Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Anti-viral Application of Ganoderma lucidum in COVID-19

Author(s): Fatemeh Shakeri, Hamid Babavalian*, Hamid Moghimi, Mahsa Pahlevan Afsharian, Aida Alipashazadeh and Sahar Zuhuriyan Izadi

Volume 10, Issue 6, 2024

Published on: 28 August, 2023

Article ID: e020623217631 Pages: 14

DOI: 10.2174/2215083810666230602152743

Price: $65

conference banner
Abstract

Ganoderma lucidum (Lingzhi), a common medicinal fungus, has been utilized in China since ancient times for health promotion and longevity. It has anti-inflammatory, antiviral, antitumor, antioxidant, and antiallergic activities. The antioxidant and immunomodulatory effects of this mushroom have shown promising impacts in the treatment of some viral diseases. COVID-19 is a life-threatening disease caused by SARS-CoV-2 that has recently been pandemic. Modern medicines have not been very efficient in the direct treatment of these viral infections, and although vaccination is effective in preventing viral infections, the incidence of acute respiratory infection can be reduced only slightly. Thus, alternative therapies are required, and in this regard, stimulating the immune system can be an effective way to prevent these infections. This study reports the potential of natural fungus-derived compounds that can possibly be used to fight SARS-CoV-2 infections.

Keywords: Ganoderma lucidum, antiviral, immunomodulatory, antioxidant, COVID-19, medicinal fungus, traditional medicines.

Graphical Abstract
[1]
Raut JK. Mushroom: A potent source of natural antiviral drugs. Appl Sci Technol Annal 2020; 1(1): 81-91.
[http://dx.doi.org/10.3126/asta.v1i1.30277]
[2]
Cör D, Knez Ž, Knez Hrnčič M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 2018; 23(3): 649.
[http://dx.doi.org/10.3390/molecules23030649] [PMID: 29534044]
[3]
Benkeblia N. Ganoderma lucidum polysaccharides and Terpenoids: Profile and health benefits. J Food Nutr Diet 2015; 1: 1-6.
[4]
Boh B, Berovic M, Zhang J, Zhi-Bin L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 2007; 13(1): 265-301.
[http://dx.doi.org/10.1016/S1387-2656(07)13010-6] [PMID: 17875480]
[5]
Barbieri A, Quagliariello V, Del Vecchio V, et al. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 2017; 9(3): 210.
[http://dx.doi.org/10.3390/nu9030210] [PMID: 28264501]
[6]
Sharma C, Bhardwaj N, Sharma A, et al. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J Herb Med 2019; 17-18(1): 100268.
[http://dx.doi.org/10.1016/j.hermed.2019.100268]
[7]
Eo SK, Kim YS, Lee CK, Han SS. Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum. J Ethnopharmacol 1999; 68(1-3): 129-36.
[http://dx.doi.org/10.1016/S0378-8741(99)00067-7] [PMID: 10624872]
[8]
Zhu Q, Amen YM, Ohnuki K, Shimizu K. Anti-influenza effects of Ganoderma lingzhi: An animal study. J Funct Foods 2017; 34(1): 224-8.
[http://dx.doi.org/10.1016/j.jff.2017.04.040]
[9]
Bala US, Abdul-Dahiru E-Y, Fanna IA, Adamu OO, Sandabe UK. In vitro inhibition of neuraminidase activity of influenza virus (H5N2) by methanolic soluble fraction of Ganoderma lucidum extract. Int J Modern Biol Med 2013; 4(3): 147-54.
[10]
Medigeshi GR, Kumar R, Dhamija E, Agrawal T, Kar M. N-Desmethylclozapine, fluoxetine, and salmeterol inhibit postentry stages of the dengue virus life cycle. Antimicrob Agents Chemother 2016; 60(11): 6709-18.
[http://dx.doi.org/10.1128/AAC.01367-16] [PMID: 27572397]
[11]
Suwannarach N, Kumla J, Sujarit K, Pattananandecha T, Saenjum C, Lumyong S. Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules 2020; 25(8): 1800.
[http://dx.doi.org/10.3390/molecules25081800] [PMID: 32295300]
[12]
Jan JT, Cheng TJR, Juang YP, et al. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc Natl Acad Sci USA 2021; 118(5): e2021579118.
[http://dx.doi.org/10.1073/pnas.2021579118] [PMID: 33452205]
[13]
Hetland G, Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID‐19 and its pneumonic superinfection and complicating inflammation? Scand J Immunol 2021; 93(1): e12937.
[http://dx.doi.org/10.1111/sji.12937] [PMID: 32657436]
[14]
Ugwah-Oguejiofor CJ, Adebisi IM. Potential medicinal plant remedies and their possible mechanisms against COVID-19: A review. Ife J Sci 2021; 23(1): 161-94.
[http://dx.doi.org/10.4314/ijs.v23i1.16]
[15]
Chinsembu KC. Phytomedicines and nutraceuticals in the clinical management of COVID-19. Int Sci 2021; 14(1): 1-8.
[16]
Mirzaie A, Halaji M, Dehkordi FS, Ranjbar R, Noorbazargan H. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complement Ther Clin Pract 2020; 40(1): 101214.
[http://dx.doi.org/10.1016/j.ctcp.2020.101214] [PMID: 32891290]
[17]
Han JR, An CH, Yuan JM. Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J Appl Microbiol 2005; 99(4): 910-5.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02672.x] [PMID: 16162243]
[18]
Ćilerdžić J, Stajić M, Vukojević J. Ganoderma lucidum - from tradition to modern medicine. Zb Matice Srp Prir Nauke 2017; 2017(133): 151-61.
[http://dx.doi.org/10.2298/ZMSPN1733151C]
[19]
Tchotet Tchoumi JM, Coetzee MPA, Rajchenberg M, Roux J. Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia 2019; 111(5): 730-47.
[http://dx.doi.org/10.1080/00275514.2019.1635387] [PMID: 31449474]
[20]
Kwon OC, Park YJ, Kim HI, Kong WS, Cho JH, Lee CS. Taxonomic position and species identity of the cultivated Yeongji ‘Ganoderma lucidum’in Korea. Mycobiology 2016; 44(1): 1-6.
[http://dx.doi.org/10.5941/MYCO.2016.44.1.1] [PMID: 27103848]
[21]
Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm J 2019; 27(4): 565-73.
[http://dx.doi.org/10.1016/j.jsps.2019.02.004] [PMID: 31061626]
[22]
Mahima, Rahal A, Deb R . et al. Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines. Pak J Biol Sci 2012; 15(16): 754-74.
[http://dx.doi.org/10.3923/pjbs.2012.754.774] [PMID: 24175417]
[23]
Harun NH, Septama AW, Ahmad WANW, Suppian R. Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review. Chin Herb Med 2020; 12(2): 118-24.
[http://dx.doi.org/10.1016/j.chmed.2019.11.007] [PMID: 36119799]
[24]
Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharmacol 2015; 4(2): 147-79.
[http://dx.doi.org/10.5455/jice.20150313021918] [PMID: 26401403]
[25]
Suba V. Reverse pharmacology: A tool for drug discovery from taditional medicine Evidence based validation of traditional medicines. Springer 2021; pp. 299-310.
[http://dx.doi.org/10.1007/978-981-15-8127-4_15]
[26]
Kasole R, Martin HD, Kimiywe J. Traditional medicine and its role in the management of diabetes mellitus: “Patients’ and Herbalists’ perspectives”. Evid Based Complement Alternat Med 2019; 2019(1): 1-12.
[http://dx.doi.org/10.1155/2019/2835691] [PMID: 31354852]
[27]
Oguntibeju OO. Hypoglycaemic and anti-diabetic activity of selected African medicinal plants. Int J Physiol Pathophysiol Pharmacol 2019; 11(6): 224-37.
[PMID: 31993097]
[28]
Shaito A, Thuan DTB, Phu HT, et al. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front Pharmacol 2020; 11(1): 422.
[http://dx.doi.org/10.3389/fphar.2020.00422] [PMID: 32317975]
[29]
Liperoti R, Vetrano DL, Bernabei R, Onder G. Herbal medications in cardiovascular medicine. J Am Coll Cardiol 2017; 69(9): 1188-99.
[http://dx.doi.org/10.1016/j.jacc.2016.11.078] [PMID: 28254182]
[30]
Yatoo MI, Gopalakrishnan A, Saxena A, et al. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders-a review. Recent Pat Inflamm Allergy Drug Discov 2018; 12(1): 39-58.
[http://dx.doi.org/10.2174/1872213X12666180115153635] [PMID: 29336271]
[31]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559-65.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[32]
Jeong JS, Park JW, Yoon SW, Choi WC. Carcinostatic effect of allergen removed Rhus Verniciflua stokes based Traditional Korean Medicine on a patient with lung adenocarcinoma; single case report. Orient Pharm Exp Med 2008; 7(5): 573-8.
[http://dx.doi.org/10.3742/OPEM.2008.7.5.573]
[33]
Bhat JA, Wani AH, War JM, Bhat MY. Major bioactive properties of ganoderma polysaccharides: A review. Asian J Pharm Clin Res 2021; 14(3): 11-24.
[34]
El-Khashab I. Antiangiogenic and proapoptotic activities of atorvastatin and Ganoderma lucidum in tumor mouse model via VEGF and caspase-3 pathways. Asian Pac J Cancer Prev 2021; 22(4): 1095-104.
[http://dx.doi.org/10.31557/APJCP.2021.22.4.1095] [PMID: 33906301]
[35]
Zheng W, Cao L, Xu Z, Ma Y, Liang X. Anti-angiogenic alternative and complementary medicines for the treatment of endometriosis: A review of potential molecular mechanisms. Evid Based Complement Alternat Med 2018; 2018(1): 1-28.
[http://dx.doi.org/10.1155/2018/4128984] [PMID: 30402122]
[36]
Lindequist U, Haertel B. Medicinal mushrooms for prevention and therapy of osteoporosis (Review). Int J Med Mushrooms 2021; 23(4): 13-22.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2021038084] [PMID: 33822504]
[37]
Han C. Antinociceptive activity of agaricoglycerides extracted from mycelium of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst.(Aphyllophoromycetideae). Int J Med Mushrooms 2010; 12(3): 273-8.
[http://dx.doi.org/10.1615/IntJMedMushr.v12.i3.60]
[38]
Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull 2014; 4 (Suppl. 1): 421-7.
[PMID: 25364657]
[39]
Lin B-F, Chiang B-L, Ma Y, Lin J-Y, Chen M-L. Traditional herbal medicine and allergic asthma. Evid Based Complement Alternat Med 2015; 2015(1): 510989.
[PMID: 26060501]
[40]
Singh R, Singh AP, Dhingra GS, Shri R. Ganoderma: A propitious medicinal poroid mushroomBioactive natural products in drug discovery. Singapore: Springer 2020; pp. 379-410.
[http://dx.doi.org/10.1007/978-981-15-1394-7_12]
[41]
Seo DJ, Choi C. Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: A review. Viruses 2021; 13(2): 350.
[http://dx.doi.org/10.3390/v13020350] [PMID: 33672228]
[42]
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10(2): 354-67.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[43]
Choengpanya K, Ratanabunyong S, Seetaha S, Tabtimmai L, Choowongkomon K. Anti-HIV-1 reverse transcriptase property of some edible mushrooms in Asia. Saudi J Biol Sci 2021; 28(5): 2807-15.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.012] [PMID: 34012322]
[44]
Kurapati KRV, Atluri VS, Samikkannu T, Garcia G, Nair MPN. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): A brief overview. Front Microbiol 2016; 6(1): 1444.
[http://dx.doi.org/10.3389/fmicb.2015.01444] [PMID: 26793166]
[45]
Abd Rashed A, Rathi DNG, Ahmad Nasir NAH, Abd Rahman AZ. Antifungal properties of essential oils and their compounds for application in skin fungal infections: Conventional and nonconventional approaches. Molecules 2021; 26(4): 1093.
[http://dx.doi.org/10.3390/molecules26041093] [PMID: 33669627]
[46]
Palombo EA. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid Based Complement Alternat Med 2011; 2011(1): 1-15.
[http://dx.doi.org/10.1093/ecam/nep067] [PMID: 19596745]
[47]
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019; 9(11): 258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[48]
Kolivand M, Keramat A, Khosravi A. The effect of herbal teas on management of polycystic ovary syndrome: A systematic review. J Midwifery Reprod Health 2017; 5(4): 1098-106.
[49]
Fujita R, Liu J, Shimizu K, et al. Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol 2005; 102(1): 107-12.
[http://dx.doi.org/10.1016/j.jep.2005.05.041] [PMID: 16029938]
[50]
Gupte A, Palande A, Venkata S, Pol R. Docking studies of Ganoderma lucidum. Int J Pharm Sci Res 2018; 9(3): 1100-5.
[51]
Cao P, Wu S, Wu T, et al. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. Carbohydr Polym 2020; 240(1): 116346.
[http://dx.doi.org/10.1016/j.carbpol.2020.116346] [PMID: 32475597]
[52]
Huang Q, Li L, Chen H, Liu Q, Wang Z. GPP (Composition of Ganoderma lucidum poly-saccharides and Polyporus umbellatus poly-saccharides) enhances innate immune function in mice. Nutrients 2019; 11(7): 1480.
[http://dx.doi.org/10.3390/nu11071480] [PMID: 31261807]
[53]
Jiang MH, Zhu L, Jiang JG. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 2010; 14(12): 1367-402.
[http://dx.doi.org/10.1517/14728222.2010.531010] [PMID: 21058924]
[54]
Teng X, Zhang W, Song Y, Wang H, Ge M, Zhang R. Protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by cadmium. Environ Sci Pollut Res Int 2019; 26(23): 23967-80.
[http://dx.doi.org/10.1007/s11356-019-05638-5] [PMID: 31222655]
[55]
Zhu Q, Bang TH, Ohnuki K, Sawai T, Sawai K, Shimizu K. Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design. Sci Rep 2015; 5(1): 13194.
[http://dx.doi.org/10.1038/srep13194] [PMID: 26307417]
[56]
AL-jumaili MMO. Al-dulaimi FKY, Ajeel MA. The role of Ganoderma lucidum uptake on some hematological and immunological response in patients with Coronavirus (COVID-19). Syst Rev Pharm 2020; 11(8): 537-41.
[57]
Hu Z, Du R, Xiu L, et al. Protective effect of triterpenes of Ganoderma lucidum on lipopolysaccharide-induced inflammatory responses and acute liver injury. Cytokine 2020; 127(1): 154917.
[http://dx.doi.org/10.1016/j.cyto.2019.154917] [PMID: 31775117]
[58]
Florez-Sampedro L, Zapata W, Orozco LP. In vitro anti-hiv-1 activity of the enzymatic extract enriched with laccase produced by the fungi ganoderma sp. and lentinus sp. Vitae 2016; 23(2): 109-18.
[59]
Zheng DS, Chen LS. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors. Exp Ther Med 2017; 14(4): 3273-8.
[http://dx.doi.org/10.3892/etm.2017.4883] [PMID: 28912878]
[60]
Ellan K, Thayan R, Raman J, Hidari KIPJ, Ismail N, Sabaratnam V. Anti-viral activity of culinary and medicinal mushroom extracts against dengue virus serotype 2: An in-vitro study. BMC Complement Altern Med 2019; 19(1): 260.
[http://dx.doi.org/10.1186/s12906-019-2629-y] [PMID: 31533688]
[61]
Ono L, Wollinger W, Rocco IM, Coimbra TLM, Gorin PAJ, Sierakowski MR. In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res 2003; 60(3): 201-8.
[http://dx.doi.org/10.1016/S0166-3542(03)00175-X] [PMID: 14638396]
[62]
Rahman M, Al-Ghamdi SA, Alharbi KS, et al. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv 2019; 26(1): 782-93.
[http://dx.doi.org/10.1080/10717544.2019.1606865] [PMID: 31357897]
[63]
Shang H, Sha Z, Wang H, et al. Taishan Pinus massoniana pollen polysaccharide inhibits H9N2 subtype influenza virus infection both in vitro and in vivo. Vet Microbiol 2020; 248(1): 108803.
[http://dx.doi.org/10.1016/j.vetmic.2020.108803] [PMID: 32827926]
[64]
Liang C-J, Lee C-W, Sung H-C, et al. Ganoderma lucidum polysaccharides reduce lipopolysaccharide-induced interleukin-1β expression in cultured smooth muscle cells and in thoracic aortas in mice. Evid Based Complement Alternat Med 2014; 2014(1): 305149.
[PMID: 24723958]
[65]
Bialy D, Shelton H. Functional neuraminidase inhibitor resistance motifs in avian influenza A(H5Nx) viruses. Antiviral Res 2020; 182(1): 104886.
[http://dx.doi.org/10.1016/j.antiviral.2020.104886] [PMID: 32750468]
[66]
Ayeka PA. Potential of mushroom compounds as immunomodulators in cancer immunotherapy: A review. Evid Based Complement Alternat Med 2018; 2018(1): 1-9.
[http://dx.doi.org/10.1155/2018/7271509] [PMID: 29849725]
[67]
Kumar SP, Girija AS, Priyadharsini JV. Targeting NM23-H1-mediated inhibition of tumour metastasis in viral hepatitis with bioactive compounds from Ganoderma lucidum: A computational study. Indian J Pharm Sci 2020; 82(2): 300-5.
[68]
Garba KYAM, Manjong FT, Tiagueu Yvette T. Potentials of nutritional therapy, phytopharmaceuticals and phytomedicine in the prevention and control of Ebola virus in Africa. Am J Clin Exp Med 2015; 3(1): 1-6.
[69]
Wachtel-Galor S, Yuen J, Buswell JA, Benzie IF. Ganoderma lucidum (Lingzhi or Reishi)Herbal medicine: Biomolecular and clinical aspects. (2nd ed.), Florida: CRC Press/Taylor & Francis 2011.
[70]
Lu J, He R, Sun P, Zhang F, Linhardt RJ, Zhang A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol 2020; 150: 765-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.035] [PMID: 32035956]
[71]
Pattanayak S, Das S, Biswal G. Ganoderma: The wild mushroom with wonderful health benefits. J Pharmacogn Phytochem 2020; 9(2)
[72]
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can Beta-2-Adrenergic pathway be a new target to combat SARS-CoV-2 Hyperinflammatory syndrome?-lessons learned from cancer. Front Immunol 2020; 11(1): 588724.
[http://dx.doi.org/10.3389/fimmu.2020.588724] [PMID: 33117402]
[73]
Rahman MA, Rahman MS, Bashir NMB, et al. Rationalization of mushroom-based preventive and therapeutic approaches to COVID-19: Review. Int J Med Mushrooms 2021; 23(5): 1-11.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2021038285] [PMID: 34347990]
[74]
Alhazmi HA, Najmi A, Javed SA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol 2021; 12(12): 637553.
[http://dx.doi.org/10.3389/fimmu.2021.637553] [PMID: 34054806]
[75]
Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res 2020; 51(5): 384-7.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.019] [PMID: 32402576]
[76]
Khomich O, Kochetkov S, Bartosch B, Ivanov A. Redox biology of respiratory viral infections. Viruses 2018; 10(8): 392.
[http://dx.doi.org/10.3390/v10080392] [PMID: 30049972]
[77]
Benzie IFF, Wachtel-Galor S. Biomarkers in long-term vegetarian diets. Adv Clin Chem 2009; 47(1): 171-222.
[http://dx.doi.org/10.1016/S0065-2423(09)47007-0] [PMID: 19634781]
[78]
Xu T, Beelman RB. The bioactive com-pounds in medicinal mushrooms have potential protective effects against neu-rodegenerative diseases. Adv Food Tech Nutrition Sci 2015; 1(2): 62-5.
[http://dx.doi.org/10.17140/AFTNSOJ-1-110]
[79]
Zeng P, Guo Z, Zeng X, et al. Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J Cell Mol Med 2018; 22(7): 3278-97.
[http://dx.doi.org/10.1111/jcmm.13613] [PMID: 29691994]
[80]
Mishra J, Misra K. Exploring indian traditional medicinal sources as prophylactic strategy against COVID-19. Int J Environ Health Sci 2020; 2(1): 115-23.
[81]
Taofiq O, Heleno SA, Calhelha RC, et al. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem Toxicol 2017; 108(Pt A): 139-47.
[http://dx.doi.org/10.1016/j.fct.2017.07.051] [PMID: 28760544]
[82]
Yoon HM, Jang KJ, Han MS, et al. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp Ther Med 2013; 5(3): 957-63.
[http://dx.doi.org/10.3892/etm.2013.895] [PMID: 23408713]
[83]
Xu J, Xiao C, Xu H, et al. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol 2021; 150(1): 112073.
[http://dx.doi.org/10.1016/j.fct.2021.112073] [PMID: 33631283]
[84]
Eo S-K, Kim YS, Lee CK, Han SS. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J Ethnopharmacol 2002; 32(3): 475-81.
[85]
Hijikata Y, Yamada S, Yasuhara A. Herbal mixtures containing the mushroom Ganoderma lucidum improve recovery time in patients with herpes genitalis and labialis. J Altern Complement Med 2007; 13(9): 985-7.
[86]
Liu J, Yang F, Ye LB, et al. Possible mode of action of antiherpetic activities of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro. J Ethnopharmacol 2004; 95(2-3): 265-72.
[http://dx.doi.org/10.1016/j.jep.2004.07.010] [PMID: 15507347]
[87]
Li Z, Liu J, Zhao Y. Possible mechanism underlying the antiherpetic activity of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro. J Biochem Mol Biol 2005; 38(1): 34-40.
[PMID: 15715944]
[88]
Zhang W, Tao J, Yang X, et al. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 2014; 449(3): 307-12.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.019] [PMID: 24845570]
[89]
Lin YL, Shih C, Cheng PY, et al. A polysaccharide purified from Ganoderma lucidum acts as a potent mucosal adjuvant that promotes protective immunity against the lethal challenge with enterovirus A71. Front Immunol 2020; 11: 561758.
[http://dx.doi.org/10.3389/fimmu.2020.561758]
[90]
Bharadwaj S, Lee KE, Dwivedi VD, et al. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci Rep 2019; 9(1): 19059.
[http://dx.doi.org/10.1038/s41598-019-55723-5] [PMID: 31836806]
[91]
Li Y, Yang Y, Fang L, Zhang Z, Jin J. Anti-hepatitis activities in the broth of Ganoderma lucidum supplemented with a Chinese herbal medicine. Am J Chin Med 2006; 34(2): 341-9.
[92]
Hernandez-Marquez E, Lagunas-Martinez A, Bermudez-Morales VH, Burgete-Garcfa AI, Leon-Rivera I, Montiel-Arcos E, et al. Inhibitory activity of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) on transformed cells by Human Papillomavirus. Int J Med Mushrooms 2014; 16(2): 179-87.
[93]
Cheng PG, Teoh TC, Rizman-Idid M. Chemical compounds and computational prediction of their inhibitory effects on the HIV-1 gp120 receptor by Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), with antler-like morphology of fruiting bodies. Int J Med Mushrooms 2021; 23(7): 63-77.
[94]
Jiang L, Zhang W, Zhai D-D, Wan G, Xia S, Meng J, et al. ranscriptome profiling and bioinformatic analysis of the effect of ganoderic acid T prevents Sendai virus infection. Gene 2023; 862: 147252.
[http://dx.doi.org/10.1016/j.gene.2023.147252]
[95]
Shah M, Woo YG. Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies. Front Immunol 2022; 12: 830527.
[96]
Omotuyi O, Olubiyi O, Nash O, et al. SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Comput Biol Med 2022; 142: 105226.
[97]
Xu J, Yang W, Pan Y, et al. Lucidenic acid A inhibits the binding of hACE2 receptor with spike protein to prevent SARS-CoV-2 invasion. Food Chem Toxicol 2022; 169: 113438.
[http://dx.doi.org/10.1016/j.fct.2022.113438]
[98]
Zheng C, Rangsinth P, Shiu PHT, et al. A review on the sources, structures, and pharmacological activities of Lucidenic Acids. Molecules 2023; 28(4): 1756.
[http://dx.doi.org/10.3390/molecules28041756] [PMID: 36838743]
[99]
Zhang Y, Zhang G, Ling JJM. Medicinal fungi with antiviral effect. Molecules 2022; 27(14): 4457.
[http://dx.doi.org/10.3390/molecules27144457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy