Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Mechanism-based Pharmacological Management of Chemotherapy-induced Neuropathic Pain from Preclinical Studies to Clinical Prospective: Platinum-based Drugs, Taxanes, and Vinca Alkaloids

Author(s): Nima Zafari, Mahla Velayati, Mina Maftooh, Majid Khazaei*, Mohammadreza Nassiri, Seyed M. Hassanian, Majid Ghayour-Mobarhan, Gordon A. Ferns and Amir Avan*

Volume 29, Issue 16, 2023

Published on: 29 May, 2023

Page: [1245 - 1265] Pages: 21

DOI: 10.2174/1381612829666230515124044

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition, experienced by patients undergoing chemotherapy with some specific drugs, such as platinum-based agents, taxanes, and vinca alkaloids. Painful CIPN may lead to dose interruptions and discontinuation of chemotherapy and can negatively impact on the quality of life and clinical outcome of these patients. Due to a lack of a practical medical therapy for CIPN, it is necessary to further explore and identify novel therapeutic options.

Methods: We have reviewed PubMed and EMBASE libraries to gather data on the mechanism-based pharmacological management of chemotherapy-induced neuropathic pain.

Results: This review has focused on the potential mechanisms by which these chemotherapeutic agents may be involved in the development of CIPN, and explains how this may be translated into clinical management. Additionally, we have presented an overview of emerging candidates for the prevention and treatment of CIPN in preclinical and clinical studies.

Conclusion: Taken together, due to the debilitating consequences of CIPN for the quality of life and clinical outcome of cancer survivors, future studies should focus on identifying underlying mechanisms contributing to CIPN as well as developing effective pharmacological interventions based on these mechanistic insights.

Keywords: Chemotherapy-induced peripheral neuropathy, neuropathic pain, platinum-based agents, taxanes, vinca alkaloids, chemotherapy.

[1]
Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014; 155(12): 2461-70.
[http://dx.doi.org/10.1016/j.pain.2014.09.020] [PMID: 25261162]
[2]
Teng C, Cohen J, Egger S, Blinman PL, Vardy JL. Systematic review of long-term chemotherapy-induced peripheral neuropathy (CIPN) following adjuvant oxaliplatin for colorectal cancer. Support Care Cancer 2022; 30(1): 33-47.
[http://dx.doi.org/10.1007/s00520-021-06502-4] [PMID: 34410459]
[3]
Loprinzi CL, Lacchetti C, Bleeker J, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 2020; 38(28): 3325-48.
[http://dx.doi.org/10.1200/JCO.20.01399] [PMID: 32663120]
[4]
Mezzanotte JN, Grimm M, Shinde NV, et al. Updates in the treatment of chemotherapy-induced peripheral neuropathy. Curr Treat Options Oncol 2022; 23(1): 29-42.
[http://dx.doi.org/10.1007/s11864-021-00926-0] [PMID: 35167004]
[5]
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer. JAMA 2021; 325(7): 669-85.
[http://dx.doi.org/10.1001/jama.2021.0106] [PMID: 33591350]
[6]
Sisignano M, Baron R, Scholich K, Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 2014; 10(12): 694-707.
[http://dx.doi.org/10.1038/nrneurol.2014.211] [PMID: 25366108]
[7]
Was H, Borkowska A, Bagues A, et al. Mechanisms of chemotherapy-induced neurotoxicity. Front Pharmacol 2022; 13: 750507.
[http://dx.doi.org/10.3389/fphar.2022.750507] [PMID: 35418856]
[8]
Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: Clinical features, mechanisms, prevention and treatment. J Neurol 2021; 268(9): 3269-82.
[http://dx.doi.org/10.1007/s00415-020-09942-w] [PMID: 32474658]
[9]
Desforges AD, Hebert CM, Spence AL, et al. Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update. Biomed Pharmacother 2022; 147: 112671.
[http://dx.doi.org/10.1016/j.biopha.2022.112671] [PMID: 35104697]
[10]
Omran M, Belcher EK, Mohile NA, et al. Review of the role of the brain in chemotherapy-induced peripheral neuropathy. Front Mol Biosci 2021; 8: 693133.
[http://dx.doi.org/10.3389/fmolb.2021.693133] [PMID: 34179101]
[11]
Khazaei M, Avan A, Zafari N, et al. Metabolic pathways regulating colorectal cancer: A potential therapeutic approach. Curr Pharm Des 2022; 28(36): 2995-3009.
[http://dx.doi.org/10.2174/1381612828666220922111342] [PMID: 36154599]
[12]
Braden K, Stratton HJ, Salvemini D, Khanna R. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces and prevents pain chronification in a mouse model of oxaliplatin-induced neuropathic pain. Neurobiol Pain 2022; 11: 100082.
[http://dx.doi.org/10.1016/j.ynpai.2021.100082] [PMID: 35024498]
[13]
Alberti P, Canta A, Chiorazzi A, et al. Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity. Neuropharmacology 2020; 164: 107905.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107905] [PMID: 31811874]
[14]
Urru M, Muzzi M, Coppi E, et al. Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models. Pain 2020; 161(4): 831-41.
[http://dx.doi.org/10.1097/j.pain.0000000000001774] [PMID: 31815915]
[15]
Furgała-Wojas A, Kowalska M, Nowaczyk A, Fijałkowski Ł Sałat K. Comparison of bromhexine and its active metabolite - ambroxol as potential analgesics reducing oxaliplatin-induced neuropathic pain - pharmacodynamic and molecular docking studies. Curr Drug Metab 2020; 21(7): 548-61.
[http://dx.doi.org/10.2174/1389200221666200711155632] [PMID: 32651960]
[16]
Furgała A, Fijałkowski Ł, Nowaczyk A, Sałat R, Sałat K. Time-shifted co-administration of sub-analgesic doses of ambroxol and pregabalin attenuates oxaliplatin-induced cold allodynia in mice. Biomed Pharmacother 2018; 106: 930-40.
[http://dx.doi.org/10.1016/j.biopha.2018.07.039] [PMID: 30119265]
[17]
Lucarini E, Micheli L, Trallori E, et al. Effect of glucoraphanin and sulforaphane against chemotherapy-induced neuropathic pain: Kv7 potassium channels modulation by H2S release in vivo. Phytother Res 2018; 32(11): 2226-34.
[http://dx.doi.org/10.1002/ptr.6159] [PMID: 30069944]
[18]
Ling J, Erol F, Viatchenko-Karpinski V, Kanda H, Gu JG. Orofacial neuropathic pain induced by oxaliplatin. Mol Pain 2017; 13.
[http://dx.doi.org/10.1177/1744806917724715] [PMID: 28741430]
[19]
Aierken A, Xie YK, Dong W, et al. Rational design of a modality-specific inhibitor of TRPM8 channel against oxaliplatin-induced cold allodynia. Adv Sci (Weinh) 2021; 8(22): 2101717.
[http://dx.doi.org/10.1002/advs.202101717] [PMID: 34658162]
[20]
Bonache MÁ, Martín-Escura C, de la Torre Martínez R, et al. Highly functionalized β-lactams and 2-ketopiperazines as TRPM8 antagonists with antiallodynic activity. Sci Rep 2020; 10(1): 14154.
[http://dx.doi.org/10.1038/s41598-020-70691-x] [PMID: 32843690]
[21]
Martín-Escura C, Medina-Peris A, Spear LA, et al. β-Lactam TRPM8 antagonist RGM8-51 displays antinociceptive activity in different animal models. Int J Mol Sci 2022; 23(5): 2692.
[http://dx.doi.org/10.3390/ijms23052692] [PMID: 35269831]
[22]
Nativi C, Gualdani R, Dragoni E, et al. A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci Rep 2013; 3(1): 2005.
[http://dx.doi.org/10.1038/srep02005] [PMID: 23774285]
[23]
Fragai M, Comito G, Di Cesare Mannelli L, et al. Lipoyl-homotaurine derivative (ADM_12) reverts oxaliplatin-induced neuropathy and reduces cancer cells malignancy by inhibiting carbonic anhydrase IX (CAIX). J Med Chem 2017; 60(21): 9003-11.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01237] [PMID: 29048889]
[24]
Christensen SB, Hone AJ, Roux I, et al. RgIA4 potently blocks mouse α9α10 nAChRs and provides long lasting protection against oxaliplatin-induced cold allodynia. Front Cell Neurosci 2017; 11: 219.
[http://dx.doi.org/10.3389/fncel.2017.00219] [PMID: 28785206]
[25]
Pacini A, Micheli L, Maresca M, et al. The α9α10 nicotinic receptor antagonist α-conotoxin RgIA prevents neuropathic pain induced by oxaliplatin treatment. Exp Neurol 2016; 282: 37-48.
[http://dx.doi.org/10.1016/j.expneurol.2016.04.022] [PMID: 27132993]
[26]
Dyachenko IA, Palikova YA, Palikov VA, et al. α-Conotoxin RgIA and oligoarginine R8 in the mice model alleviate long-term oxaliplatin induced neuropathy. Biochimie 2022; 194: 127-36.
[http://dx.doi.org/10.1016/j.biochi.2021.12.013] [PMID: 34979156]
[27]
Wang H, Li X, Zhangsun D, Yu G, Su R, Luo S. The α9α10 nicotinic acetylcholine receptor antagonist αO-conotoxin GeXIVA[1,2] alleviates and reverses chemotherapy-induced neuropathic pain. Mar Drugs 2019; 17(5): 265.
[http://dx.doi.org/10.3390/md17050265]
[28]
Arias HR, Ghelardini C, Lucarini E, et al. ( E )-3-Furan-2-yl-N-p-tolyl-acrylamide and its derivative DM489 decrease neuropathic pain in mice predominantly by α7 nicotinic acetylcholine receptor potentiation. ACS Chem Neurosci 2020; 11(21): 3603-14.
[http://dx.doi.org/10.1021/acschemneuro.0c00476] [PMID: 33073974]
[29]
Brandolini L, Castelli V, Aramini A, et al. DF2726A, a new IL-8 signalling inhibitor, is able to counteract chemotherapy-induced neuropathic pain. Sci Rep 2019; 9(1): 11729.
[http://dx.doi.org/10.1038/s41598-019-48231-z] [PMID: 31409858]
[30]
Di Cesare Mannelli L, Zanardelli M, Failli P, Ghelardini C. Oxaliplatin-induced neuropathy: Oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain 2012; 13(3): 276-84.
[http://dx.doi.org/10.1016/j.jpain.2011.11.009] [PMID: 22325298]
[31]
Recalde MD, Miguel CA, Noya-Riobó MV, González SL, Villar MJ, Coronel MF. Resveratrol exerts anti-oxidant and anti-inflammatory actions and prevents oxaliplatin-induced mechanical and thermal allodynia. Brain Res 2020; 1748: 147079.
[http://dx.doi.org/10.1016/j.brainres.2020.147079] [PMID: 32866545]
[32]
Wang Y, Li Y, Cui W, et al. Melatonin attenuates pain hypersensitivity and decreases astrocyte-mediated spinal neuroinflammation in a rat model of oxaliplatin-induced pain. Inflammation 2017; 40(6): 2052-61.
[http://dx.doi.org/10.1007/s10753-017-0645-y] [PMID: 28812173]
[33]
Miguel CA, Raggio MC, Villar MJ, Gonzalez SL, Coronel MF. Anti-allodynic and anti-inflammatory effects of 17α-hydroxyprogesterone caproate in oxaliplatin-induced peripheral neuropathy. J Peripher Nerv Syst 2019; 24(1): 100-10.
[http://dx.doi.org/10.1111/jns.12307] [PMID: 30680838]
[34]
Micheli L, Di Cesare Mannelli L, Del Bello F, et al. The use of the selective imidazoline I1 receptor agonist carbophenyline as a strategy for neuropathic pain relief: preclinical evaluation in a mouse model of oxaliplatin-induced neurotoxicity. Neurotherapeutics 2020; 17(3): 1005-15.
[http://dx.doi.org/10.1007/s13311-020-00873-y] [PMID: 32572830]
[35]
Di Cesare Mannelli L, Pacini A, Corti F, et al. Antineuropathic profile of N-palmitoylethanolamine in a rat model of oxaliplatin-induced neurotoxicity. PLoS One 2015; 10(6): e0128080.
[http://dx.doi.org/10.1371/journal.pone.0128080] [PMID: 26039098]
[36]
Guo Z, Man Y, Wang X, et al. Levo-tetrahydropalmatine attenuates oxaliplatin-induced mechanical hyperalgesia in mice. Sci Rep 2014; 4(1): 3905.
[http://dx.doi.org/10.1038/srep03905] [PMID: 24469566]
[37]
Kang DW, Moon JY, Choi JG, et al. Antinociceptive profile of levo-tetrahydropalmatine in acute and chronic pain mice models: Role of spinal sigma-1 receptor. Sci Rep 2016; 6(1): 37850.
[http://dx.doi.org/10.1038/srep37850] [PMID: 27910870]
[38]
Hache G, Guiard BP, Nguyen TH, et al. Antinociceptive activity of the new triple reuptake inhibitor NS 18283 in a mouse model of chemotherapy-induced neuropathic pain. Eur J Pain 2015; 19(3): 322-33.
[http://dx.doi.org/10.1002/ejp.550] [PMID: 25045036]
[39]
Khazaei M, Avan A, Zafari N, et al. Pharmacological targeting of epithelial-to-mesenchymal transition in colorectal cancer. Curr Pharm Des 2022; 28(28): 2298-311.
[http://dx.doi.org/10.2174/1381612828666220728152350] [PMID: 35909286]
[40]
Li D, Lee J, Choi C, Kim J, Kim S, Kim W. The analgesic effect of venlafaxine and its mechanism on oxaliplatin-induced neuropathic pain in mice. Int J Mol Sci 2019; 20(7): 1652.
[http://dx.doi.org/10.3390/ijms20071652] [PMID: 30987090]
[41]
Foss JD, Nayak SU, Tallarida CS, Farkas DJ, Ward SJ, Rawls SM. Mitragynine, bioactive alkaloid of kratom, reduces chemotherapy-induced neuropathic pain in rats through α-adrenoceptor mechanism. Drug Alcohol Depend 2020; 209: 107946.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.107946] [PMID: 32145665]
[42]
Choi S, Chae HK, Heo H, Hahm DH, Kim W, Kim SK. Analgesic effect of melittin on oxaliplatin-induced peripheral neuropathy in rats. Toxins (Basel) 2019; 11(7): 396.
[http://dx.doi.org/10.3390/toxins11070396] [PMID: 31288453]
[43]
Akgül Ö, Lucarini E, Di Cesare Mannelli L, et al. Sultam based Carbonic Anhydrase VII inhibitors for the management of neuropathic pain. Eur J Med Chem 2022; 227: 113956.
[http://dx.doi.org/10.1016/j.ejmech.2021.113956] [PMID: 34731762]
[44]
Tanini D, Carradori S, Capperucci A, et al. Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. Eur J Med Chem 2021; 225: 113793.
[http://dx.doi.org/10.1016/j.ejmech.2021.113793] [PMID: 34507012]
[45]
Nocentini A, Alterio V, Bua S, et al. Phenyl(thio)phosphon (amid)ate benzenesulfonamides as potent and selective inhibitors of human carbonic anhydrases II and VII counteract allodynia in a mouse model of oxaliplatin-induced neuropathy. J Med Chem 2020; 63(10): 5185-200.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02135] [PMID: 32364386]
[46]
Jiang SP, Zhang ZD, Kang LM, Wang QH, Zhang L, Chen HP. Celecoxib reverts oxaliplatin-induced neuropathic pain through inhibiting PI3K/Akt2 pathway in the mouse dorsal root ganglion. Exp Neurol 2016; 275(Pt 1): 11-6.
[http://dx.doi.org/10.1016/j.expneurol.2015.11.001] [PMID: 26546510]
[47]
Wang Y-P, Li S-F, Ouyang B-S, Zhao X. Analgesic effect of AG490, a Janus kinase inhibitor, on oxaliplatin-induced acute neuropathic pain. Neural Regen Res 2018; 13(8): 1471-6.
[http://dx.doi.org/10.4103/1673-5374.235305] [PMID: 30106061]
[48]
Caputi FF, Di Cesare Mannelli L, Rullo L, et al. The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms. Biochem Pharmacol 2020; 182: 114255.
[http://dx.doi.org/10.1016/j.bcp.2020.114255] [PMID: 33010214]
[49]
Crocetti L, Guerrini G, Puglioli S, et al. Design and synthesis of the first indole-based blockers of Panx-1 channel. Eur J Med Chem 2021; 223: 113650.
[http://dx.doi.org/10.1016/j.ejmech.2021.113650] [PMID: 34174741]
[50]
Lamoine S, Cumenal M, Barriere DA, et al. The class I HDAC inhibitor, MS-275, prevents oxaliplatin-induced chronic neuropathy and potentiates its antiproliferative activity in mice. Int J Mol Sci 2021; 23(1): 98.
[http://dx.doi.org/10.3390/ijms23010098] [PMID: 35008525]
[51]
Singh AK, Mahalingam R, Squillace S, et al. Targeting the A3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice. Acta Neuropathol Commun 2022; 10(1): 11.
[http://dx.doi.org/10.1186/s40478-022-01315-w] [PMID: 35093182]
[52]
Li Y, North RY, Rhines LD, et al. DRG voltage-gated sodium channel 1.7 Is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 2018; 38(5): 1124-36.
[http://dx.doi.org/10.1523/JNEUROSCI.0899-17.2017] [PMID: 29255002]
[53]
Wang XM, Gu P, Saligan L, et al. Dysregulation of EAAT2 and VGLUT2 spinal glutamate transports via histone deacetylase 2 (HDAC2) contributes to paclitaxel-induced painful neuropathy. Mol Cancer Ther 2020; 19(10): 2196-209.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0006] [PMID: 32847971]
[54]
Zafari N, Velayati M, Fahim M, et al. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305: 120760.
[http://dx.doi.org/10.1016/j.lfs.2022.120760] [PMID: 35787997]
[55]
Ma D, Zhao S, Liu X, et al. RIP3/MLKL pathway-regulated necroptosis: A new mechanism of paclitaxel-induced peripheral neuropathy. J Biochem Mol Toxicol 2021; 35(8): e22834.
[http://dx.doi.org/10.1002/jbt.22834] [PMID: 34056794]
[56]
Leen AJ, Yap DWT, Teo CB, et al. A systematic review and meta-analysis of the effectiveness of neuroprotectants for paclitaxel-induced peripheral neuropathy. Front Oncol 2022; 11: 763229.
[http://dx.doi.org/10.3389/fonc.2021.763229] [PMID: 35070969]
[57]
Verma P, Eaton M, Kienle A, Flockerzi D, Yang Y, Ramkrishna D. Examining sodium and potassium channel conductances involved in hyperexcitability of chemotherapy-induced peripheral neuropathy: A mathematical and cell culture-based study. Front Comput Neurosci 2020; 14: 564980.
[http://dx.doi.org/10.3389/fncom.2020.564980] [PMID: 33178002]
[58]
Zhang XL, Cao XY, Lai RC, Xie MX, Zeng WA. Puerarin relieves paclitaxel-induced neuropathic pain: The Role of Nav1.8 β1 subunit of sensory neurons. Front Pharmacol 2019; 9: 1510.
[http://dx.doi.org/10.3389/fphar.2018.01510] [PMID: 30666203]
[59]
Qabazard B, Masocha W, Khajah M, Phillips OA. H2S donor GYY4137 ameliorates paclitaxel-induced neuropathic pain in mice. Biomed Pharmacother 2020; 127: 110210.
[http://dx.doi.org/10.1016/j.biopha.2020.110210] [PMID: 32407991]
[60]
Braga AV, Costa SOAM, Rodrigues FF, et al. Thiamine, riboflavin, and nicotinamide inhibit paclitaxel-induced allodynia by reducing TNF-α and CXCL-1 in dorsal root ganglia and thalamus and activating ATP-sensitive potassium channels. Inflammopharmacology 2020; 28(1): 201-13.
[http://dx.doi.org/10.1007/s10787-019-00625-1] [PMID: 31388880]
[61]
Gao W, Zan Y, Wang ZJ, Hu X, Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin 2016; 37(9): 1166-77.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[62]
Ba X, Wang J, Zhou S, et al. Cinobufacini protects against paclitaxel-induced peripheral neuropathic pain and suppresses TRPV1 up-regulation and spinal astrocyte activation in rats. Biomed Pharmacother 2018; 108: 76-84.
[http://dx.doi.org/10.1016/j.biopha.2018.09.018] [PMID: 30218861]
[63]
Luo J, Bavencoffe A, Yang P, et al. Zinc inhibits TRPV1 to alleviate chemotherapy-induced neuropathic pain. J Neurosci 2018; 38(2): 474-83.
[http://dx.doi.org/10.1523/JNEUROSCI.1816-17.2017] [PMID: 29192128]
[64]
Wang J, Zhou F, Zhang S, Mao M, Feng S, Wang X. Participation of transient receptor potential vanilloid 1 in the analgesic effect of duloxetine for paclitaxel induced peripheral neuropathic pain. Neurosci Lett 2022; 773: 136512.
[http://dx.doi.org/10.1016/j.neulet.2022.136512] [PMID: 35149198]
[65]
Son DB, Choi W, Kim M, et al. Decursin alleviates mechanical allodynia in a paclitaxel-induced neuropathic pain mouse model. Cells 2021; 10(3): 547.
[http://dx.doi.org/10.3390/cells10030547] [PMID: 33806325]
[66]
Chou PR, Lu CY, Kan JY, et al. Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system. Support Care Cancer 2021; 29(11): 6841-50.
[http://dx.doi.org/10.1007/s00520-021-06269-8] [PMID: 34003380]
[67]
Lin X, Xu Z, Carey L, et al. A peripheral CB2 cannabinoid receptor mechanism suppresses chemotherapy-induced peripheral neuropathy: Evidence from a CB2 reporter mouse. Pain 2022; 163(5): 834-51.
[http://dx.doi.org/10.1097/j.pain.0000000000002502] [PMID: 35001054]
[68]
Wu J, Hocevar M, Bie B, Foss JF, Naguib M. Cannabinoid type 2 receptor system modulates paclitaxel-induced microglial dysregulation and central sensitization in rats. J Pain 2019; 20(5): 501-14.
[http://dx.doi.org/10.1016/j.jpain.2018.10.007] [PMID: 30414958]
[69]
Thomas A, Okine BN, Finn DP, Masocha W. Peripheral deficiency and antiallodynic effects of 2-arachidonoyl glycerol in a mouse model of paclitaxel-induced neuropathic pain. Biomed Pharmacother 2020; 129: 110456.
[http://dx.doi.org/10.1016/j.biopha.2020.110456] [PMID: 32603895]
[70]
Masocha W, Thomas A. Indomethacin plus minocycline coadministration relieves chemotherapy and antiretroviral drug-induced neuropathic pain in a cannabinoid receptors-dependent manner. J Pharmacol Sci 2019; 139(4): 325-32.
[http://dx.doi.org/10.1016/j.jphs.2019.02.007] [PMID: 30871874]
[71]
Parvathy SS, Masocha W. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors. Sci Rep 2015; 5(1): 10541.
[http://dx.doi.org/10.1038/srep10541] [PMID: 26085115]
[72]
Deng L, Cornett BL, Mackie K, Hohmann AG. CB1 Knockout mice unveil sustained CB2-mediated antiallodynic effects of the mixed CB1/CB2 agonist CP55,940 in a mouse model of paclitaxel-induced neuropathic pain. Mol Pharmacol 2015; 88(1): 64-74.
[http://dx.doi.org/10.1124/mol.115.098483] [PMID: 25904556]
[73]
Deng L, Guindon J, Cornett BL, Makriyannis A, Mackie K, Hohmann AG. Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1-dependent withdrawal. Biol Psychiatry 2015; 77(5): 475-87.
[http://dx.doi.org/10.1016/j.biopsych.2014.04.009] [PMID: 24853387]
[74]
Segat GC, Manjavachi MN, Matias DO, et al. Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 2017; 125: 207-19.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.015] [PMID: 28729222]
[75]
Zhou YQ, Liu DQ, Chen SP, et al. PPARγ activation mitigates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 129: 110356.
[http://dx.doi.org/10.1016/j.biopha.2020.110356] [PMID: 32535388]
[76]
Kalynovska N, Diallo M, Sotakova-Kasparova D, Palecek J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J Cell Mol Med 2020; 24(14): 7949-58.
[http://dx.doi.org/10.1111/jcmm.15427] [PMID: 32485058]
[77]
Silva NR, Gomes FIF, Lopes AHP, et al. The cannabidiol analog PECS-101 prevents chemotherapy-induced neuropathic pain via PPARγ receptors. Neurotherapeutics 2021.
[PMID: 34904193]
[78]
Ishii N, Tsubouchi H, Miura A, et al. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur J Pharmacol 2018; 819: 35-42.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.024] [PMID: 29154935]
[79]
Wu P, Chen Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum Cell 2019; 32(3): 251-9.
[http://dx.doi.org/10.1007/s13577-019-00238-4] [PMID: 30701373]
[80]
Tonello R, Lee SH, Berta T. Monoclonal antibody targeting the matrix metalloproteinase 9 prevents and reverses paclitaxel-induced peripheral neuropathy in mice. J Pain 2019; 20(5): 515-27.
[http://dx.doi.org/10.1016/j.jpain.2018.11.003] [PMID: 30471427]
[81]
Gao M, Yan X, Weng HR. Inhibition of glycogen synthase kinase 3β activity with lithium prevents and attenuates paclitaxel-induced neuropathic pain. Neuroscience 2013; 254: 301-11.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.033] [PMID: 24070631]
[82]
Xu Y, Cheng G, Zhu Y, et al. Anti-nociceptive roles of the glia-specific metabolic inhibitor fluorocitrate in paclitaxel-evoked neuropathic pain. Acta Biochim Biophys Sin (Shanghai) 2016; 48(10): 902-8.
[http://dx.doi.org/10.1093/abbs/gmw083] [PMID: 27563006]
[83]
Kim E, Hwang SH, Kim HK, Abdi S, Kim HK. Losartan, an angiotensin II type 1 receptor antagonist, alleviates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain by inhibiting inflammatory cytokines in the dorsal root ganglia. Mol Neurobiol 2019; 56(11): 7408-19.
[http://dx.doi.org/10.1007/s12035-019-1616-0] [PMID: 31037647]
[84]
Bouchenaki H, Bernard A, Bessaguet F, et al. Neuroprotective effect of ramipril is mediated by AT2 in a mouse MODEL of paclitaxel-induced peripheral neuropathy. Pharmaceutics 2022; 14(4): 848.
[http://dx.doi.org/10.3390/pharmaceutics14040848] [PMID: 35456682]
[85]
Huang J, Chen D, Yan F, et al. JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain through the PI3K/Akt pathway. Eur J Pharmacol 2020; 883: 173306.
[http://dx.doi.org/10.1016/j.ejphar.2020.173306] [PMID: 32603693]
[86]
Adamek P, Heles M, Bhattacharyya A, Pontearso M, Slepicka J, Palecek J. Dual PI3Kδ/γ inhibitor duvelisib prevents development of neuropathic pain in model of paclitaxel-induced peripheral neuropathy. J Neurosci 2022; 42(9): 1864-81.
[http://dx.doi.org/10.1523/JNEUROSCI.1324-21.2021] [PMID: 35042769]
[87]
Wei W, Liu W, Du S, et al. A compound mitigates cancer pain and chemotherapy-induced neuropathic pain by dually targeting nNOS-PSD-95 interaction and GABAA receptor. Neurotherapeutics 2021; 18(4): 2436-48.
[http://dx.doi.org/10.1007/s13311-021-01158-8] [PMID: 34796458]
[88]
Lee WH, Carey LM, Li LL, et al. ZLc002, a putative small-molecule inhibitor of nNOS interaction with NOS1AP, suppresses inflammatory nociception and chemotherapy-induced neuropathic pain and synergizes with paclitaxel to reduce tumor cell viability. Mol Pain 2018; 14.
[http://dx.doi.org/10.1177/1744806918801224] [PMID: 30157705]
[89]
Atigari DV, Paton KF, Uprety R, et al. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185: 108445.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108445] [PMID: 33383089]
[90]
Yadav R, Yan X, Maixner DW, Gao M, Weng HR. Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic disinhibition and neuropathic pain induced by paclitaxel. J Neurochem 2015; 133(6): 857-69.
[http://dx.doi.org/10.1111/jnc.13103] [PMID: 25827582]
[91]
Park SE, Neupane C, Noh C, et al. Antiallodynic effects of KDS2010, a novel MAO-B inhibitor, via ROS-GABA inhibitory transmission in a paclitaxel-induced tactile hypersensitivity model. Mol Brain 2022; 15(1): 41.
[http://dx.doi.org/10.1186/s13041-022-00924-9] [PMID: 35526002]
[92]
Starobova H, Monteleone M, Adolphe C, et al. Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. J Exp Med 2021; 218(5): e20201452.
[http://dx.doi.org/10.1084/jem.20201452] [PMID: 33656514]
[93]
Zhou L, Hu Y, Li C, et al. Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway. Neuropharmacology 2018; 135: 34-47.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.004] [PMID: 29518397]
[94]
Zhou L, Ao L, Yan Y, et al. Levo-corydalmine attenuates vincristine-induced neuropathic pain in mice by upregulating the Nrf2/HO-1/CO pathway to inhibit connexin 43 expression. Neurotherapeutics 2020; 17(1): 340-55.
[http://dx.doi.org/10.1007/s13311-019-00784-7] [PMID: 31617070]
[95]
Xie H, Chen Y, Du K, Wu W, Feng X. Puerarin alleviates vincristine-induced neuropathic pain and neuroinflammation via inhibition of nuclear factor-κB and activation of the TGF-β/Smad pathway in rats. Int Immunopharmacol 2020; 89(Pt B): 107060.
[http://dx.doi.org/10.1016/j.intimp.2020.107060] [PMID: 33049496]
[96]
Xu T, Li D, Zhou X, et al. Oral Application of magnesium-l-threonate attenuates vincristine-induced allodynia and hyperalgesia by normalization of tumor necrosis factor-α/nuclear factor-κB signaling. Anesthesiology 2017; 126(6): 1151-68.
[http://dx.doi.org/10.1097/ALN.0000000000001601] [PMID: 28306698]
[97]
Chiba T, Kambe T, Yamamoto K, Kawakami K, Taguchi K, Abe K. Vincristine increased spinal cord substance P levels in a peripheral neuropathy rat model. Drug Chem Toxicol 2022; 45(1): 393-7.
[http://dx.doi.org/10.1080/01480545.2019.1706547] [PMID: 31899978]
[98]
Lee JY, Sim WS, Cho NR, Kim BW, Moon JY, Park HJ. The antiallodynic effect of nefopam on vincristine-induced neuropathy in mice. J Pain Res 2020; 13: 323-9.
[http://dx.doi.org/10.2147/JPR.S224478] [PMID: 32104054]
[99]
Goldlust SA, Kavoosi M, Nezzer J, Kavoosi M, Korz W, Deck K. Tetrodotoxin for chemotherapy-induced neuropathic pain: A randomized, double-blind, placebo-controlled, parallel-dose finding trial. Toxins (Basel) 2021; 13(4): 235.
[http://dx.doi.org/10.3390/toxins13040235] [PMID: 33805908]
[100]
Tawara S, Sakai T, Matsuzaki O. Anti-inflammatory and anti-fibrinolytic effects of thrombomodulin alfa through carboxypeptidase B2 in the presence of thrombin. Thromb Res 2016; 147: 72-9.
[http://dx.doi.org/10.1016/j.thromres.2016.09.011] [PMID: 27693845]
[101]
Ito T, Kawahara K, Okamoto K, et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol 2008; 28(10): 1825-30.
[http://dx.doi.org/10.1161/ATVBAHA.107.150631] [PMID: 18599803]
[102]
Kotaka M, Saito Y, Kato T, et al. A placebo-controlled, double-blind, randomized study of recombinant thrombomodulin (ART-123) to prevent oxaliplatin-induced peripheral neuropathy. Cancer Chemother Pharmacol 2020; 86(5): 607-18.
[http://dx.doi.org/10.1007/s00280-020-04135-8] [PMID: 32965539]
[103]
Tsavaris N, Kopterides P, Kosmas C, et al. Gabapentin monotherapy for the treatment of chemotherapy-induced neuropathic pain: A pilot study. Pain Med 2008; 9(8): 1209-16.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00325.x] [PMID: 19067834]
[104]
Anghelescu DL, Tesney JM, Jeha S, et al. Prospective randomized trial of interventions for vincristine-related neuropathic pain. Pediatr Blood Cancer 2020; 67(9): e28539.
[http://dx.doi.org/10.1002/pbc.28539] [PMID: 32618122]
[105]
de Andrade DC, Jacobsen Teixeira M, Galhardoni R, et al. Pregabalin for the prevention of oxaliplatin-induced painful neuropathy: A randomized, double-blind trial. Oncologist 2017; 22(10): 1154-e105.
[http://dx.doi.org/10.1634/theoncologist.2017-0235] [PMID: 28652279]
[106]
Smith EML, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013; 309(13): 1359-67.
[http://dx.doi.org/10.1001/jama.2013.2813] [PMID: 23549581]
[107]
Song SY, Ko YB, Kim H, et al. Effect of serotonin-norepinephrine reuptake inhibitors for patients with chemotherapy-induced painful peripheral neuropathy. Medicine (Baltimore) 2020; 99(1): e18653.
[http://dx.doi.org/10.1097/MD.0000000000018653] [PMID: 31895829]
[108]
Schmiedl S, Peters D, Schmalz O, et al. Loxapine for treatment of patients with refractory, chemotherapy-induced neuropathic pain: A prematurely terminated pilot study showing efficacy but limited tolerability. Front Pharmacol 2019; 10: 838.
[http://dx.doi.org/10.3389/fphar.2019.00838] [PMID: 31402867]
[109]
Naruge D, Nagashima F, Kawai K, Okano N, Kobayashi T, Furuse J. Tramadol/acetaminophen combination tablets in cancer patients with chemotherapy-induced peripheral neuropathy: A single-arm phase II study. Palliative Medicine Reports 2020; 1(1): 25-31.
[http://dx.doi.org/10.1089/pmr.2020.0031] [PMID: 34223452]
[110]
Nieto FR, Cendán CM, Cañizares FJ, et al. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014; 10(1744-8069-10-11)
[http://dx.doi.org/10.1186/1744-8069-10-11] [PMID: 24517272]
[111]
Bruna J, Videla S, Argyriou AA, et al. Efficacy of a novel sigma-1 receptor antagonist for oxaliplatin-induced neuropathy: A randomized, double-blind, placebo-controlled phase IIa clinical trial. Neurotherapeutics 2018; 15(1): 178-89.
[http://dx.doi.org/10.1007/s13311-017-0572-5] [PMID: 28924870]
[112]
Mehrabadi S, Velayati M, Zafari N, et al. Growth-hormone-releasing hormone as a prognostic biomarker and therapeutic target in gastrointestinal cancer. Curr Cancer Drug Targets 2022.
[PMID: 36582060]
[113]
Su Y, Huang J, Wang S, et al. The effects of ganglioside-monosialic acid in taxane-induced peripheral neurotoxicity in patients with breast cancer: A randomized trial. J Natl Cancer Inst 2020; 112(1): 55-62.
[PMID: 31093677]
[114]
Wu S, Bai X, Guo C, et al. Ganglioside-monosialic acid (GM1) for prevention of chemotherapy-induced peripheral neuropathy: A meta-analysis with trial sequential analysis. BMC Cancer 2021; 21(1): 1173.
[http://dx.doi.org/10.1186/s12885-021-08884-4] [PMID: 34727879]
[115]
Rossignol J, Cozzi B, Liebaert F, et al. High concentration of topical amitriptyline for treating chemotherapy-induced neuropathies. Support Care Cancer 2019; 27(8): 3053-9.
[http://dx.doi.org/10.1007/s00520-018-4618-y] [PMID: 30607681]
[116]
Barton DL, Wos EJ, Qin R, et al. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support Care Cancer 2011; 19(6): 833-41.
[http://dx.doi.org/10.1007/s00520-010-0911-0] [PMID: 20496177]
[117]
Filipczak-Bryniarska I, Krzyzewski RM, Kucharz J, et al. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: Single-center experience. Med Oncol 2017; 34(9): 162.
[http://dx.doi.org/10.1007/s12032-017-1015-1] [PMID: 28819738]
[118]
Clavo B, Rodríguez-Esparragón F, Rodríguez-Abreu D, et al. Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants 2019; 8(12): 588.
[http://dx.doi.org/10.3390/antiox8120588] [PMID: 31779159]
[119]
Hamity MV, White SR, Blum C, Gibson-Corley KN, Hammond DL. Nicotinamide riboside relieves paclitaxel-induced peripheral neuropathy and enhances suppression of tumor growth in tumor-bearing rats. Pain 2020; 161(10): 2364-75.
[http://dx.doi.org/10.1097/j.pain.0000000000001924] [PMID: 32433266]
[120]
Yamamoto S, Ushio S, Egashira N, et al. Excessive spinal glutamate transmission is involved in oxaliplatin-induced mechanical allodynia: A possibility for riluzole as a prophylactic drug. Sci Rep 2017; 7(1): 9661.
[http://dx.doi.org/10.1038/s41598-017-08891-1] [PMID: 28851920]
[121]
Rapacz A, Obniska J, Koczurkiewicz P, et al. Antiallodynic and antihyperalgesic activity of new 3,3-diphenyl-propionamides with anticonvulsant activity in models of pain in mice. Eur J Pharmacol 2018; 821: 39-48.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.036] [PMID: 29262297]
[122]
Rapacz A, Obniska J, Wiklik-Poudel B, Rybka S. Sałat K, Filipek B. Anticonvulsant and antinociceptive activity of new amides derived from 3-phenyl-2,5-dioxo-pyrrolidine-1-yl-acetic acid in mice. Eur J Pharmacol 2016; 781: 239-49.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.033] [PMID: 27089821]
[123]
Obniska J, Góra M, Rapacz A, et al. Synthesis, anticonvulsant, and antinociceptive activity of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and 3-phenyl-butanamides. Arch Pharm (Weinheim) 2021; 354(1): 2000225.
[http://dx.doi.org/10.1002/ardp.202000225] [PMID: 32939789]
[124]
Di Cesare Mannelli L, Lucarini E, Micheli L, et al. Effects of natural and synthetic isothiocyanate-based H 2 S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. Neuropharmacology 2017; 121: 49-59.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.029] [PMID: 28431970]
[125]
Zhou HH, Zhang L, Zhou QG, Fang Y, Ge WH. (+)-Borneol attenuates oxaliplatin-induced neuropathic hyperalgesia in mice. Neuroreport 2016; 27(3): 160-5.
[http://dx.doi.org/10.1097/WNR.0000000000000516] [PMID: 26730517]
[126]
Ataizi ZS, Ertilav K. Pregabalin reduces oxaliplatin-induced oxidative neurotoxicity through modulation of TRPV1 channels in DBTRG neuronal cell line. Anticancer Drugs 2020; 31(7): 728-36.
[http://dx.doi.org/10.1097/CAD.0000000000000949] [PMID: 32459682]
[127]
Meng J, Qiu S, Zhang L, You M, Xing H, Zhu J. Berberine Alleviate Cisplatin-Induced Peripheral Neuropathy by Modulating Inflammation Signal via TRPV1. Front Pharmacol 2022; 12: 774795.
[http://dx.doi.org/10.3389/fphar.2021.774795] [PMID: 35153744]
[128]
Sałat K, Cios A, Wyska E, et al. Antiallodynic and antihyperalgesic activity of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one compared to pregabalin in chemotherapyinduced neuropathic pain in mice. Pharmacol Biochem Behav 2014; 122: 173-81.
[http://dx.doi.org/10.1016/j.pbb.2014.03.025] [PMID: 24726707]
[129]
Poupon L, Lamoine S, Pereira V, et al. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology 2018; 140: 43-61.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.026] [PMID: 30056126]
[130]
Yamamoto S, Egashira N, Tsuda M, Masuda S. Riluzole prevents oxaliplatin-induced cold allodynia via inhibition of overexpression of transient receptor potential melastatin 8 in rats. J Pharmacol Sci 2018; 138(3): 214-7.
[http://dx.doi.org/10.1016/j.jphs.2018.10.006] [PMID: 30409714]
[131]
Sałat K, Furgała-Wojas A, Sałat R. The microglial activation inhibitor minocycline, used alone and in combination with duloxetine, attenuates pain caused by oxaliplatin in mice. Molecules 2021; 26(12): 3577.
[http://dx.doi.org/10.3390/molecules26123577] [PMID: 34208184]
[132]
Khasabova IA, Khasabov SG, Olson JK, et al. Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019; 160(3): 688-701.
[http://dx.doi.org/10.1097/j.pain.0000000000001448] [PMID: 30507781]
[133]
Zhang X, Guan Z, Wang X, et al. Curcumin alleviates oxaliplatin-induced peripheral neuropathic pain through inhibiting oxidative stress-mediated activation of NF-κB and mitigating inflammation. Biol Pharm Bull 2020; 43(2): 348-55.
[http://dx.doi.org/10.1248/bpb.b19-00862] [PMID: 31776306]
[134]
Carta F, Di Cesare Mannelli L, Pinard M, et al. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem 2015; 23(8): 1828-40.
[http://dx.doi.org/10.1016/j.bmc.2015.02.027] [PMID: 25766630]
[135]
Zhou HH, Zhang L, Zhang HX, et al. Tat-HA-NR2B9c attenuate oxaliplatin-induced neuropathic pain. Exp Neurol 2019; 311: 80-7.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.014] [PMID: 30253135]
[136]
Wozniak KM, Wu Y, Vornov JJ, et al. The orally active glutamate carboxypeptidase II inhibitor E2072 exhibits sustained nerve exposure and attenuates peripheral neuropathy. J Pharmacol Exp Ther 2012; 343(3): 746-54.
[http://dx.doi.org/10.1124/jpet.112.197665] [PMID: 22988061]
[137]
Toyama S, Shimoyama N, Shimoyama M. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain. Neuropeptides 2017; 61: 95-100.
[http://dx.doi.org/10.1016/j.npep.2016.12.007] [PMID: 28041630]
[138]
Micheli L, Di Cesare Mannelli L, Rizzi A, et al. Intrathecal administration of nociceptin/orphanin FQ receptor agonists in rats: A strategy to relieve chemotherapy-induced neuropathic hypersensitivity. Eur J Pharmacol 2015; 766: 155-62.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.005] [PMID: 26450087]
[139]
Chelini A, Brogi S, Paolino M, et al. Synthesis and biological evaluation of novel neuroprotective pyridazine derivatives as excitatory amino acid transporter 2 (EAAT2) activators. J Med Chem 2017; 60(12): 5216-21.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00383] [PMID: 28525717]
[140]
Masuguchi K, Watanabe H, Kawashiri T, et al. Neurotropin® relieves oxaliplatin-induced neuropathy via Gi protein-coupled receptors in the monoaminergic descending pain inhibitory system. Life Sci 2014; 98(1): 49-54.
[http://dx.doi.org/10.1016/j.lfs.2013.12.229] [PMID: 24412642]
[141]
Liu X, Zhang G, Dong L, et al. Repeated administration of mirtazapine attenuates oxaliplatin-induced mechanical allodynia and spinal NR2B up-regulation in rats. Neurochem Res 2013; 38(9): 1973-9.
[http://dx.doi.org/10.1007/s11064-013-1103-3] [PMID: 23836292]
[142]
Chaumette T, Chapuy E, Berrocoso E, et al. Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats. Eur J Pain 2018; 22(1): 127-41.
[http://dx.doi.org/10.1002/ejp.1097] [PMID: 28877402]
[143]
Li D, Park S, Lee K, Jang DS, Kim SK. 5-HT 1A receptors mediate the analgesic effect of rosavin in a mouse model of oxaliplatin-induced peripheral neuropathic pain. Korean J Physiol Pharmacol 2021; 25(5): 489-94.
[http://dx.doi.org/10.4196/kjpp.2021.25.5.489] [PMID: 34448466]
[144]
Minami T, Takeda M, Sata M, et al. Thrombomodulin alfa prevents oxaliplatin-induced neuropathic symptoms through activation of thrombin-activatable fibrinolysis inhibitor and protein C without affecting anti-tumor activity. Eur J Pharmacol 2020; 880: 173196.
[http://dx.doi.org/10.1016/j.ejphar.2020.173196] [PMID: 32416186]
[145]
Ta LE, Schmelzer JD, Bieber AJ, et al. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy. PLoS One 2013; 8(1): e54161.
[http://dx.doi.org/10.1371/journal.pone.0054161] [PMID: 23326593]
[146]
Okubo K, Takahashi T, Sekiguchi F, et al. Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 2011; 188: 148-56.
[http://dx.doi.org/10.1016/j.neuroscience.2011.05.004] [PMID: 21596106]
[147]
Brewer AL, Shirachi DY, Quock RM, Craft RM. Effect of hyperbaric oxygen on chemotherapy-induced neuropathy in male and female rats. Behav Pharmacol 2020; 31(1): 61-72.
[http://dx.doi.org/10.1097/FBP.0000000000000497] [PMID: 31503072]
[148]
Curry ZA, Wilkerson JL, Bagdas D, et al. Monoacylglycerol lipase inhibitors reverse paclitaxel-induced nociceptive behavior and proinflammatory markers in a mouse model of chemotherapy-induced neuropathy. J Pharmacol Exp Ther 2018; 366(1): 169-83.
[http://dx.doi.org/10.1124/jpet.117.245704] [PMID: 29540562]
[149]
Cuozzo M, Castelli V, Avagliano C, et al. Effects of chronic oral probiotic treatment in paclitaxel-induced neuropathic pain. Biomedicines 2021; 9(4): 346.
[http://dx.doi.org/10.3390/biomedicines9040346] [PMID: 33808052]
[150]
Kim HK, Hwang SH, Lee SO, Kim SH, Abdi S. Pentoxifylline ameliorates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain. Pain Physician 2016; 19(4): E589-600.
[PMID: 27228525]
[151]
Kim HK, Hwang SH, Abdi S. Tempol ameliorates and prevents mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain. Front Pharmacol 2017; 7: 532.
[http://dx.doi.org/10.3389/fphar.2016.00532] [PMID: 28138318]
[152]
Castelli V, Palumbo P, d’Angelo M, et al. Probiotic DSF counteracts chemotherapy induced neuropathic pain. Oncotarget 2018; 9(46): 27998-8008.
[http://dx.doi.org/10.18632/oncotarget.25524] [PMID: 29963257]
[153]
Kim HK, Hwang SH, Oh E, Abdi S. Rolipram, a selective phosphodiesterase 4 inhibitor, ameliorates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain through inhibition of inflammatory cytokines in the dorsal root ganglion. Front Pharmacol 2017; 8: 885.
[http://dx.doi.org/10.3389/fphar.2017.00885] [PMID: 29255417]
[154]
Kim HK, Kwon JY, Yoo C, Abdi S. The analgesic effect of rolipram, a phosphodiesterase 4 inhibitor, on chemotherapy-induced neuropathic pain in rats. Anesth Analg 2015; 121(3): 822-8.
[http://dx.doi.org/10.1213/ANE.0000000000000853] [PMID: 26214551]
[155]
Al-Massri KF, Ahmed LA, El-Abhar HS. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem Int 2018; 120: 164-71.
[http://dx.doi.org/10.1016/j.neuint.2018.08.007] [PMID: 30118739]
[156]
Laura B, Elisabetta B, Adelchi RP, et al. CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget 2017; 8(14): 23188-201.
[http://dx.doi.org/10.18632/oncotarget.15533] [PMID: 28423567]
[157]
Huynh PN, Giuvelis D, Christensen S, Tucker KL, McIntosh JM. RgIA4 accelerates recovery from paclitaxel-induced neuropathic pain in rats. Mar Drugs 2019; 18(1): 12.
[http://dx.doi.org/10.3390/md18010012] [PMID: 31877728]
[158]
Zhu HQ, Xu J, Shen KF, Pang RP, Wei XH, Liu XG. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats. Exp Neurol 2015; 273: 263-72.
[http://dx.doi.org/10.1016/j.expneurol.2015.09.006] [PMID: 26376216]
[159]
Katsuyama S, Sato K, Yagi T, Kishikawa Y, Nakamura H. Effects of repeated milnacipran and fluvoxamine treatment on mechanical allodynia in a mouse paclitaxel-induced neuropathic pain model. Biomed Res 2013; 34(2): 105-11.
[http://dx.doi.org/10.2220/biomedres.34.105] [PMID: 23594484]
[160]
Chen N, Ge MM, Li DY, et al. β2-adrenoreceptor agonist ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of mitochondrial biogenesis. Biomed Pharmacother 2021; 144: 112331.
[http://dx.doi.org/10.1016/j.biopha.2021.112331] [PMID: 34673421]
[161]
Slivicki RA, Xu Z, Mali SS, Hohmann AG. Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacol Res 2019; 142: 267-82.
[http://dx.doi.org/10.1016/j.phrs.2019.02.002] [PMID: 30739035]
[162]
Xiao WH, Zheng FY, Bennett GJ, Bordet T, Pruss RM. Olesoxime (cholest-4-en-3-one, oxime): Analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain 2009; 147(1): 202-9.
[http://dx.doi.org/10.1016/j.pain.2009.09.006] [PMID: 19833436]
[163]
Andoh T, Kobayashi N, Uta D, Kuraishi Y. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A1 receptors. Phytomedicine 2017; 25: 1-7.
[http://dx.doi.org/10.1016/j.phymed.2016.12.010] [PMID: 28190463]
[164]
Wang G, Zhang X, Pan X, Xiao Y. FSC231 can alleviate paclitaxel-induced neuralgia by inhibiting PICK1 and affecting related factors. Neurosci Lett 2021; 741: 135471.
[http://dx.doi.org/10.1016/j.neulet.2020.135471] [PMID: 33207243]
[165]
Micheli L, Rajagopalan R, Lucarini E, et al. Pain relieving and neuroprotective effects of non-opioid compound, DDD-028, in the rat model of paclitaxel-induced neuropathy. Neurotherapeutics 2021; 18(3): 2008-20.
[http://dx.doi.org/10.1007/s13311-021-01069-8] [PMID: 34312766]
[166]
Cetinkaya-Fisgin A, Zhu J, Luan X, et al. Development of EQ-6, a novel analogue of ethoxyquin to prevent chemotherapy-induced peripheral neuropathy. Neurotherapeutics 2021; 18(3): 2061-72.
[http://dx.doi.org/10.1007/s13311-021-01093-8] [PMID: 34291431]
[167]
Wang X, Zhang B, Li X, et al. Mechanisms underlying gastrodin alleviating vincristine-induced peripheral neuropathic pain. Front Pharmacol 2021; 12: 744663.
[http://dx.doi.org/10.3389/fphar.2021.744663] [PMID: 34975470]
[168]
Khan A, Shal B, Khan AU, et al. Suppression of TRPV1/TRPM8/P2Y Nociceptors by withametelin via downregulating MAPK signaling in mouse model of vincristine-induced neuropathic pain. Int J Mol Sci 2021; 22(11): 6084.
[http://dx.doi.org/10.3390/ijms22116084] [PMID: 34199936]
[169]
Amirkhanloo F, Karimi G, Yousefi-Manesh H, Abdollahi A, Roohbakhsh A, Dehpour AR. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin Pharmacol Toxicol 2020; 127(5): 405-18.
[http://dx.doi.org/10.1111/bcpt.13454] [PMID: 32542990]
[170]
Jiang K, Shi J, Shi J. Morin alleviates vincristine-induced neuropathic pain via nerve protective effect and inhibition of NF-κB pathway in rats. Cell Mol Neurobiol 2019; 39(6): 799-808.
[http://dx.doi.org/10.1007/s10571-019-00679-3] [PMID: 31011938]
[171]
Jaggi AS, Singh N. Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. Food Chem Toxicol 2012; 50(5): 1295-301.
[http://dx.doi.org/10.1016/j.fct.2012.01.038] [PMID: 22326968]
[172]
Qin B, Luo N, Li Y, et al. Protective effect of gastrodin on peripheral neuropathy induced by anti-tumor treatment with vincristine in rat models. Drug Chem Toxicol 2021; 44(1): 84-91.
[http://dx.doi.org/10.1080/01480545.2018.1547739] [PMID: 30554535]
[173]
Gong SS, Li YX, Zhang MT, et al. Neuroprotective effect of matrine in mouse model of vincristine-induced neuropathic pain. Neurochem Res 2016; 41(11): 3147-59.
[http://dx.doi.org/10.1007/s11064-016-2040-8] [PMID: 27561290]
[174]
Linglu D, Yuxiang L, Yaqiong X, et al. Antinociceptive effect of matrine on vincristine-induced neuropathic pain model in mice. Neurol Sci 2014; 35(6): 815-21.
[http://dx.doi.org/10.1007/s10072-013-1603-6] [PMID: 24337989]
[175]
Kim K, Jeong W, Jun IG, Park JY. Antiallodynic and anti-inflammatory effects of intrathecal R-PIA in a rat model of vincristine-induced peripheral neuropathy. Korean J Anesthesiol 2020; 73(5): 434-44.
[http://dx.doi.org/10.4097/kja.19481] [PMID: 32046474]
[176]
Chen XJ, Wang L, Song XY. Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Biomed Pharmacother 2020; 125: 110003.
[http://dx.doi.org/10.1016/j.biopha.2020.110003] [PMID: 32187955]
[177]
Jaggi AS, Kaur G, Bali A, Singh N. Pharmacological investigations on mast cell stabilizer and histamine receptor antagonists in vincristine-induced neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(11): 1087-96.
[http://dx.doi.org/10.1007/s00210-017-1426-8] [PMID: 28916845]
[178]
Han SM, Kim YH, Jo HU, Kwak JA, Park HJ. Tianeptine reduces mechanical allodynia in spinal nerve-ligated and chemotherapy-induced neuropathic mice. Pain Physician 2017; 20(4): E593-600.
[PMID: 28535568]
[179]
Starobova H, Mueller A, Allavena R, Lohman RJ, Sweet MJ, Vetter I. Minocycline prevents the development of mechanical allodynia in mouse models of vincristine-induced peripheral neuropathy. Front Neurosci 2019; 13: 653.
[http://dx.doi.org/10.3389/fnins.2019.00653] [PMID: 31316337]
[180]
Thibault K, Elisabeth B, Sophie D, Claude FZM, Bernard R, Bernard C. Antinociceptive and anti-allodynic effects of oral PL37, a complete inhibitor of enkephalin-catabolizing enzymes, in a rat model of peripheral neuropathic pain induced by vincristine. Eur J Pharmacol 2008; 600(1-3): 71-7.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.004] [PMID: 18938155]
[181]
Brederson JD, Joshi SK, Browman KE, et al. PARP inhibitors attenuate chemotherapy-induced painful neuropathy. J Peripher Nerv Syst 2012; 17(3): 324-30.
[http://dx.doi.org/10.1111/j.1529-8027.2012.00413.x] [PMID: 22971094]
[182]
Hu C, Zhao YT, Zhang G, Xu MF. Antinociceptive effects of fucoidan in rat models of vincristine-induced neuropathic pain. Mol Med Rep 2017; 15(2): 975-80.
[http://dx.doi.org/10.3892/mmr.2016.6071] [PMID: 28035379]
[183]
Rao RD, Michalak JC, Sloan JA, et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy. Cancer 2007; 110(9): 2110-8.
[http://dx.doi.org/10.1002/cncr.23008] [PMID: 17853395]
[184]
Rao RD, Flynn PJ, Sloan JA, et al. Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy. Cancer 2008; 112(12): 2802-8.
[http://dx.doi.org/10.1002/cncr.23482] [PMID: 18428211]
[185]
Kottschade LA, Sloan JA, Mazurczak MA, et al. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: Results of a randomized phase III clinical trial. Support Care Cancer 2011; 19(11): 1769-77.
[http://dx.doi.org/10.1007/s00520-010-1018-3] [PMID: 20936417]
[186]
Kim BS, Jin JY, Kwon JH, et al. Efficacy and safety of oxycodone/naloxone as add-on therapy to gabapentin or pregabalin for the management of chemotherapy-induced peripheral neuropathy in Korea. Asia Pac J Clin Oncol 2018; 14(5): e448-54.
[http://dx.doi.org/10.1111/ajco.12822] [PMID: 29280313]
[187]
Schloss JM, Colosimo M, Airey C, Masci P, Linnane AW, Vitetta L. A randomised, placebo-controlled trial assessing the efficacy of an oral B group vitamin in preventing the development of chemotherapy-induced peripheral neuropathy (CIPN). Support Care Cancer 2017; 25(1): 195-204.
[http://dx.doi.org/10.1007/s00520-016-3404-y] [PMID: 27612466]
[188]
Khalefa HG, Shawki MA, Aboelhassan R, El Wakeel LM. Evaluation of the effect of N-acetylcysteine on the prevention and amelioration of paclitaxel-induced peripheral neuropathy in breast cancer patients: A randomized controlled study. Breast Cancer Res Treat 2020; 183(1): 117-25.
[http://dx.doi.org/10.1007/s10549-020-05762-8] [PMID: 32601973]
[189]
Hershman DL, Unger JM, Crew KD, et al. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol 2013; 31(20): 2627-33.
[http://dx.doi.org/10.1200/JCO.2012.44.8738] [PMID: 23733756]
[190]
Bianchi G, Vitali G, Caraceni A, et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-l-carnitine. Eur J Cancer 2005; 41(12): 1746-50.
[http://dx.doi.org/10.1016/j.ejca.2005.04.028] [PMID: 16039110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy