Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Meta-Analysis

Meta-analysis of the Impact of Bariatric Surgery on Circulating TMAO Levels as a Predictor of Cardiovascular Disease Risk

Author(s): Tannaz Jamialahmadi, Luis E. Simental-Mendia, Gokhan Zengin, Wael Almahmeed, Prashant Kesharwani and Amirhossein Sahebkar*

Volume 31, Issue 24, 2024

Published on: 22 June, 2023

Page: [3791 - 3797] Pages: 7

DOI: 10.2174/0929867330666230523155750

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Trimethylamine N-oxide (TMAO) is a metabolite of the gut microbiota that is considered a cardiovascular risk factor. Because bariatric surgery (BS) produces changes in the composition of the gut microbiota, the production of TMAO can be compromised. Thus, the purpose of this meta-analysis was to determine the effect of BS on circulating TMAO levels.

Methods: A systematic search was carried on in Embase, PubMed, Web of Science, and Scopus databases. The meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V2 software. The overall effect size was determined by a random-effects metaanalysis and the leave-one-out approach.

Results: Random-effects meta-analysis of 5 studies consisting of 142 subjects demonstrated a significant increase in circulating TMAO levels after BS (SMD: 1.190, 95% CI: 0.521, 1.858, p<0.001; I2:89.30%).

Conclusion: Considering that levels of TMAO are affected after BS due to gut microbial metabolism alteration, there has been a significant elevation in TMAO concentrations observed to occur after BS in obese subjects.

Keywords: Gastric bypass, microbiome, cardiovascular disease, metabolic surgery, trimethylamine N-oxide, comprehensive meta-analysis.

[1]
Ataey, A.; Jafarvand, E.; Adham, D.; Moradi-Asl, E. The relationship between obesity, overweight, and the human development index in world health organization Eastern Mediterranean region countries. J. Prev. Med. Public Health, 2020, 53(2), 98-105.
[http://dx.doi.org/10.3961/jpmph.19.100] [PMID: 32268464]
[2]
Heymsfield, S.B.W.T.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med., 2017, 376(15), 1492.
[PMID: 28402780]
[3]
Lahey, R.; Khan, S.S. Trends in obesity and risk of cardiovascular disease. Curr. Epidemiol. Rep., 2018, 5(3), 243-251.
[http://dx.doi.org/10.1007/s40471-018-0160-1] [PMID: 30705802]
[4]
Ford, N.D.; Patel, S.A.; Narayan, K.M.V. Obesity in low- and middle-income countries: Burden, drivers, and emerging challenges. Annu. Rev. Public Health, 2017, 38(1), 145-164.
[http://dx.doi.org/10.1146/annurev-publhealth-031816-044604] [PMID: 28068485]
[5]
Lee, C.M.Y.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol., 2008, 61(7), 646-653.
[http://dx.doi.org/10.1016/j.jclinepi.2007.08.012] [PMID: 18359190]
[6]
Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol., 2018, 3(4), 280-287.
[http://dx.doi.org/10.1001/jamacardio.2018.0022] [PMID: 29490333]
[7]
Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; Kashyap, S.R. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N. Engl. J. Med., 2017, 376(7), 641-651.
[http://dx.doi.org/10.1056/NEJMoa1600869] [PMID: 28199805]
[8]
Sjöström, L.; Lindroos, A.K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.; Narbro, K.; Sjöström, C.D.; Sullivan, M.; Wedel, H. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med., 2004, 351(26), 2683-2693.
[http://dx.doi.org/10.1056/NEJMoa035622] [PMID: 15616203]
[9]
Jamialahmadi, T. Reiner, Ž; Alidadi, M.; Kroh, M.; Simental-Mendia, L.E.; Pirro, M.; Sahebkar, A. Impact of bariatric surgery on pulse wave velocity as a measure of arterial stiffness: A systematic review and meta-analysis. Obes. Surg., 2021, 31(10), 4461-4469.
[http://dx.doi.org/10.1007/s11695-021-05611-7] [PMID: 34319469]
[10]
Jamialahmadi, T.; Alidadi, M.; Atkin, S.L.; Kroh, M.; Almahmeed, W.; Moallem, S.A.; Al-Rasadi, K.; Rodriguez, J.H.; Santos, R.D.; Ruscica, M.; Sahebkar, A. Effect of bariatric surgery on flow-mediated vasodilation as a measure of endothelial function: A systematic review and meta-analysis. J. Clin. Med., 2022, 11(14), 4054.
[http://dx.doi.org/10.3390/jcm11144054] [PMID: 35887817]
[11]
Jamialahmadi, T Reiner, Ž; Alidadi, M; Kroh, M; Cardenia, V; Xu, S The effect of bariatric surgery on circulating levels of oxidized low-density lipoproteins is apparently independent of changes in body mass index: A systematic review and meta-analysis. Oxid. Med. Cell. Longev., 2021, 2021
[http://dx.doi.org/10.1155/2021/4136071]
[12]
Jamialahmadi, T. Reiner, Ž; Alidadi, M.; Almahmeed, W.; Kesharwani, P.; Al-Rasadi, K.; Eid, A.H.; Rizzo, M.; Sahebkar, A. Effect of bariatric surgery on intima media thickness: A systematic review and meta-analysis. J. Clin. Med., 2022, 11(20), 6056.
[http://dx.doi.org/10.3390/jcm11206056] [PMID: 36294377]
[13]
Jamialahmadi, T. Reiner, Ž; Alidadi, M.; Kroh, M.; Almahmeed, W.; Ruscica, M. The effect of bariatric surgery on circulating levels of Lipoprotein (a): A meta-analysis. BioMed Res. Int., 2022, 2022, 8435133.
[14]
Jamialahmadi, T.; Banach, M.; Almahmeed, W.; Kesharwani, P.; Sahebkar, A. Impact of bariatric surgery on circulating PCSK9 levels as marker of cardiovascular disease risk: A meta-analysis. Arch. Med. Sci., 2022, 18(5), 1372-1377.
[http://dx.doi.org/10.5114/aoms/152685] [PMID: 36160336]
[15]
Kanitsoraphan, C.; Rattanawong, P.; Charoensri, S.; Senthong, V. Trimethylamine n-oxide and risk of cardiovascular disease and mortality. Curr. Nutr. Rep., 2018, 7(4), 207-213.
[http://dx.doi.org/10.1007/s13668-018-0252-z] [PMID: 30362023]
[16]
Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J., 2017, 38(39), 2948-2956.
[http://dx.doi.org/10.1093/eurheartj/ehx342] [PMID: 29020409]
[17]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.W.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[18]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.W.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[19]
Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; Sartor, R.B.; McIntyre, T.M.; Silverstein, R.L.; Tang, W.H.W.; DiDonato, J.A.; Brown, J.M.; Lusis, A.J.; Hazen, S.L. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 2016, 165(1), 111-124.
[http://dx.doi.org/10.1016/j.cell.2016.02.011] [PMID: 26972052]
[20]
Dehghan, P.; Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Asghari-Jafarabadi, M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose-response meta-analysis. Obes. Rev., 2020, 21(5), e12993.
[http://dx.doi.org/10.1111/obr.12993] [PMID: 32017391]
[21]
Narath, S.H.; Mautner, S.I.; Svehlikova, E.; Schultes, B.; Pieber, T.R.; Sinner, F.M.; Gander, E.; Libiseller, G.; Schimek, M.G.; Sourij, H.; Magnes, C. An untargeted metabolomics approach to characterize short-term and long-term metabolic changes after bariatric surgery. PLoS One, 2016, 11(9), e0161425.
[http://dx.doi.org/10.1371/journal.pone.0161425] [PMID: 27584017]
[22]
Trøseid, M.; Hov, J.R.; Nestvold, T.K.; Thoresen, H.; Berge, R.K.; Svardal, A.; Lappegård, K.T. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab. Syndr. Relat. Disord., 2016, 14(4), 197-201.
[http://dx.doi.org/10.1089/met.2015.0120] [PMID: 27081744]
[23]
Palmisano, S.; Campisciano, G.; Silvestri, M.; Guerra, M.; Giuricin, M.; Casagranda, B.; Comar, M.; de Manzini, N. Changes in gut microbiota composition after bariatric surgery: A new balance to decode. J. Gastrointest. Surg., 2020, 24(8), 1736-1746.
[http://dx.doi.org/10.1007/s11605-019-04321-x] [PMID: 31388884]
[24]
Higgins, J.P.T.; Green, S. Cochrane handbook for systematic reviews of interventions version 5.0.1. The Cochrane Collaboration. 2008. Available from: www.handbook. cochrane.org
[25]
Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses; Oxford, 2000.
[26]
Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Comprehensive meta-analysis, version 2 Biostat; Englewood NJ, 2005.
[27]
Banach, M.; Serban, C.; Sahebkar, A.; Mikhailidis, D.P.; Ursoniu, S.; Ray, K.K.; Rysz, J.; Toth, P.P.; Muntner, P.; Mosteoru, S. García-García, H.M.; Hovingh, G.K.; Kastelein, J.J.P.; Serruys, P.W. Impact of statin therapy on coronary plaque composition: A systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med., 2015, 13(1), 229.
[http://dx.doi.org/10.1186/s12916-015-0459-4] [PMID: 26385210]
[28]
Huang, W.; Zhong, A.; Xu, H.; Xu, C.; Wang, A.; Wang, F.; Li, X.; Liu, Y.; Zou, J.; Zhu, H.; Zheng, X.; Yi, H.; Guan, J.; Yin, S. Metabolomics analysis on obesity-related obstructive sleep apnea after weight loss management: A preliminary study. Front. Endocrinol., 2022, 12, 761547.
[http://dx.doi.org/10.3389/fendo.2021.761547] [PMID: 35046891]
[29]
Jomard, A.; Liberale, L.; Doytcheva, P.; Reiner, M.F.; Müller, D.; Visentin, M.; Bueter, M.; Lüscher, T.F.; Vettor, R.; Lutz, T.A.; Camici, G.G.; Osto, E. Effects of acute administration of trimethylamine N-oxide on endothelial function: A translational study. Sci. Rep., 2022, 12(1), 8664.
[http://dx.doi.org/10.1038/s41598-022-12720-5] [PMID: 35606406]
[30]
Lee, S.J.; Park, Y.S.; Kim, Y.J.; Han, S.U.; Hwang, G.S.; Han, Y.; Heo, Y.; Ha, E.; Ha, T.K. Changes in trimethylamine-n-oxide levels in obese patients following laparoscopic roux-en-y gastric bypass or sleeve gastrectomy in a korean obesity surgical treatment study (KOBESS). J. Clin. Med., 2021, 10(21), 5091.
[http://dx.doi.org/10.3390/jcm10215091] [PMID: 34768610]
[31]
Shi, Q.; Wang, Q.; Zhong, H.; Li, D.; Yu, S.; Yang, H.; Wang, C.; Yin, Z. Roux-en-Y gastric bypass improved insulin resistance via alteration of the human gut microbiome and alleviation of endotoxemia. BioMed Res. Int., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/5554991] [PMID: 34337024]
[32]
Tremaroli, V.; Karlsson, F.; Werling, M. Ståhlman, M.; Kovatcheva-Datchary, P.; Olbers, T.; Fändriks, L.; le Roux, C.W.; Nielsen, J.; Bäckhed, F. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab., 2015, 22(2), 228-238.
[http://dx.doi.org/10.1016/j.cmet.2015.07.009] [PMID: 26244932]
[33]
Li, J.V.; Ashrafian, H.; Bueter, M.; Kinross, J.; Sands, C.; le Roux, C.W.; Bloom, S.R.; Darzi, A.; Athanasiou, T.; Marchesi, J.R.; Nicholson, J.K.; Holmes, E. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut, 2011, 60(9), 1214-1223.
[http://dx.doi.org/10.1136/gut.2010.234708] [PMID: 21572120]
[34]
Dalla Via, A.; Gargari, G.; Taverniti, V.; Rondini, G.; Velardi, I.; Gambaro, V.; Visconti, G.L.; De Vitis, V.; Gardana, C.; Ragg, E.; Pinto, A.; Riso, P.; Guglielmetti, S. Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-lyase gene (cutC) harbored by enterobacteriaceae. Nutrients, 2019, 12(1), 62.
[http://dx.doi.org/10.3390/nu12010062] [PMID: 31881690]
[35]
Juárez-Fernández, M.; Román-Sagüillo, S.; Porras, D.; García-Mediavilla, M.V.; Linares, P.; Ballesteros-Pomar, M.D.; Urioste-Fondo, A.; Álvarez-Cuenllas, B.; González-Gallego, J.; Sánchez-Campos, S.; Jorquera, F.; Nistal, E. Long-term effects of bariatric surgery on gut microbiota composition and faecal metabolome related to obesity remission. Nutrients, 2021, 13(8), 2519.
[http://dx.doi.org/10.3390/nu13082519] [PMID: 34444679]
[36]
Sherry, B.H.; Zhang, R.; Garabedian, M.; Berger, J.S.; Heffron, S.P. Changes in tmao levels following bariatric surgery vary by procedure type. Circulation., 2022, 146(S1), A12480-A.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy