Curr. Org. Chem., 2016, 20(19), 2013-2021.
[http://dx.doi.org/10.2174/1385272820666160215235505]
[2]
Rai, V.K.; Singh, M.; Rai, A. Advanced nanocatalysis for organic synthesis and electroanalysis; Bentham, 2022.
[3]
Rai, V.K.; Singh, M.; Rai, A. Eds. Advanced nanocatalysis for organic synthesis and electroanalysis; Bentham, 2022.
[4]
Saini, P.; Meena, S.; Dinesh, K.; Dandia, A.; Parewa, V. Principles and concepts of nanocatalysis. Advanced nanocatalysis for organic synthesis and electroanalysis, 2022, 23, pp. 1-23.
[5]
Chiew, C.; Morris, M.J.; Malakooti, M.H. Functional liquid metal nanoparticles: Synthesis and applications. Mat. Adv., 2021, 2(24), 7799-7819.
[http://dx.doi.org/10.1039/D1MA00789K]
[6]
Mody, V.; Siwale, R.; Singh, A.; Mody, H. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[7]
Korkmaz, N.; Ceylan, Y.; Hamid, A. Karadağ A. Bülbül, A.S. Aftab, M.N. Çevik, Ö. Şen, F. Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. J. Drug Deliv. Sci. Technol., 2020, 59, 101864.
[http://dx.doi.org/10.1016/j.jddst.2020.101864]
[8]
Tiri, R.N.E.; Gulbagca, F.; Aygun, A.; Cherif, A.; Sen, F. Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis. Environ. Res., 2022, 206, 112622.
[http://dx.doi.org/10.1016/j.envres.2021.112622] [PMID: 34958781]
[9]
Liang, Y.; Demir, H.; Wu, Y.; Aygun, A.; Elhouda Tiri, R.N.; Gur, T.; Yuan, Y.; Xia, C.; Demir, C.; Sen, F.; Vasseghian, Y. Facile synthesis of biogenic palladium nanoparticles using biomass strategy and application as photocatalyst degradation for textile dye pollutants and their in-vitro antimicrobial activity. Chemosphere, 2022, 306, 135518.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135518] [PMID: 35780993]
[10]
Göl, F. Aygün, A. Seyrankaya, A. Gür, T. Yenikaya, C. Şen, F. Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications. Mater. Chem. Phys., 2020, 250, 123037.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123037]
[11]
Narayan, N.; Meiyazhagan, A.; Vajtai, R. Metal nanoparticles as green catalysts. Materials, 2019, 12(21), 3602.
[http://dx.doi.org/10.3390/ma12213602] [PMID: 31684023]
[12]
Piccolo, L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal. Today, 2021, 373, 80-97.
[http://dx.doi.org/10.1016/j.cattod.2020.03.052]
[13]
Asefa, T.; Polshettiwar, V.; Hutchings, G. Eds. Nanocatalysis: Synthesis and applications; Wiley: Hoboken, 2021.
[14]
Mollazehi, F. Catalytic nanoparticles and magnetic nanocatalysts in organic reactions: A mini review. Main Group Chem., 2022, 21(2), 697-708.
[http://dx.doi.org/10.3233/MGC-210170]
[15]
Verma, A.; Shukla, M.; Sinha, I.; Verma, A.; Shukla, M.; Sinha, I. Introductory chapter: Salient features of nanocatalysis.Nanocatalysts; Intechopen: England, 2019.
[16]
Rai, V.K.; Singh, M.; Rai, A. Advanced nanocatalysis for organic synthesis and electroanalysis; Bentham Science Publisher, 2022.
[http://dx.doi.org/10.2174/97898150401661220101]
[17]
Schlögl, R.; Abd Hamid, S.B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem. Int. Ed., 2004, 43(13), 1628-1637.
[http://dx.doi.org/10.1002/anie.200301684] [PMID: 15038028]
[18]
Mohamed, R.M.; McKinney, D.L.; Sigmund, W.M. Enhanced nanocatalysts. Mater. Sci. Eng. Rep., 2012, 73(1), 1-13.
[http://dx.doi.org/10.1016/j.mser.2011.09.001]
[19]
Astruc, D. Introduction: Nanoparticles in catalysis. Chem. Rev., 2020, 120(2), 461-463.
[http://dx.doi.org/10.1021/acs.chemrev.8b00696] [PMID: 31964144]
[20]
Somwanshi, S.B.; Somvanshi, S.B.; Kharat, P.B. Nanocatalyst: A brief review on synthesis to applications. J. Phys. Conf. Ser., 2020, 1644(1), 012046.
[http://dx.doi.org/10.1088/1742-6596/1644/1/012046]
[21]
Misra, I.; Parikh, R.; Chakraborty, A.; Suryawanshi, Y.R.; Chakraborty, M. Synthesis of ruthenium nanoparticles by microwave assisted solvothermal technique.Materials, Energy and Environment Engineering; Springer, 2017, pp. 51-57.
[http://dx.doi.org/10.1007/978-981-10-2675-1_6]
[22]
Sztaberek, L.; Mabey, H.; Beatrez, W.; Lore, C.; Santulli, A.C.; Koenigsmann, C. Sol–Gel synthesis of ruthenium oxide nanowires to enhance methanol oxidation in supported platinum nanoparticle catalysts. ACS Omega, 2019, 4(10), 14226-14233.
[http://dx.doi.org/10.1021/acsomega.9b01489] [PMID: 31508545]
[23]
Olveira, S.; Forster, S.P.; Seeger, S. Nanocatalysis: Academic discipline and industrial realities. J. Nanotechnol., 2014, 2014, 1-20.
[24]
Banu, S. Multiculturalism in the Namesake by Jhumpa Lahiri & the Bamboo Stalk by Saud Alanous. Jadv. Sch. Res. Allied Educ., 2018, 15, 289-295.
[25]
Berlanda, S.F.; Breitfeld, M.; Dietsche, C.L.; Dittrich, P.S. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal. Chem., 2021, 93(1), 311-331.
[http://dx.doi.org/10.1021/acs.analchem.0c04366] [PMID: 33170661]
[26]
Chen, X.; Lv, H. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Mater., 2022, 69, 1-20.
[27]
Bendre, A.; Bhat, M.P.; Lee, K.H.; Altalhi, T.; Alruqi, M.A.; Kurkuri, M. Recent developments in microfluidic technology for synthesis and toxicity-efficiency studies of biomedical nanomaterials. Mater. Today Adv., 2022, 13, 100205.
[http://dx.doi.org/10.1016/j.mtadv.2022.100205]
[28]
Tian, F.; Cai, L.; Liu, C.; Sun, J. Microfluidic technologies for nanoparticle formation. Lab Chip, 2022, 22(3), 512-529.
[http://dx.doi.org/10.1039/D1LC00812A] [PMID: 35048096]
[29]
Dittrich, P.S.; Manz, A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov., 2006, 5(3), 210-218.
[http://dx.doi.org/10.1038/nrd1985] [PMID: 16518374]
[30]
He, S.; Joseph, N.; Feng, S.; Jellicoe, M.; Raston, C.L. Application of microfluidic technology in food processing. Food Funct., 2020, 11(7), 5726-5737.
[http://dx.doi.org/10.1039/D0FO01278E] [PMID: 32584365]
[31]
Thomée, E. Microfluidic nanoparticle synthesis: A short review.Microfluidic reviews; Elveflow, 2021.
[32]
Saxena, S.; Joshi, R.; Saxena, S.; Joshi, R. Microfluidic Devices: Applications and role of surface wettability in its fabrication.21st Century Surface Science; IntechOpen: London, 2020.
[33]
Ortseifen, V.; Viefhues, M.; Wobbe, L.; Grünberger, A. Microfluidics for biotechnology: Bridging gaps to foster microfluidic applications. Front. Bioeng. Biotechnol., 2020, 8, 589074.
[http://dx.doi.org/10.3389/fbioe.2020.589074] [PMID: 33282849]
[34]
Jiang, L.; Korivi, N.S. Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems; Woodhead Publishing: Sawston, 2014, pp. 424-443.
[35]
Wang, L.; Gong, X.; Wen, W. Electrorheological fluid and its applications in microfluidics. Top. Curr. Chem., 2011, 304, 91-115.
[http://dx.doi.org/10.1007/128_2011_148] [PMID: 21528441]
[36]
Lin, B. Microfluidics technologies and applications; Springer Nature: Switzerland, 2013.
[37]
Shoji, S.; Kawai, K. Flow control methods and devices in micrometer scale channels. Top. Curr. Chem., 2011, 304, 1-25.
[http://dx.doi.org/10.1007/128_2011_146] [PMID: 21526436]
[38]
Liu, L.; Sun, G.; Wang, C.; Yang, J.; Xiao, C.; Wang, H.; Ma, D.; Kou, Y. Aqueous phase Fischer–Tropsch synthesis in a continuous flow reactor. Catal. Today, 2012, 183(1), 136-142.
[http://dx.doi.org/10.1016/j.cattod.2011.09.040]
[39]
Minamihara, H.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kumara, L.S.R.; Ohara, K.; Sakata, O.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles. J. Am. Chem. Soc., 2022, 144(26), 11525-11529.
[http://dx.doi.org/10.1021/jacs.2c02755] [PMID: 35749353]
[40]
Krajczewski, J.; Ambroziak, R.; Kudelski, A. Formation and selected catalytic properties of ruthenium, rhodium, osmium and iridium nanoparticles. RSC Advances, 2022, 12(4), 2123-2144.
[http://dx.doi.org/10.1039/D1RA07470A]
[41]
Bell, T.E.; Zhan, G.; Wu, K.; Zeng, H.C.; Torrente-Murciano, L. Modification of ammonia decomposition activity of Ruthenium nanoparticles by N-Doping of CNT supports. Top. Catal., 2017, 60(15-16), 1251-1259.
[http://dx.doi.org/10.1007/s11244-017-0806-0] [PMID: 32009773]
[42]
Campbell, R.A.; Parker, S.R.W.; Day, J.P.R.; Bain, C.D. External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylinder. Langmuir, 2004, 20(20), 8740-8753.
[http://dx.doi.org/10.1021/la048680x] [PMID: 15379501]
[43]
Smith, D.K.; Korgel, B.A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 2008, 24(3), 644-649.
[http://dx.doi.org/10.1021/la703625a] [PMID: 18184021]
[44]
Abduraimova, A.; Molkenova, A.; Duisembekova, A.; Mulikova, T.; Kanayeva, D.; Atabaev, T.S. Cetyltrimethylammonium Bromide (CTAB)-Loaded SiO2–Ag Mesoporous Nanocomposite as an efficient antibacterial agent. Nanomaterials, 2021, 11(2), 477.
[http://dx.doi.org/10.3390/nano11020477] [PMID: 33668526]
[45]
Elfeky, S.A.; Mahmoud, S.E.; Youssef, A.F. Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J. Adv. Res., 2017, 8(4), 435-443.
[http://dx.doi.org/10.1016/j.jare.2017.06.002] [PMID: 28663825]
[46]
Koh, T.; Koo, H.M.; Yu, T.; Lim, B.; Bae, J.W. Roles of Ruthenium–Support interactions of size-controlled ruthenium nanoparticles for the product distribution of fischer–tropsch synthesis. ACS Catal., 2014, 4(4), 1054-1060.
[http://dx.doi.org/10.1021/cs401011q]
[47]
Das, T.K.; Rodriguez Treviño, A.M.; Pandiri, S.; Irvankoski, S.; Siitonen, J.H.; Rodriguez, S.M.; Yousufuddin, M.; Kürti, L. Catalyst-free transfer hydrogenation of activated alkenes exploiting isopropanol as the sole and traceless reductant. Green Chem., 2023, 25(2), 746-754.
[http://dx.doi.org/10.1039/D2GC04315G]
[48]
Kattamuri, P.V.; West, J.G. Hydrogenation of Alkenes via cooperative hydrogen atom transfer. J. Am. Chem. Soc., 2020, 142(45), 19316-19326.
[http://dx.doi.org/10.1021/jacs.0c09544] [PMID: 33119986]
[49]
Weber, S.; Stöger, B.; Veiros, L.F.; Kirchner, K. Rethinking basic concepts—hydrogenation of alkenes catalyzed by bench-stable alkyl Mn(I) complexes. ACS Catal., 2019, 9(11), 9715-9720.
[http://dx.doi.org/10.1021/acscatal.9b03963]
[50]
Upadhyay, P.; Srivastava, V. Ruthenium nanoparticle-intercalated montmorillonite clay for solvent-free alkene hydrogenation reaction. RSC Advances, 2015, 5(1), 740-745.
[http://dx.doi.org/10.1039/C4RA12324G]
[51]
van Slagmaat, C.A.M.R.; Delgove, M.A.F.; Stouten, J.; Morick, L.; van der Meer, Y.; Bernaerts, K.V.; De Wildeman, S.M.A. Solvent-free hydrogenation of levulinic acid to γ-valerolactone using a Shvo catalyst precursor: Optimization, thermodynamic insights, and life cycle assessment. Green Chem., 2020, 22(8), 2443-2458.
[http://dx.doi.org/10.1039/C9GC02088H]
[52]
Srivastava, V. Ionic-Liquid-Mediated MacMillan’s Catalyst for Diels-Alder reaction. J. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/954094]
[53]
Pevzner, S.; Pri-Bar, I.; Regev, O. Solid-state solvent-free catalyzed hydrogenation: Enhancing reaction efficiency by spillover agents. J. Mol. Catal. Chem., 2013, 376, 48-52.
[http://dx.doi.org/10.1016/j.molcata.2013.04.007]
[54]
Arundhathi, R.; Reddy, P.L.; Samanta, C.; Newalkar, B.L. Chromium-free Cu@Mg/γ-Al 2 O 3 – an active catalyst for selective hydrogenation of furfural to furfuryl alcohol. RSC Advances, 2020, 10(67), 41120-41126.
[http://dx.doi.org/10.1039/D0RA08754H] [PMID: 35519200]
[55]
Jawale, D.V.; Geertsen, V.; Miserque, F.; Berthault, P.; Gravel, E.; Doris, E. Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes. Green Chem., 2021, 23(2), 815-820.
[http://dx.doi.org/10.1039/D0GC03943H]
[56]
Alonso, F.; Riente, P.; Yus, M. Wittig-type olefination of alcohols promoted by Nickel nanoparticles: Synthesis of polymethoxylated and polyhydroxylated stilbenes. Eur. J. Org. Chem., 2009, 2009(34), 6034-6042.
[http://dx.doi.org/10.1002/ejoc.200900951]
[57]
Ruas, C.P.; Fischer, D.K.; Gelesky, M.A. PVP-stabilized palladium nanoparticles in silica as effective catalysts for hydrogenation reactions. J. Nanotechnol., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/906740]
[58]
Patil, M.R.; Kapdi, A.R.; Vijay Kumar, A. Recyclable supramolecular ruthenium catalyst for the selective aerobic oxidation of alcohols on water: Application to total synthesis of brittonin A. ACS Sustain. Chem.& Eng., 2018, 6(3), 3264-3278.
[http://dx.doi.org/10.1021/acssuschemeng.7b03448]
[59]
Arya, A.K.; Arya, K.; Kumar, S. A mini-review on functionalized ionic liquid immobilized magnetic nanoparticles promoted one-pot domino synthesis of diverse heterocyclic systems. Mini Rev. Org. Chem., 2023, 20(1), 35-44.
[http://dx.doi.org/10.2174/1570193X19666220413104920]
[60]
Zheng, Y.; Yang, L.; Chen, Y.; Yang, Y.; Zuo, C.; An, J.; Wang, Q.; Huang, H.; Li, Y.; Wang, M. Ionic liquid-mediated hexagonally porous ZnO nanocrystal-supported Au catalysts: Highly stable materials for aldehyde oxidative esterification. Catal. Sci. Technol., 2023, 13(2), 400-409.
[http://dx.doi.org/10.1039/D2CY01667B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy