Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Circular RNAs in Prostate Cancer

Author(s): Feng Chen, Fa Zhang, Yong-Qiang Liu and Yu-Fang Leng*

Volume 31, Issue 29, 2024

Published on: 17 July, 2023

Page: [4640 - 4656] Pages: 17

DOI: 10.2174/0929867330666230531095850

Price: $65

Abstract

Objectives: This study aims to summarize the current literature to demonstrate the importance of circular RNAs (circRNAs) in multiple aspects of prostate cancer (PCa) occurrence, progression, and treatment resistance and explore the potential role in therapeutic strategies aimed at targeting this molecule in PCa.

Methods: The relevant literature from PubMed and Medline databases is reviewed in this article.

Results: Non-coding RNA has been proven to play a vital role in regulating tumor progression. Among them, circular RNA plays a more unique role due to its nonlinear structure. Lots of circRNAs were found to be differentially expressed in PCa and regulate cell signaling pathways by regulating particular gene expressions. Recent studies have demonstrated that circRNAs are associated with the chemoresistance of urinary tumors, suggesting that circRNAs might be a novel therapeutic target and a marker for therapeutic response and prognosis assessment.

Conclusion: The potential crosstalk of circRNAs modifications in PCa development, therapy, and regulation of tumor metabolism is portrayed in this review. However, more preclinical and clinical trials of this targeted strategy are necessary for the treatment of urinary tumors.

Keywords: Prostate cancer, circRNAs, biological characteristics, therapeutic resistance, biomarker, treatment resistance.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Denmeade, S.R.; Isaacs, J.T. A history of prostate cancer treatment. Nat. Rev. Cancer, 2002, 2(5), 389-396.
[http://dx.doi.org/10.1038/nrc801] [PMID: 12044015]
[3]
Perner, S.; Cronauer, M.V.; Schrader, A.J.; Klocker, H.; Culig, Z.; Baniahmad, A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, 2015, 6(34), 35542-35555.
[http://dx.doi.org/10.18632/oncotarget.4689] [PMID: 26325261]
[4]
Risk, M.; Corman, J.M. The role of immunotherapy in prostate cancer: An overview of current approaches in development. Rev. Urol., 2009, 11(1), 16-27.
[PMID: 19390671]
[5]
Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci., 1976, 73(11), 3852-3856.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[6]
Wu, D.P.; Zhao, Y.D.; Yan, Q.Q.; Liu, L.L.; Wei, Y.S.; Huang, J.L. Circular RNAS : Emerging players in brain aging and neurodegenerative diseases. J. Pathol., 2023, 259(1), 1-9.
[http://dx.doi.org/10.1002/path.6021] [PMID: 36264226]
[7]
Liu, Z.; Zhou, Y.; Xia, J. CircRNAs: Key molecules in the prevention and treatment of ischemic stroke. Biomed. Pharmacother., 2022, 156, 113845.
[http://dx.doi.org/10.1016/j.biopha.2022.113845] [PMID: 36244267]
[8]
Bagheri Moghaddam, M.; Maleki, M.; Oveisee, M.; Bagheri, M.M.; Arabian, M.; Malakootian, M. Circular RNAs: New players in cardiomyopathy. Genes, 2022, 13(9), 1537.
[http://dx.doi.org/10.3390/genes13091537] [PMID: 36140705]
[9]
Zhou, X.; Lin, J.; Wang, F.; Chen, X.; Zhang, Y.; Hu, Z.; Jin, X. Circular RNA-regulated autophagy is involved in cancer progression. Front. Cell Dev. Biol., 2022, 10, 961983.
[http://dx.doi.org/10.3389/fcell.2022.961983] [PMID: 36187468]
[10]
Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2), e30733.
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[11]
Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[12]
Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell, 2018, 71(3), 428-442.
[http://dx.doi.org/10.1016/j.molcel.2018.06.034] [PMID: 30057200]
[13]
Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet., 2016, 32(5), 309-316.
[http://dx.doi.org/10.1016/j.tig.2016.03.002] [PMID: 27050930]
[14]
Dori, M.; Bicciato, S. Integration of bioinformatic predictions and experimental data to identify circRNA-miRNA associations. Genes, 2019, 10(9), 642.
[http://dx.doi.org/10.3390/genes10090642] [PMID: 31450634]
[15]
Yu, T.; Wang, Y.; Fan, Y.; Fang, N.; Wang, T.; Xu, T.; Shu, Y. CircRNAs in cancer metabolism: A review. J. Hematol. Oncol., 2019, 12(1), 90.
[http://dx.doi.org/10.1186/s13045-019-0776-8] [PMID: 31484561]
[16]
Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circ RNAs. EMBO J., 2019, 38(16), e100836.
[http://dx.doi.org/10.15252/embj.2018100836] [PMID: 31343080]
[17]
Liang, D.; Wilusz, J.E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev., 2014, 28(20), 2233-2247.
[http://dx.doi.org/10.1101/gad.251926.114] [PMID: 25281217]
[18]
Lu, Z.; Filonov, G.S.; Noto, J.J.; Schmidt, C.A.; Hatkevich, T.L.; Wen, Y.; Jaffrey, S.R.; Matera, A.G. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 2015, 21(9), 1554-1565.
[http://dx.doi.org/10.1261/rna.052944.115] [PMID: 26194134]
[19]
Verduci, L.; Strano, S.; Yarden, Y.; Blandino, G. The circ RNA –micro RNA code: Emerging implications for cancer diagnosis and treatment. Mol. Oncol., 2019, 13(4), 669-680.
[http://dx.doi.org/10.1002/1878-0261.12468] [PMID: 30719845]
[20]
Yin, Y.; Long, J.; He, Q.; Li, Y.; Liao, Y.; He, P.; Zhu, W. Emerging roles of circRNA in formation and progression of cancer. J. Cancer, 2019, 10(21), 5015-5021.
[http://dx.doi.org/10.7150/jca.30828] [PMID: 31602252]
[21]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[22]
Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[23]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[24]
Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.L.; Cherry, S.; Wilusz, J.E. The output of protein- coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol. Cell, 2017, 68(5), 940-954.e3.
[http://dx.doi.org/10.1016/j.molcel.2017.10.034] [PMID: 29174924]
[25]
Fei, T.; Chen, Y.; Xiao, T.; Li, W.; Cato, L.; Zhang, P.; Cotter, M.B.; Bowden, M.; Lis, R.T.; Zhao, S.G.; Wu, Q.; Feng, F.Y.; Loda, M.; He, H.H.; Liu, X.S.; Brown, M. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl. Acad. Sci., 2017, 114(26), E5207-E5215.
[http://dx.doi.org/10.1073/pnas.1617467114] [PMID: 28611215]
[26]
Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[27]
Kong, Z.; Wan, X.; Zhang, Y.; Zhang, P.; Zhang, Y.; Zhang, X.; Qi, X.; Wu, H.; Huang, J.; Li, Y. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1217-1223.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.162] [PMID: 28765045]
[28]
Yang, Z.; Qu, C.B.; Zhang, Y.; Zhang, W.F.; Wang, D.D.; Gao, C.C.; Ma, L.; Chen, J.S.; Liu, K.L.; Zheng, B.; Zhang, X.H.; Zhang, M.L.; Wang, X.L.; Wen, J.K.; Li, W. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 2019, 38(14), 2516-2532.
[http://dx.doi.org/10.1038/s41388-018-0602-8] [PMID: 30531834]
[29]
Greene, J.; Baird, A.M.; Casey, O.; Brady, L.; Blackshields, G.; Lim, M.; O’Brien, O.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep., 2019, 9(1), 10739.
[http://dx.doi.org/10.1038/s41598-019-47189-2] [PMID: 31341219]
[30]
Shen, L.; Pelletier, J. General and target-specific DExD/H RNA helicases in eukaryotic translation initiation. Int J Mol Sci, 2020, 21(12)
[http://dx.doi.org/10.3390/ijms21124402]
[31]
Song, Z.; Zhuo, Z.; Ma, Z.; Hou, C.; Chen, G.; Xu, G. Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer. Artif Cells Nanomed Biotechnol, 2019, 47(1), 2449-2464.
[http://dx.doi.org/10.1080/21691401.2019.1626866]
[32]
Chen, W.; Cen, S.; Zhou, X.; Yang, T.; Wu, K.; Zou, L.; Luo, J.; Li, C.; Lv, D.; Mao, X. Circular RNA CircNOLC1, Upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Front. Cell Dev. Biol., 2021, 8, 624764.
[http://dx.doi.org/10.3389/fcell.2020.624764] [PMID: 33490086]
[33]
Chen, D.; Lu, X.; Yang, F.; Xing, N. Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag. Res., 2019, 11, 1415-1423.
[http://dx.doi.org/10.2147/CMAR.S190669] [PMID: 30863152]
[34]
Liu, F.; Fan, Y.; Ou, L.; Li, T.; Fan, J.; Duan, L.; Yang, J.; Luo, C.; Wu, X. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. OncoTargets Ther., 2020, 13, 4545-4558.
[http://dx.doi.org/10.2147/OTT.S242482] [PMID: 32547085]
[35]
Liu, D.C.; Song, L.L.; Li, X.Z.; Liang, Q.; Zhang, Z.G.; Han, C.H. Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling. Clin. Transl. Oncol., 2021, 23(12), 2497-2506.
[http://dx.doi.org/10.1007/s12094-021-02650-5] [PMID: 34142340]
[36]
Dong, C.; Fan, B.; Ren, Z.; Liu, B.; Wang, Y. Expression of concern issued: CircSMARCA5 facilitates the progression of prostate cancer through miR-432/PDCD10 axis. Cancer Biother. Radiopharm., 2021, 36(1), 70-83.
[http://dx.doi.org/10.1089/cbr.2019.3490] [PMID: 32407167]
[37]
Xie, T.; Fu, D.; Li, Z.; Lv, D.; Song, X.L.; Yu, Y.; Wang, C.; Li, K.; Zhai, B.; Wu, J.; Feng, N.H.; Zhao, S.C. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol. Cancer, 2022, 21(1), 173.
[http://dx.doi.org/10.1186/s12943-022-01630-9] [PMID: 36045408]
[38]
Kong, Z.; Wan, X.; Lu, Y.; Zhang, Y.; Huang, Y.; Xu, Y.; Liu, Y.; Zhao, P.; Xiang, X.; Li, L.; Li, Y. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J. Cell. Mol. Med., 2020, 24(1), 799-813.
[http://dx.doi.org/10.1111/jcmm.14791] [PMID: 31733095]
[39]
He, T.; Tao, W.; Zhang, L.L.; Wang, B.Y.; Li, K.; Lu, H.M.; Tang, G.J.; He, Y.D.; Li, L.Y. CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis., 2022, 13(6), 517.
[http://dx.doi.org/10.1038/s41419-022-04913-7] [PMID: 35654787]
[40]
Yan, Z.; Xiao, Y.; Chen, Y.; Luo, G. Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol. Res. Pract., 2020, 216(2), 152784.
[http://dx.doi.org/10.1016/j.prp.2019.152784] [PMID: 31882179]
[41]
Li, T.; Sun, X.; Chen, L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem., 2020, 121(3), 2118-2126.
[http://dx.doi.org/10.1002/jcb.28239] [PMID: 31625175]
[42]
Yin, H.; Qin, H.; Yang, L.; Chen, M.; Yang, Y.; Zhang, W.; Hao, J.; Lu, Q.; Shi, J.; Zhuang, J.; Qiu, X.; Guo, H. circCYP24A1 promotes docetaxel resistance in prostate cancer by upregulating ALDH1A3. Biomark. Res., 2022, 10(1), 48.
[http://dx.doi.org/10.1186/s40364-022-00393-1] [PMID: 35831872]
[43]
Zheng, Y.; Li, J.; Chen, C.; Lin, Z.; Liu, J.; Lin, F. Extracellular vesicle-derived circ_SLC19A1 promotes prostate cancer cell growth and invasion through the miR-497/septin 2 pathway. Cell Biol. Int., 2020, 44(4), 1037-1045.
[http://dx.doi.org/10.1002/cbin.11303] [PMID: 31903637]
[44]
Dai, Y.; Li, D.; Chen, X.; Tan, X.; Gu, J.; Chen, M.; Zhang, X. Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Med. Sci. Monit., 2018, 24, 3462-3471.
[http://dx.doi.org/10.12659/MSM.908009] [PMID: 29798970]
[45]
Wang, X.; Wang, R.; Wu, Z.; Bai, P. Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p. Cancer Cell Int., 2019, 19(1), 328.
[http://dx.doi.org/10.1186/s12935-019-0994-8] [PMID: 31827402]
[46]
Yuan, Y.; Chen, X.; Huang, E. Upregulation of circular RNA itchy E3 ubiquitin protein ligase inhibits cell proliferation and promotes cell apoptosis through targeting MiR-197 in prostate cancer. Technol. Cancer Res. Treat., 2019, 18
[http://dx.doi.org/10.1177/1533033819886867] [PMID: 31694481]
[47]
Huang, C.; Deng, H.; Wang, Y.; Jiang, H.; Xu, R.; Zhu, X.; Huang, Z.; Zhao, X. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J. Cell. Mol. Med., 2019, 23(9), 6112-6119.
[http://dx.doi.org/10.1111/jcmm.14477] [PMID: 31270953]
[48]
Wang, S.; Chao, F.; Zhang, C.; Han, D.; Xu, G.; Chen, G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett., 2022, 524, 109-120.
[http://dx.doi.org/10.1016/j.canlet.2021.10.021] [PMID: 34673127]
[49]
Feng, Y.; Yang, Y.; Zhao, X.; Fan, Y.; Zhou, L.; Rong, J.; Yu, Y. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis., 2019, 10(11), 792.
[http://dx.doi.org/10.1038/s41419-019-2028-9] [PMID: 31624242]
[50]
Si-Tu, J.; Cai, Y.; Feng, T.; Yang, D.; Yuan, S.; Yang, X.; He, S.; Li, Z.; Wang, Y.; Tang, Y.; Ye, C.; Li, Z. Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer. Int. J. Biol. Macromol., 2019, 122, 1235-1243.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.076] [PMID: 30219508]
[51]
Shan, G.; Shao, B.; Liu, Q.; Zeng, Y.; Fu, C.; Chen, A.; Chen, Q. circFMN2 sponges miR-1238 to Promote the expression of LIM-Homeobox gene 2 in prostate cancer cells. Mol. Ther. Nucleic Acids, 2020, 21, 133-146.
[http://dx.doi.org/10.1016/j.omtn.2020.05.008] [PMID: 32526477]
[52]
Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3350-3358.
[http://dx.doi.org/10.1080/21691401.2019.1648281] [PMID: 31387394]
[53]
Zhang, Y.; Shi, Z.; Li, Z.; Wang, X.; Zheng, P.; Li, H. Circ_0057553/miR-515-5p regulates prostate cancer cell proliferation, apoptosis, migration, invasion and aerobic glycolysis by targeting YES1. OncoTargets Ther., 2020, 13, 11289-11299.
[http://dx.doi.org/10.2147/OTT.S272294] [PMID: 33177837]
[54]
Li, P.; Wang, Z.; Li, S.; Wang, L. Circ_0006404 accelerates prostate cancer progression through regulating miR-1299/CFL2 signaling. OncoTargets Ther., 2021, 14, 83-95.
[http://dx.doi.org/10.2147/OTT.S277831] [PMID: 33442268]
[55]
Li, Q.; Wang, W.; Zhang, M.; Sun, W.; Shi, W.; Li, F. Circular RNA circ-0016068 promotes the growth, migration, and invasion of prostate cancer cells by regulating the miR-330-3p/BMI-1 axis as a competing endogenous RNA. Front. Cell Dev. Biol., 2020, 8, 827.
[http://dx.doi.org/10.3389/fcell.2020.00827] [PMID: 32984325]
[56]
Jiang, H.; Lv, D.J.; Song, X.L.; Wang, C.; Yu, Y.Z.; Zhao, S.C. Upregulated circZMIZ1 promotes the proliferation of prostate cancer cells and is a valuable marker in plasma. Neoplasma, 2020, 67(1), 68-77.
[http://dx.doi.org/10.4149/neo_2019_190213N116] [PMID: 31686520]
[57]
Mao, Y.; Li, W.; Hua, B.; Gu, X.; Pan, W.; Chen, Q.; Xu, B.; Lu, C.; Wang, Z. Circular RNA_PDHX promotes the proliferation and invasion of prostate cancer by sponging MiR-378a-3p. Front. Cell Dev. Biol., 2021, 8, 602707.
[http://dx.doi.org/10.3389/fcell.2020.602707] [PMID: 33634097]
[58]
Chen, J.; Xie, Q.; Miao, W.; Fan, J.; Zhou, X.; Li, M. CircPDHX promotes prostate cancer cell progression in vitro and tumor growth in vivo via miR-497-5p/ACSL1 axis. Biochem. Biophys. Res. Commun., 2022, 620, 35-41.
[http://dx.doi.org/10.1016/j.bbrc.2022.06.012] [PMID: 35777132]
[59]
Deng, Z.H.; Yu, G.S.; Deng, K.L.; Feng, Z.H.; Huang, Q.; Pan, B.; Deng, J.Z. Hsa_circ_0088233 alleviates proliferation, migration, and invasion of prostate cancer by targeting hsa-miR-185-3p. Front. Cell Dev. Biol., 2020, 8, 528155.
[http://dx.doi.org/10.3389/fcell.2020.528155] [PMID: 33195183]
[60]
Shi, J.; Liu, C.; Chen, C.; Guo, K.; Tang, Z.; Luo, Y.; Chen, L.; Su, Y.; Xu, K. Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging, 2020, 12(13), 13255-13280.
[http://dx.doi.org/10.18632/aging.103432] [PMID: 32645691]
[61]
Wang, P.; Zhang, L.; Yin, S.; Xu, Y.; Tai, S.; Zhang, L.; Liang, C. Hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis. Acta Biochim. Biophys. Sin., 2021, 53(7), 815-822.
[http://dx.doi.org/10.1093/abbs/gmab058] [PMID: 33978716]
[62]
Zeng, L.; Liu, Y.; Yang, N.; Zhang, T.; Xie, H. Hsa_circRNA_100146 promotes prostate cancer progression by upregulating TRIP13 via sponging miR-615-5p. Front. Mol. Biosci., 2021, 8, 693477.
[http://dx.doi.org/10.3389/fmolb.2021.693477] [PMID: 34307457]
[63]
Yu, Y.Z.; Lv, D.J.; Wang, C.; Song, X.L.; Xie, T.; Wang, T.; Li, Z.M.; Guo, J.D.; Fu, D.J.; Li, K.J.; Wu, D.L.; Chan, F.L.; Feng, N.H.; Chen, Z.S.; Zhao, S.C. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol. Cancer, 2022, 21(1), 12.
[http://dx.doi.org/10.1186/s12943-021-01480-x] [PMID: 34986849]
[64]
Weng, X.D.; Yan, T.; Liu, C.L. Circular RNA_LARP4 inhibits cell migration and invasion of prostate cancer by targeting FOXO3A. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(10), 5303-5309. [From NLM.].
[http://dx.doi.org/10.26355/eurrev_202005_21312] [PMID: 32495863]
[65]
Zhang, Y.; Liu, F.; Feng, Y.; Xu, X.; Wang, Y.; Zhu, S.; Dong, J.; Zhao, S.; Xu, B.; Feng, N. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther., 2022, 29(11), 1731-1741.
[http://dx.doi.org/10.1038/s41417-022-00492-z] [PMID: 35760899]
[66]
Retracted : CircSMAD2 governs migration and epithelial–mesenchymal transition by inhibiting microRNA-9. J. Cell. Biochem., 2021, 122(9), 1253.
[http://dx.doi.org/10.1002/jcb.29638] [PMID: 31886568]
[67]
Hu, Y.; Guo, B. Circ-MTO1 correlates with favorable prognosis and inhibits cell proliferation, invasion as well as miR-17-5p expression in prostate cancer. J. Clin. Lab. Anal., 2020, 34(3), e23086.
[http://dx.doi.org/10.1002/jcla.23086] [PMID: 31713278]
[68]
Zheng, Y.; Chen, C.; Lin, Z.; Li, J.; Liu, J.; Lin, F.; Zhou, X. Circ_KATNAL1 regulates prostate cancer cell growth and invasiveness through the miR-145-3p/WISP1 pathway. Biochem. Cell Biol., 2020, 98(3), 396-404.
[http://dx.doi.org/10.1139/bcb-2019-0211] [PMID: 31800303]
[69]
Xiang, Z.; Xu, C.; Wu, G.; Liu, B.; Wu, D. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p. Open Med., 2019, 14(1), 833-842.
[http://dx.doi.org/10.1515/med-2019-0097] [PMID: 31844675]
[70]
Wu, G.; Sun, Y.; Xiang, Z.; Wang, K.; Liu, B.; Xiao, G.; Niu, Y.; Wu, D.; Chang, C. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis., 2019, 10(2), 37.
[http://dx.doi.org/10.1038/s41419-018-1048-1] [PMID: 30674872]
[71]
Sha, J.; Xia, L.; Han, Q.; Chi, C.; Zhu, Y.; Pan, J.; Huang, Y.; Xia, W.; Dong, B.; Xue, W.; Yang, C. Downregulation of circ-TRPS1 suppressed prostatic cancer prognoses by regulating miR-124-3p/EZH2 axis-mediated stemness. Am. J. Cancer Res., 2020, 10(12), 4372-4385.
[http://dx.doi.org/10.21203/rs.3.rs-48783/v1] [PMID: 33415005]
[72]
Xia, H.Y.; Liu, C.D.; Liang, W.; Huo, X.Y.; Wei, X.W. Circ_0004417 inhibits the progression of prostate cancer through sponging miR-1228. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1274-1281. [From NLM.].
[http://dx.doi.org/10.26355/eurrev_202102_24831] [PMID: 33629297]
[73]
Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. RETRACTED: CircLMTK2 acts as a tumor suppressor in prostate cancer viaregulating the expression of microRNA-183. Life Sci., 2020, 241, 117097.
[http://dx.doi.org/10.1016/j.lfs.2019.117097] [PMID: 31760099]
[74]
He, H.; Li, J.; Luo, M.; Wei, Q. Inhibitory role of circRNA_100395 in the proliferation and metastasis of prostate cancer cells. J. Int. Med. Res., 2021, 49(2)
[http://dx.doi.org/10.1177/0300060521992215] [PMID: 33641485]
[75]
Zhang, S.; Zhang, X.; Chen, G.; Zheng, X.; Zhu, X.; Shan, L. Hsa_circ_0007494 suppresses prostate cancer progression via miR-616/PTEN axis. Exp. Cell Res., 2020, 395(2), 112233.
[http://dx.doi.org/10.1016/j.yexcr.2020.112233] [PMID: 32810511]
[76]
Nan, C.; Wang, Y.; Yang, S.; Chen, Y. circCRKL suppresses the progression of prostate cancer cells by regulating the miR-141/KLF5 axis. Pathol. Res. Pract., 2020, 216(11), 153182.
[http://dx.doi.org/10.1016/j.prp.2020.153182] [PMID: 32919302]
[77]
Lin, Q.; Cai, J.; Wang, Q.Q. The significance of circular RNA DDX17 in prostate cancer. BioMed Res. Int., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/1878431] [PMID: 32904557]
[78]
Huang, E.; Chen, X.; Yuan, Y. Downregulated circular RNA itchy E3 ubiquitin protein ligase correlates with advanced pathologic T stage, high lymph node metastasis risk and poor survivals in prostate cancer patients. Cancer Biomark., 2019, 26(1), 41-50.
[http://dx.doi.org/10.3233/CBM-182111] [PMID: 31306101]
[79]
Luo, J.; Li, Y.; Zheng, W.; Xie, N.; Shi, Y.; Long, Z.; Xie, L.; Fazli, L.; Zhang, D.; Gleave, M.; Dong, X. Characterization of a prostate- and prostate cancer-specific circular RNA encoded by the androgen receptor gene. Mol. Ther. Nucleic Acids, 2019, 18, 916-926.
[http://dx.doi.org/10.1016/j.omtn.2019.10.015] [PMID: 31760376]
[80]
Dai, X.; Chen, X.; Chen, W.; Ou, Y.; Chen, Y.; Wu, S.; Zhou, Q.; Yang, C.; Zhang, L.; Jiang, H. CircDHRS3 inhibits prostate cancer cell proliferation and metastasis through the circDHRS3/miR-421/MEIS2 axis. Epigenetics, 2023, 18(1), 2178802.
[http://dx.doi.org/10.1080/15592294.2023.2178802] [PMID: 36840946]
[81]
Gao, F.; Xu, Q.; Tang, Z.; Zhang, N.; Huang, Y.; Li, Z.; Dai, Y.; Yu, Q.; Zhu, J. Exosomes derived from myeloid-derived suppressor cells facilitate castration-resistant prostate cancer progression via S100A9/circMID1/miR-506-3p/MID1. J. Transl. Med., 2022, 20(1), 346.
[http://dx.doi.org/10.1186/s12967-022-03494-5] [PMID: 35918733]
[82]
Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med., 2021, 11(8), e493.
[http://dx.doi.org/10.1002/ctm2.493] [PMID: 34459124]
[83]
Wang, Q.; Liu, J.; Zeng, J.; Yang, Z.; Ran, F.; Wu, L.; Yang, G.; Mei, Q.; Wang, X.; Chen, Q. Determination of miRNA derived from exosomes of prostate cancer via toehold-aided cyclic amplification combined with HRP enzyme catalysis and magnetic nanoparticles. Anal. Biochem., 2021, 630, 114336.
[http://dx.doi.org/10.1016/j.ab.2021.114336] [PMID: 34400146]
[84]
Wang, S.; Su, W.; Zhong, C.; Yang, T.; Chen, W.; Chen, G.; Liu, Z.; Wu, K.; Zhong, W.; Li, B.; Mao, X.; Lu, J. An Eight-CircRNA assessment model for predicting biochemical recurrence in prostate cancer. Front. Cell Dev. Biol., 2020, 8, 599494.
[http://dx.doi.org/10.3389/fcell.2020.599494] [PMID: 33363156]
[85]
Zhang, B.; Zhang, M.; Yang, Y.; Li, Q.; Yu, J.; Zhu, S.; Niu, Y.; Shang, Z. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene, 2022, 41(3), 387-399.
[http://dx.doi.org/10.1038/s41388-021-02103-x] [PMID: 34759344]
[86]
Wu, Y. Circ_0044516 enriches the level of SARM1 as a miR-330-5p sponge to regulate cell malignant behaviors and tumorigenesis of prostate cancer. Biochem. Genet., 2022, 60(4), 1346-1361.
[http://dx.doi.org/10.1007/s10528-021-10160-w] [PMID: 34993722]
[87]
Chikamatsu, S.; Shiota, M.; Yamada, S.; Blas, L.; Matsumoto, T.; Kashiwagi, E.; Inokuchi, J.; Shiga, K.; Yokomizo, A.; Eto, M. Prognostic significance of risk stratification in CHAARTED and LATITUDE studies among Japanese men with castration-resistant prostate cancer. Prostate Int., 2022, 10(1), 7-13.
[http://dx.doi.org/10.1016/j.prnil.2022.01.001] [PMID: 35229000]
[88]
Huang, J.; Lin, B.; Li, B. Anti-androgen receptor therapies in prostate cancer: A brief update and perspective. Front. Oncol., 2022, 12, 865350.
[http://dx.doi.org/10.3389/fonc.2022.865350] [PMID: 35372068]
[89]
Uemura, H.; Kobayashi, K.; Yokomizo, A.; Hinotsu, S.; Horie, S.; Kakehi, Y.; Naito, S.; Nonomura, N.; Ogawa, O.; Oya, M.; Suzuki, K.; Saito, A.; Uno, S.; Akaza, H. Enzalutamide + androgen deprivation therapy (ADT) versus flutamide + ADT in Japanese men with castration-resistant prostate cancer: AFTERCAB study. BJUI Compass, 2022, 3(1), 26-36.
[http://dx.doi.org/10.1002/bco2.103] [PMID: 35475157]
[90]
Chen, L.; Sun, Y.; Tang, M.; Wu, D.; Xiang, Z.; Huang, C.P.; You, B.; Xie, D.; Ye, Q.; Yu, D.; Chang, C. High- dose-androgen-induced autophagic cell death to suppress the Enzalutamide-resistant prostate cancer growth via altering the circRNA-BCL2/miRNA-198/AMBRA1 signaling. Cell Death Discov., 2022, 8(1), 128.
[http://dx.doi.org/10.1038/s41420-022-00898-6] [PMID: 35318303]
[91]
Lim, M.C.J.; Baird, A.M.; Greene, J.; McNevin, C.; Ronan, K.; Podlesniy, P.; Sheils, O.; Gray, S.G.; McDermott, R.S.; Finn, S.P. hsa_circ_0001275 is one of a number of circRNAs dysregulated in enzalutamide resistant prostate cancer and confers enzalutamide resistance in vitro. Cancers, 2021, 13(24), 6383.
[http://dx.doi.org/10.3390/cancers13246383] [PMID: 34945002]
[92]
Jiang, X.; Guo, S.; Wang, S.; Zhang, Y.; Chen, H.; Wang, Y.; Liu, R.; Niu, Y.; Xu, Y. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res., 2022, 82(5), 831-845.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-2988] [PMID: 34965937]
[93]
Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101.
[http://dx.doi.org/10.1016/j.canlet.2019.10.006] [PMID: 31593800]
[94]
Tan, X.; Song, X.; Fan, B.; Li, M.; Zhang, A.; Pei, L. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs, 2022, 33(9), 871-882.
[http://dx.doi.org/10.1097/CAD.0000000000001365] [PMID: 36136987]
[95]
Cai, F.; Li, J.; Zhang, J.; Huang, S. Knockdown of Circ_CCNB2 sensitizes prostate cancer to radiation through repressing autophagy by the miR-30b-5p/KIF18A axis. Cancer Biother. Radiopharm., 2022, 37(6), 480-493.
[http://dx.doi.org/10.1089/cbr.2019.3538] [PMID: 32716640]
[96]
Li, H.; Zhi, Y.; Ma, C.; Shen, Q.; Sun, F.; Cai, C. Circ_0062020 knockdown strengthens the radiosensitivity of prostate cancer cells. Cancer Manag. Res., 2020, 12, 11701-11712.
[http://dx.doi.org/10.2147/CMAR.S273826] [PMID: 33235500]
[97]
Gao, Y.; Liu, J.; Huan, J.; Che, F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int., 2020, 20(1), 334.
[http://dx.doi.org/10.1186/s12935-020-01421-6] [PMID: 32714093]
[98]
Kamran, S.C.; D’Amico, A.V. Radiation therapy for prostate cancer. Hematol. Oncol. Clin. North Am., 2020, 34(1), 45-69.
[http://dx.doi.org/10.1016/j.hoc.2019.08.017] [PMID: 31739952]
[99]
Ghadjar, P.; Fiorino, C.; Munck af Rosenschöld, P.; Pinkawa, M.; Zilli, T.; van der Heide, U.A. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother. Oncol., 2019, 141, 5-13.
[http://dx.doi.org/10.1016/j.radonc.2019.08.027] [PMID: 31668515]
[100]
Mariados, N.; Sylvester, J.; Shah, D.; Karsh, L.; Hudes, R.; Beyer, D.; Kurtzman, S.; Bogart, J.; Hsi, R.A.; Kos, M.; Ellis, R.; Logsdon, M.; Zimberg, S.; Forsythe, K.; Zhang, H.; Soffen, E.; Francke, P.; Mantz, C.; Rossi, P.; DeWeese, T.; Hamstra, D.A.; Bosch, W.; Gay, H.; Michalski, J. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: Dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 971-977.
[http://dx.doi.org/10.1016/j.ijrobp.2015.04.030] [PMID: 26054865]
[101]
Chen, Y.Y.; Luo, L.P.; Deng, K.C. Circular RNA LPAR3 targets JPT1 via microRNA-513b-5p to facilitate glycolytic activation but repress prostate cancer radiosensitivity. Acta Biochim. Pol., 2023, 70(1), 153-162.
[http://dx.doi.org/10.18388/abp.2020_6379] [PMID: 36929708]
[102]
Yu, T.; Du, H.; Sun, C. Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade. Anticancer Drugs, 2023, 34(1), 155-165.
[http://dx.doi.org/10.1097/CAD.0000000000001361] [PMID: 36539368]
[103]
Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; Lotan, T.L.; Zheng, Q.; De Marzo, A.M.; Isaacs, J.T.; Isaacs, W.B.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med., 2014, 371(11), 1028-1038.
[http://dx.doi.org/10.1056/NEJMoa1315815] [PMID: 25184630]
[104]
Kohli, M.; Ho, Y.; Hillman, D.W.; Van Etten, J.L.; Henzler, C.; Yang, R.; Sperger, J.M.; Li, Y.; Tseng, E.; Hon, T.; Clark, T.; Tan, W.; Carlson, R.E.; Wang, L.; Sicotte, H.; Thai, H.; Jimenez, R.; Huang, H.; Vedell, P.T.; Eckloff, B.W.; Quevedo, J.F.; Pitot, H.C.; Costello, B.A.; Jen, J.; Wieben, E.D.; Silverstein, K.A.T.; Lang, J.M.; Wang, L.; Dehm, S.M. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res., 2017, 23(16), 4704-4715.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0017] [PMID: 28473535]
[105]
Duffy, M.J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin. Chem. Lab. Med. (CCLM), 2020, 58(3), 326-339.
[http://dx.doi.org/10.1515/cclm-2019-0693] [PMID: 31714881]
[106]
Liao, Y.; Liu, Y.; Xia, X.; Shao, Z.; Huang, C.; He, J.; Jiang, L.; Tang, D.; Liu, J.; Huang, H. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics, 2020, 10(8), 3366-3381.
[http://dx.doi.org/10.7150/thno.41849] [PMID: 32206096]
[107]
Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; McLaughlin, B.; Wahl, J.; Greene, S.B.; Heller, G.; Marrinucci, D.; Fleisher, M.; Dittamore, R. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol., 2016, 2(11), 1441-1449.
[http://dx.doi.org/10.1001/jamaoncol.2016.1828] [PMID: 27262168]
[108]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[109]
Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718.
[http://dx.doi.org/10.1136/jmedgenet-2015-103334] [PMID: 26358722]
[110]
Karreth, F.A.; Pandolfi, P.P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov., 2013, 3(10), 1113-1121.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0202] [PMID: 24072616]
[111]
Zhang, F.; Lin, F.; Xu, Z.; Huang, Z. Circular RNA ITCH promotes extracellular matrix degradation via activating Wnt/β-catenin signaling in intervertebral disc degeneration. Aging, 2021, 13(10), 14185-14197.
[http://dx.doi.org/10.18632/aging.203036] [PMID: 34015763]
[112]
Wang, J.Q.; Mao, L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol. Neurobiol., 2019, 56(9), 6197-6205.
[http://dx.doi.org/10.1007/s12035-019-1524-3] [PMID: 30737641]
[113]
Samatar, A.A.; Poulikakos, P.I. Targeting RAS–ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov., 2014, 13(12), 928-942.
[http://dx.doi.org/10.1038/nrd4281] [PMID: 25435214]
[114]
Maik-Rachline, G.; Hacohen-Lev-Ran, A.; Seger, R. Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int. J. Mol. Sci., 2019, 20(5), 1194.
[http://dx.doi.org/10.3390/ijms20051194] [PMID: 30857244]
[115]
Cagnol, S.; Chambard, J.C. ERK and cell death: Mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. FEBS J., 2010, 277(1), 2-21.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07366.x] [PMID: 19843174]
[116]
Xia, P.; Xu, X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609.
[PMID: 26175931]
[117]
Xu, Z.; Han, X.; Ou, D.; Liu, T.; Li, Z.; Jiang, G.; Liu, J.; Zhang, J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol., 2020, 104(2), 575-587.
[http://dx.doi.org/10.1007/s00253-019-10257-8] [PMID: 31832711]
[118]
Ding, L.; Lin, Y.; Chen, X.; Wang, R.; Lu, H.; Wang, H.; Luo, W.; Lu, Z.; Xia, L.; Zhou, X.; Li, G.; Cheng, S. circPHF16 suppresses prostate cancer metastasis via modulating miR-581/RNF128/Wnt/β-catenin pathway. Cell. Signal., 2023, 102, 110557.
[http://dx.doi.org/10.1016/j.cellsig.2022.110557] [PMID: 36503162]
[119]
Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226.
[http://dx.doi.org/10.1016/j.tcb.2018.12.001] [PMID: 30594349]
[120]
Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther., 2018, 182, 80-94.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.009] [PMID: 28834698]
[121]
Stemmler, M.P.; Eccles, R.L.; Brabletz, S.; Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol., 2019, 21(1), 102-112.
[http://dx.doi.org/10.1038/s41556-018-0196-y] [PMID: 30602760]
[122]
Santamaria, P.G.; Moreno-Bueno, G.; Portillo, F.; Cano, A. EMT: Present and future in clinical oncology. Mol. Oncol., 2017, 11(7), 718-738.
[http://dx.doi.org/10.1002/1878-0261.12091] [PMID: 28590039]
[123]
Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654.
[http://dx.doi.org/10.1007/s10555-016-9648-7] [PMID: 27878502]
[124]
Xie, X.; Sun, F.K.; Huang, X.; Wang, C.H.; Dai, J.; Zhao, J.P.; Fang, C.; He, W. A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 2021, 13(15), 19908-19919.
[http://dx.doi.org/10.18632/aging.203408] [PMID: 34390329]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy