Review Article

A Complete Sojourn of Gene Therapy along with its Targeting Approaches for the Treatment of the Major Depressive Disorder

Author(s): Dilpreet Singh and G.D. Gupta*

Volume 23, Issue 4, 2023

Published on: 13 June, 2023

Page: [276 - 290] Pages: 15

DOI: 10.2174/1566523223666230601145632

Price: $65

Abstract

Approximately 2% to 3% of men and 6% to 7% of women suffer from severe depressive disorders. The existing drugs only partially relieve symptoms for roughly 40% of these patients. The majority of antidepressant drugs are based on theories that are now 50 to 60 years old, and the sector is in critical need of new drug development targets. In the recent decade, numerous genes have been connected to depression in animal models, and serious depression does run in families in humans, indicating both a genetic and environmental component. Depression has been linked to the malfunctioning of serotonin signaling genes, including p11, SERT, etc, according to earlier research. Gene therapy for depression has been found in some instances to be relatively safe, despite the fact that it may seem riskier and more invasive than medication. Hence, there is a growing field regarding the safest delivery mechanisms of these genes that treat major depressive disorders permanently. Hence, the present review summarized the delivery mechanisms of various genes responsible for depressive disorders along with their molecular mechanisms and delivery at the cellular level.

Keywords: Gene delivery, SERT, p11, depression, anti-depressants, major depressive disorder.

Graphical Abstract
[1]
Chambless DL, Ollendick TH. Empirically supported psychological interventions: Controversies and evidence. Annu Rev Psychol 2001; 52(1): 685-716.
[http://dx.doi.org/10.1146/annurev.psych.52.1.685] [PMID: 11148322]
[2]
Organization WH. Global and regional estimates of violence against women: Prevalence and health effects of intimate partner violence and non-partner sexual violence. World Health Organization 2013.
[3]
Hyde JS, Mezulis AH, Abramson LY. The ABCs of depression: Integrating affective, biological, and cognitive models to explain the emergence of the gender difference in depression. Psychol Rev 2008; 115(2): 291-313.
[http://dx.doi.org/10.1037/0033-295X.115.2.291] [PMID: 18426291]
[4]
Dohrenwend BP. The role of adversity and stress in psychopathology: Some evidence and its implications for theory and research. J Health Soc Behav 2000; 41(1): 1-19.
[http://dx.doi.org/10.2307/2676357] [PMID: 10750319]
[5]
Beck AT, Alford BA. Depression: Causes and treatment. University of Pennsylvania Press 2009.
[http://dx.doi.org/10.9783/9780812290882]
[6]
Teasdale JD, Segal ZV, Williams JMG, Ridgeway VA, Soulsby JM, Lau MA. Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. J Consult Clin Psychol 2000; 68(4): 615-23.
[http://dx.doi.org/10.1037/0022-006X.68.4.615] [PMID: 10965637]
[7]
Lemoine P, Guilleminault C, Alvarez E. Improvement in subjective sleep in major depressive disorder with a novel antidepressant, agomelatine: Randomized, double-blind comparison with venlafaxine. J Clin Psychiat 2007; 68(11): 1723-32.
[http://dx.doi.org/10.4088/JCP.v68n1112] [PMID: 18052566]
[8]
Csoka A, Bahrick A, Mehtonen OP. Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors. J Sex Med 2008; 5(1): 227-33.
[http://dx.doi.org/10.1111/j.1743-6109.2007.00630.x] [PMID: 18173768]
[9]
Whyte IM, Dawson AH, Buckley NA. Relative toxicity of venlafaxine and selective serotonin reuptake inhibitors in overdose compared to tricyclic antidepressants. QJM 2003; 96(5): 369-74.
[http://dx.doi.org/10.1093/qjmed/hcg062] [PMID: 12702786]
[10]
Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 2007; 151(6): 737-48.
[http://dx.doi.org/10.1038/sj.bjp.0707253] [PMID: 17471183]
[11]
Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116(3): 496-526.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.004] [PMID: 18001838]
[12]
Elkin I, Shea MT, Watkins JT, et al. National Institute of Mental Health treatment of depression collaborative research program: General effectiveness of treatments. Arch Gen Psychiatry 1989; 46(11): 971-82.
[http://dx.doi.org/10.1001/archpsyc.1989.01810110013002] [PMID: 2684085]
[13]
Association AP. Practice guideline for the treatment of patients with bipolar disorder (revision). American Psychiatric Pub 2002.
[14]
Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizo-phrenia and bipolar disorder: A decade of advance. Neurosci Biobehav Rev 2010; 34(6): 958-77.
[http://dx.doi.org/10.1016/j.neubiorev.2010.01.002] [PMID: 20060416]
[15]
Cryan JF, Slattery DA. Animal models of mood disorders: Recent developments. Curr Opin Psychiatry 2007; 20(1): 1-7.
[http://dx.doi.org/10.1097/YCO.0b013e3280117733] [PMID: 17143074]
[16]
DeRubeis RJ, Hollon SD, Amsterdam JD, et al. Cognitive therapy vs medications in the treatment of moderate to severe depression. Arch Gen Psychiatry 2005; 62(4): 409-16.
[http://dx.doi.org/10.1001/archpsyc.62.4.409] [PMID: 15809408]
[17]
Winner JG, Carhart JM, Altar A, Allen JD, Dechairo BM. A prospective, randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Discov Med 2013; 16(89): 219-27.
[18]
Smith RE, Tran K, Kristy M. System thinking for medicinal chemists. J Med Chem 2015; 1(1): 004.
[19]
Woolf CJ. Overcoming obstacles to developing new analgesics. Nat Med 2010; 16(11): 1241-7.
[http://dx.doi.org/10.1038/nm.2230] [PMID: 20948534]
[20]
Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expres-sion? BMC Med 2013; 11(1): 28.
[http://dx.doi.org/10.1186/1741-7015-11-28] [PMID: 23384232]
[21]
Huang Y, Williams WA. Enhanced selective serotonin re-uptake inhibitors as antidepressants: 2004 – 2006. Expert Opin Ther Pat 2007; 17(8): 889-907.
[http://dx.doi.org/10.1517/13543776.17.8.889] [PMID: 20144065]
[22]
Leistedt SJ, Linkowski P. Brain, networks, depression, and more. Eur Neuropsychopharmacol 2013; 23(1): 55-62.
[http://dx.doi.org/10.1016/j.euroneuro.2012.10.011] [PMID: 23154052]
[23]
Ripke S, Wray NR, Lewis CM, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013; 18(4): 497-511.
[http://dx.doi.org/10.1038/mp.2012.21] [PMID: 22472876]
[24]
Liu H-K, Schuetz G. Means and methods for treating or preventing brain tumors based on the nuclear receptor tailless (Tlx). EP2219628A1 2013.
[25]
Lader M. Generalized anxiety disorder. In: Encyclopedia of Psychopharmacology. Springer: New York City, US 2015; pp. 699-702.
[26]
Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science 2012; 338(6103): 68-72.
[27]
Alagiakrishnan K, Gill SS, Fagarasanu A. Genetics and epigenetics of Alzheimer’s disease. Postgrad Med J 2012; 88(1043): 522-9.
[http://dx.doi.org/10.1136/postgradmedj-2011-130363] [PMID: 22543304]
[28]
Karp DA. Speaking of sadness: Depression, disconnection, and the meanings of illness. Oxford University Press, Oxford, UK 2016.
[29]
Segal ZV, Williams JMG, Teasdale JD. Mindfulness-based cognitive therapy for depression. Guilford Press, New York City, US 2012.
[30]
Gaiteri C. Finding the pathology of major depression through effects on gene interaction networks. University of Pittsburgh 2011.
[31]
Alexander B, Warner-Schmidt J, Eriksson TM, et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus ac-cumbens. Sci Transl Med 2010; 2(54): 54ra76.
[http://dx.doi.org/10.1126/scitranslmed.3001079] [PMID: 20962330]
[32]
Patzelt H, Shepherd DA. Negative emotions of an entrepreneurial career: Self-employment and regulatory coping behaviors. J Bus Venturing 2011; 26(2): 226-38.
[http://dx.doi.org/10.1016/j.jbusvent.2009.08.002]
[33]
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: A review of basic and clinical evidence. Curr Neuropharmacol 2011; 9(4): 530-52.
[http://dx.doi.org/10.2174/157015911798376262] [PMID: 22654714]
[34]
Warner-Schmidt JL, Flajolet M, Maller A, et al. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci 2009; 29(6): 1937-46.
[http://dx.doi.org/10.1523/JNEUROSCI.5343-08.2009] [PMID: 19211900]
[35]
Krishnan V, Nestler EJ. Animal models of depression: Molecular perspectives Molecular and Functional Models in Neuropsychiatry. Springer, New York City, US 2011; pp. 121-47.
[36]
Marongiu R, Arango-Lievano M, Francardo V, et al. Gene therapy blockade of dorsal striatal p11 improves motor function and dyskine-sia in parkinsonian mice. Proc Natl Acad Sci USA 2016; 113(5): 1423-8.
[http://dx.doi.org/10.1073/pnas.1524387113] [PMID: 26787858]
[37]
Green H, Zhang X, Tiklova K, et al. Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson’s disease. Proc Natl Acad Sci 2017; 114(10): 2735-40.
[38]
Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P. p11 and its role in depression and therapeutic responses to antidepres-sants. Nat Rev Neurosci 2013; 14(10): 673-80.
[http://dx.doi.org/10.1038/nrn3564] [PMID: 24002251]
[39]
Guo J, Zhang W, Zhang L, et al. Probable involvement of p11 with interferon alpha induced depression. Sci Rep 2016; 6(1): 17029.
[http://dx.doi.org/10.1038/srep17029] [PMID: 26821757]
[40]
Xu C. Impact of a decision support system on obstetricians in the pregnancy nutrition guidance. 2012. Available from: https://www.diva-portal.org/
[41]
Ruf B, Bhagwagar Z. The 5-HT1B receptor: A novel target for the pathophysiology of depression. Curr Drug Targets 2009; 10(11): 1118-38.
[http://dx.doi.org/10.2174/138945009789735192] [PMID: 19702551]
[42]
Zhang C, Lueptow LM, Zhang H-T, O’Donnell JM, Xu Y. The Role of Phosphodiesterase-2 in Psychiatric and Neurodegenerative Disor-ders. In: Phosphodiesterases: CNS Functions and Diseases. Springer: New York City, US 2017; pp. 307-47.
[http://dx.doi.org/10.1007/978-3-319-58811-7_12]
[43]
Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life 2012; 64(12): 965-70.
[http://dx.doi.org/10.1002/iub.1104] [PMID: 23129425]
[44]
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87: 233-54.
[http://dx.doi.org/10.1016/j.neubiorev.2018.02.007] [PMID: 29454746]
[45]
Horwitz A. How an age of anxiety became an age of depression. Milbank Q 2010; 88(1): 112-38.
[http://dx.doi.org/10.1111/j.1468-0009.2010.00591.x] [PMID: 20377760]
[46]
Tamatam A, Bawa AS, Khanum F. Genetic biomarkers of depression. Indian J Hum Genet 2012; 18(1): 20-33.
[http://dx.doi.org/10.4103/0971-6866.96639] [PMID: 22754217]
[47]
Fabbri C, Porcelli S, Serretti A. From pharmacogenetics to pharmacogenomics: The way toward the personalization of antidepressant treatment. Can J Psychiatry 2014; 59(2): 62-75.
[http://dx.doi.org/10.1177/070674371405900202] [PMID: 24881125]
[48]
Hemeryck A, Belpaire F. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: An update. Curr Drug Metab 2002; 3(1): 13-37.
[http://dx.doi.org/10.2174/1389200023338017] [PMID: 11876575]
[49]
Lapierre YD. Suicidality with selective serotonin reuptake inhibitors: Valid claim? J Psychiatry Neurosci 2003; 28(5): 340-7.
[PMID: 14517577]
[50]
Laje G, Allen AS, Akula N, Manji H, John Rush A, McMahon FJ. Genome-wide association study of suicidal ideation emerging during citalopram treatment of depressed outpatients. Pharmacogenet Genomics 2009; 19(9): 666-74.
[http://dx.doi.org/10.1097/FPC.0b013e32832e4bcd] [PMID: 19724244]
[51]
Wong ML, Whelan F, Deloukas P, et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepres-sant treatment response. Proc Natl Acad Sci USA 2006; 103(41): 15124-9.
[http://dx.doi.org/10.1073/pnas.0602795103] [PMID: 17008408]
[52]
Vaeth PAC, Caetano R, Mills BA. Factors associated with depression among Mexican Americans living in US–Mexico border and non-border areas. J Immigr Minor Health 2016; 18(4): 718-27.
[http://dx.doi.org/10.1007/s10903-015-0236-7] [PMID: 26137982]
[53]
Luo H-R, Wu G-S, Dong C, et al. Association of PDE11A global haplotype with major depression and antidepressant drug response. Neuropsychiatr Dis Treat 2009; 5: 163-70.
[PMID: 19557111]
[54]
Nayerossadat N, Ali PA, Maedeh T. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1(1): 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[55]
Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes 2017; 8(2): 65.
[http://dx.doi.org/10.3390/genes8020065] [PMID: 28208635]
[56]
Howarth JL, Lee YB, Uney JB. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 2010; 26(1): 1-20.
[http://dx.doi.org/10.1007/s10565-009-9139-5] [PMID: 19830583]
[57]
Pozzi D, Marchini C, Cardarelli F, et al. Transfection efficiency boost of cholesterol-containing lipoplexes. Biochim Biophys Acta Biomembr 2012; 1818(9): 2335-43.
[http://dx.doi.org/10.1016/j.bbamem.2012.05.017] [PMID: 22627109]
[58]
Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 2015; 4(9): e252.
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[59]
Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004; 84(4): 1051-95.
[http://dx.doi.org/10.1152/physrev.00042.2003] [PMID: 15383648]
[60]
Bouard D, Alazard-Dany N, Cosset F-L. Viral vectors: From virology to transgene expression. Br J Pharmacol 2009; 157(2): 153-65.
[http://dx.doi.org/10.1038/bjp.2008.349] [PMID: 18776913]
[61]
Spagnou S, Miller AD, Keller M. Lipidic carriers of siRNA: Differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 2004; 43(42): 13348-56.
[http://dx.doi.org/10.1021/bi048950a] [PMID: 15491141]
[62]
Abe A, Shayman JA. The role of negatively charged lipids in lysosomal phospholipase A2 function. J Lipid Res 2009; 50(10): 2027-35.
[http://dx.doi.org/10.1194/jlr.M900008-JLR200] [PMID: 19321879]
[63]
Uddin SN. Cationic lipids used in non-viral gene delivery systems. Biotechnol Molecular Biol Rev 2007; 2(3): 058-67.
[64]
Grazu V, Moros M, Sánchez-Espinel C. Nanocarriers as nanomedicines: Design concepts and recent advances. In: Frontiers of Nanoscience. Elsevier: Amsterdam, Netherlands 2012; 4: pp. 337-440.
[http://dx.doi.org/10.1016/B978-0-12-415769-9.00014-5]
[65]
Marqués-Gallego P, de Kroon AI. Ligation strategies for targeting liposomal nanocarriers. BioMed research international 2014; 2014: 129458.
[http://dx.doi.org/10.1155/2014/129458]
[66]
Balazs DA, Godbey W. Liposomes for use in gene delivery. Journal of drug delivery 2011; 2011: 326497.
[http://dx.doi.org/10.1155/2011/326497]
[67]
Rasoulianboroujeni M, Kupgan G, Moghadam F, et al. Development of a DNA-liposome complex for gene delivery applications. Mater Sci Eng C 2017; 75: 191-7.
[http://dx.doi.org/10.1016/j.msec.2017.02.012] [PMID: 28415454]
[68]
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 2014; 4(3): 240-55.
[http://dx.doi.org/10.7150/thno.6914] [PMID: 24505233]
[69]
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. The transport of molecules between the nucleus and the cytosol. In: Molec-ular Biology of the Cell. (4th edition.), Garland Science: New York 2002.
[70]
Leonhardt C, Schwake G, Stögbauer TR, et al. Single-cell mRNA transfection studies: Delivery, kinetics and statistics by numbers. Nanomedicine 2014; 10(4): 679-88.
[http://dx.doi.org/10.1016/j.nano.2013.11.008] [PMID: 24333584]
[71]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413-7.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[72]
Cervia LD, Chang CC, Wang L, Yuan F. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection. PLoS One 2017; 12(2): e0171699.
[http://dx.doi.org/10.1371/journal.pone.0171699] [PMID: 28182739]
[73]
Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formula-tions. J Biol Chem 1994; 269(4): 2550-61.
[http://dx.doi.org/10.1016/S0021-9258(17)41980-6] [PMID: 8300583]
[74]
Kreiss P, Cameron B, Rangara R, et al. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 1999; 27(19): 3792-8.
[http://dx.doi.org/10.1093/nar/27.19.3792] [PMID: 10481017]
[75]
Majzoub RN, Chan CL, Ewert KK, et al. Uptake and transfection efficiency of PEGylated cationic liposome–DNA complexes with and without RGD-tagging. Biomaterials 2014; 35(18): 4996-5005.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.007] [PMID: 24661552]
[76]
Pozharski E, MacDonald RC. Lipoplex thermodynamics: Determination of DNA-cationic lipoid interaction energies. Biophys J 2003; 85(6): 3969-78.
[http://dx.doi.org/10.1016/S0006-3495(03)74811-5] [PMID: 14645086]
[77]
Scarzello M, Chupin V, Wagenaar A, Stuart MCA, Engberts JBFN, Hulst R. Polymorphism of pyridinium amphiphiles for gene delivery: Influence of ionic strength, helper lipid content, and plasmid DNA complexation. Biophys J 2005; 88(3): 2104-13.
[http://dx.doi.org/10.1529/biophysj.104.053983] [PMID: 15613636]
[78]
Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature 1989; 337(6205): 387-8.
[http://dx.doi.org/10.1038/337387a0] [PMID: 2463491]
[79]
Stokes AM, Wilson JW, Warren WS. Characterization of restricted diffusion in uni- and multi-lamellar vesicles using short distance iMQCs. J Magn Reson 2012; 223: 31-40.
[http://dx.doi.org/10.1016/j.jmr.2012.07.021] [PMID: 22975234]
[80]
Zhang XX, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie 2012; 94(1): 42-58.
[http://dx.doi.org/10.1016/j.biochi.2011.05.005] [PMID: 21621581]
[81]
Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Controlled Release 2007; 123(3): 184-94.
[82]
Campen RK, Ngo TTM, Sovago M, Ruysschaert JM, Bonn M. Molecular restructuring of water and lipids upon the interaction of DNA with lipid monolayers. J Am Chem Soc 2010; 132(23): 8037-47.
[http://dx.doi.org/10.1021/ja100838q] [PMID: 20486664]
[83]
Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116(2): 255-64.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.024] [PMID: 16914222]
[84]
Dass CR, Su T. Particle-mediated intravascular delivery of oligonucleotides to tumors: Associated biology and lessons from genothera-py. Drug Deliv 2001; 8(4): 191-213.
[http://dx.doi.org/10.1080/107175401317245886] [PMID: 11757778]
[85]
May S, Ben-Shaul A. Modeling of cationic lipid-DNA complexes. Curr Med Chem 2004; 11(2): 151-67.
[http://dx.doi.org/10.2174/0929867043456142] [PMID: 14754414]
[86]
Huebner S, Battersby BJ, Grimm R, Cevc G. Lipid-DNA complex formation: Reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J 1999; 76(6): 3158-66.
[http://dx.doi.org/10.1016/S0006-3495(99)77467-9] [PMID: 10354440]
[87]
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The headgroup evolution of cationic lipids for gene delivery. Bioconjug Chem 2013; 24(4): 487-519.
[http://dx.doi.org/10.1021/bc300381s] [PMID: 23461774]
[88]
Du Z, Munye MM, Tagalakis AD, Manunta MDI, Hart SL. The role of the helper lipid on the DNA transfection efficiency of lipopoly-plex formulations. Sci Rep 2014; 4(1): 7107.
[http://dx.doi.org/10.1038/srep07107] [PMID: 25407686]
[89]
Shokri M, Tavallaie M, Hosseini SM. Effect of lipoplex charge ratio on transfection efficiency of osteosarcoma cells. SOJ Pharm Phar-maceut Sci 2016; 2016: 1-4.
[90]
Saucier-Sawyer JK, Deng Y, Seo YE, et al. Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target 2015; 23(7-8): 736-49.
[http://dx.doi.org/10.3109/1061186X.2015.1065833] [PMID: 26453169]
[91]
Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: Physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012; 9(1): 23.
[http://dx.doi.org/10.1186/2045-8118-9-23] [PMID: 23140302]
[92]
Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000; 20(1): 77-95.
[http://dx.doi.org/10.1023/A:1006948027674] [PMID: 10690503]
[93]
Apiratmateekul N, Phunpae P, Kasinrerk W. A modified hybridoma technique for production of monoclonal antibodies having desired isotypes. Cytotechnology 2009; 60(1-3): 45-51.
[http://dx.doi.org/10.1007/s10616-009-9213-0] [PMID: 19639389]
[94]
Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol 2014; 77(6): 917-28.
[http://dx.doi.org/10.1111/bcp.12228] [PMID: 24033707]
[95]
Kuo YC, Shih-Huang CY. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood–brain barrier through insulin recep-tor-mediated pathway. J Drug Target 2013; 21(8): 730-8.
[96]
Palekar RU, Myerson JW, Schlesinger PH, Sadler JE, Pan H, Wickline SA. Thrombin-targeted liposomes establish a sustained localized anticlotting barrier against acute thrombosis. Mol Pharmaceutics 2013; 10(11): 4168-75.
[97]
Torchilin VP, Levchenko TS, Lukyanov AN, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta Biomembr 2001; 1511(2): 397-411.
[http://dx.doi.org/10.1016/S0005-2728(01)00165-7] [PMID: 11286983]
[98]
Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2014; 15(1): 69-80.
[http://dx.doi.org/10.4161/cbt.26609] [PMID: 24145298]
[99]
Schelté P, Boeckler C, Frisch B, Schuber F. Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs. Bioconjug Chem 2000; 11(1): 118-23.
[100]
Bourel-Bonnet L, Pécheur EI, Grandjean C. Blanpain A, Baust T, Melnyk O, Hoflack B, Gras-Masse H. Anchorage of synthetic peptides onto liposomes via hydrazone and α-oxo hydrazone bonds. Preliminary functional investigations. Bioconjug Chem 2005; 16(2): 450-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy