Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Recent Updates on Interaction Studies and Drug Delivery of Antimalarials with Serum Albumin Proteins

Author(s): Kashish Azeem, Iram Irfan, Qudsia Rashid, Shailja Singh, Rajan Patel* and Mohammad Abid*

Volume 31, Issue 25, 2024

Published on: 01 August, 2023

Page: [3925 - 3953] Pages: 29

DOI: 10.2174/0929867330666230509121931

Price: $65

Open Access Journals Promotions 2
Abstract

This review focuses on recent trends in the binding study of various antimalarial agents with serum albumins in detail. Serum albumin has a significant role in the transport of drugs and endogenous ligands. The nature and magnitude of serum albumin and drug interactions have a tremendous impact on the pharmacological behavior and toxicity of that drug. Binding of drug to serum albumin not only controls its free and active concentration, but also provides a reservoir for a long duration of action. This ultimately affects drug absorption, distribution, metabolism, and excretion. Such interaction determines the actual drug efficacy as the drug action can be correlated with the amount of unbound drug. With the advancement in spectroscopic techniques and simulation studies, binding studies play an increasingly important role in biophysical and biomedical science, especially in the field of drug delivery and development. This review assesses the insight we have gained so far to improve drug delivery and discovery of antimalarials on the basis of a plethora of drug-serum protein interaction studies done so far.

Keywords: Antimalarials, serum albumin, binding affinity, spectroscopy, pharmacology, actual drug efficacy.

[1]
Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Jenkins, R.O.; Goncharov, N.V. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci., 2021, 22(19), 10318.
[http://dx.doi.org/10.3390/ijms221910318] [PMID: 34638659]
[2]
Aneja, B.; Azam, M.; Alam, S.; Perwez, A.; Maguire, R.; Yadava, U.; Kavanagh, K.; Daniliuc, C.G.; Rizvi, M.M.A.; Haq, Q.M.R.; Abid, M. Natural product-based 1, 2, 3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega, 2018, 3(6), 6912-6930.
[http://dx.doi.org/10.1021/acsomega.8b00582] [PMID: 30023966]
[3]
Ali, A.; Hasan, P.; Irfan, M.; Uddin, A.; Khan, A.; Saraswat, J.; Maguire, R.; Kavanagh, K.; Patel, R.; Joshi, M.C.; Azam, A.; Mohsin, M.; Haque, Q.M.R.; Abid, M. Development of oxadiazole-sulfonamide-based compounds as potential antibacterial agents. ACS Omega, 2021, 6(42), 27798-27813.
[http://dx.doi.org/10.1021/acsomega.1c03379] [PMID: 34722980]
[4]
Bolognesi, M.L.; Cavalli, A. Wiley Online Library, 2016, 11, 1190-1192.
[5]
Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(10), 1278-1289.
[http://dx.doi.org/10.1107/S0907444912027047] [PMID: 22993082]
[6]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin—more than just a serum protein. Front. Physiol., 2014, 5, 299.
[http://dx.doi.org/10.3389/fphys.2014.00299] [PMID: 25161624]
[7]
Schmidt, E.G.W.; Hvam, M.L.; Antunes, F.; Cameron, J.; Viuff, D.; Andersen, B.; Kristensen, N.N.; Howard, K.A. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J. Biol. Chem., 2017, 292(32), 13312-13322.
[http://dx.doi.org/10.1074/jbc.M117.794248] [PMID: 28637874]
[8]
Sleep, D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv., 2015, 12(5), 793-812.
[http://dx.doi.org/10.1517/17425247.2015.993313] [PMID: 25518870]
[9]
Siddiqui, S.; Ameen, F.; ur Rehman, S.; Sarwar, T.; Tabish, M. Studying the interaction of drug/ligand with serum albumin. J. Mol. Liq., 2021, 336, 116200.
[http://dx.doi.org/10.1016/j.molliq.2021.116200]
[10]
Motta, A.A.E.A.; de Castro, M.C.S.; Silva, D.; Cortez, C.M. A mathematical model to estimate binding sites for ligands in HSA and BSA based on spectrofluorimetry. J. Mol. Struct., 2021, 1223, 129224.
[http://dx.doi.org/10.1016/j.molstruc.2020.129224]
[11]
Marković, O.S.; Cvijetić, I.N.; Zlatović, M.V.; Opsenica, I.M.; Konstantinović, J.M.; Terzić Jovanović, N.V.; Šolaja, B.A.; Verbić, T.Ž. Human serum albumin binding of certain antimalarials. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 128-139.
[http://dx.doi.org/10.1016/j.saa.2017.10.061] [PMID: 29128746]
[12]
Yu, X.; Liao, Z.; Jiang, B.; Hu, X.; Li, X. Spectroscopic analyses on interaction of bovine serum albumin with novel spiro[cyclopropane-pyrrolizin]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 129-136.
[http://dx.doi.org/10.1016/j.saa.2014.08.098] [PMID: 25218221]
[13]
Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci., 2014, 15(3), 3580-3595.
[http://dx.doi.org/10.3390/ijms15033580] [PMID: 24583848]
[14]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[15]
Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4(1), 3.
[http://dx.doi.org/10.1186/s40591-016-0048-8] [PMID: 26925240]
[16]
Hassan, M.I.; Mathur, Y.; Mohammad, T.; Anjum, F.; Shafie, A.; Elasbali, A.M.; Uversky, V.N. PyPAn: An automated graphical user interface for protein sequence and structure analyses. Protein Pept. Lett., 2022, 29(4), 306-312.
[http://dx.doi.org/10.2174/0929866529666220210155421] [PMID: 35142267]
[17]
Gelamo, E.L.; Silva, C.H.T.P.; Imasato, H.; Tabak, M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2002, 1594(1), 84-99.
[http://dx.doi.org/10.1016/S0167-4838(01)00287-4] [PMID: 11825611]
[18]
Eskew, M.W.; Benight, A.S. Ligand binding constants for human serum albumin evaluated by ratiometric analysis of DSC thermograms. Anal. Biochem., 2021, 628, 114293.
[http://dx.doi.org/10.1016/j.ab.2021.114293] [PMID: 34181905]
[19]
Lee, P.; Wu, X. Review: modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865.
[http://dx.doi.org/10.2174/1381612821666150302115025] [PMID: 25732553]
[20]
Tahir, A.E.L.; Malhotra, P.; Chauhan, V.S. Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malar. J., 2003, 2(1), 11.
[http://dx.doi.org/10.1186/1475-2875-2-11] [PMID: 12801422]
[21]
Bhat, A.R.; Wani, F.A.; Behera, K.; Khan, A.B.; Patel, R. Formulation of biocompatible microemulsions for encapsulation of anti-TB drug rifampicin: A physicochemical and spectroscopic study. Colloids Surf. A Physicochem. Eng. Asp., 2022, 645, 128846.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128846]
[22]
Wani, F.A.; Ahmad, R.; Patel, R. Synthesis and interfacial properties of novel benzimidazolium based gemini surfactants and their binding with crocin. Ind. Eng. Chem. Res., 2020, 59(37), 16283-16295.
[http://dx.doi.org/10.1021/acs.iecr.0c02824]
[23]
Parray, M.; Mir, M.U.H.; Dohare, N.; Maurya, N.; Khan, A.B.; Borse, M.S.; Patel, R. Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin. J. Mol. Liq., 2018, 260, 65-77.
[http://dx.doi.org/10.1016/j.molliq.2018.03.070]
[24]
Siddiquee, M.A.; Parray, M.; Mehdi, S.H.; Alzahrani, K.A.; Alshehri, A.A.; Malik, M.A.; Patel, R. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Mater. Chem. Phys., 2020, 242, 122493.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122493]
[25]
Patel, R.; Maurya, N.; Parray, M.; Farooq, N.; Siddique, A.; Verma, K.L.; Dohare, N. Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. J. Mol. Recognit., 2018, 31(11), e2734.
[http://dx.doi.org/10.1002/jmr.2734] [PMID: 29920814]
[26]
Peters, T., Jr All about albumin: biochemistry, genetics, and medical applications; Academic press, 1995.
[27]
Bertucci, C.; Domenici, E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr. Med. Chem., 2002, 9(15), 1463-1481.
[http://dx.doi.org/10.2174/0929867023369673] [PMID: 12173977]
[28]
Rabbani, G.; Ahn, S.N. Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int. J. Biol. Macromol., 2021, 193(Pt A), 948-955.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.095] [PMID: 34673106]
[29]
Tayyab, S.; Feroz, S.R. Serum albumin: Clinical significance of drug binding and development as drug delivery vehicle. Adv. Protein Chem. Struct. Biol., 2021, 123, 193-218.
[http://dx.doi.org/10.1016/bs.apcsb.2020.08.003] [PMID: 33485484]
[30]
Rondeau, P.; Bourdon, E. The glycation of albumin: Structural and functional impacts. Biochimie, 2011, 93(4), 645-658.
[http://dx.doi.org/10.1016/j.biochi.2010.12.003] [PMID: 21167901]
[31]
Nakatani, S.; Yasukawa, K.; Ishimura, E.; Nakatani, A.; Toi, N.; Uedono, H.; Tsuda, A.; Yamada, S.; Ikeda, H.; Mori, K.; Emoto, M.; Yatomi, Y.; Inaba, M. Non-mercaptalbumin, oxidized form of serum albumin, significantly associated with renal function and anemia in chronic kidney disease patients. Sci. Rep., 2018, 8(1), 16796.
[http://dx.doi.org/10.1038/s41598-018-35177-x] [PMID: 30429539]
[32]
Azeem, K.; Ahmed, M.; Mohammad, T.; Uddin, A.; Shamsi, A.; Hassan, M.I.; Singh, S.; Patel, R.; Abid, M. A multi-spectroscopic and computational simulations study to delineate the interaction between antimalarial drug hydroxychloroquine and human serum albumin. J. Biomol. Struct. Dyn., 2022, 1-17.
[http://dx.doi.org/10.1080/07391102.2022.2107077] [PMID: 35924780]
[33]
Behera, S.; Mohanty, P.; Behura, R.; Nath, B.; Barick, A.K.; Jali, B.R. Antibacterial properties of quinoline derivatives: A mini-review. Biointerface Res. Appl. Chem., 2021, 12(5), 6078-6092.
[34]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance. Int. J. Parasitol., 1997, 27(2), 231-240.
[http://dx.doi.org/10.1016/S0020-7519(96)00152-X] [PMID: 9088993]
[35]
Ducharme, J.; Farinotti, R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin. Pharmacokinet., 1996, 31(4), 257-274.
[http://dx.doi.org/10.2165/00003088-199631040-00003] [PMID: 8896943]
[36]
Sibley, C.H.; Guerin, P.J.; Ringwald, P. Monitoring antimalarial resistance: Launching a cooperative effort. Trends Parasitol., 2010, 26(5), 221-224.
[http://dx.doi.org/10.1016/j.pt.2010.02.008] [PMID: 20304706]
[37]
Kandeel, M.; Kitade, Y. Analysis of the molecular interactions and complexation of chloroquine with bovine serum albumin. Drug Metabol. Drug Interact., 2012, 27(1), 41-46.
[http://dx.doi.org/10.1515/dmdi.2011.030]
[38]
Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today, 2020, 25(11), 2012-2022.
[http://dx.doi.org/10.1016/j.drudis.2020.09.010] [PMID: 32947043]
[39]
Stevens, D.M.; Crist, R.M.; Stern, S.T. Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules, 2020, 26(1), 175.
[http://dx.doi.org/10.3390/molecules26010175] [PMID: 33396545]
[40]
Tunç, S.; Duman, O.; Bozoğlan, B.K. Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques. J. Lumin., 2013, 140, 87-94.
[http://dx.doi.org/10.1016/j.jlumin.2013.03.015]
[41]
Cortopassi, W.A.; Gunderson, E.; Annunciato, Y.; Silva, A.E.S.; dos Santos, F.A.; Garcia Teles, C.B.; Pimentel, A.S.; Ramamoorthi, R.; Gazarini, M.L.; Meneghetti, M.R.; Guido, R.V.C.; Pereira, D.B.; Jacobson, M.P.; Krettli, A.U.; Caroline, C.A.A. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int. J. Parasitol. Drugs Drug Resist., 2022, 20, 121-128.
[http://dx.doi.org/10.1016/j.ijpddr.2022.10.003] [PMID: 36375339]
[42]
da Silva Neto, G.J.; Silva, L.R.; de Omena, R.J.M.; Aguiar, A.C.C.; Annunciato, Y.; Rossetto, B.S.; Gazarini, M.L.; Heimfarth, L.; Quintans-Júnior, L.J.; da Silva-Júnior, E.F.; Meneghetti, M.R. Dual quinoline-hybrid compounds with antimalarial activity against Plasmodium falciparum parasites. New J. Chem., 2022, 46(14), 6502-6518.
[http://dx.doi.org/10.1039/D1NJ05598D]
[43]
Rogóż, W.; Lemańska, O.; Pożycka, J.; Owczarzy, A.; Kulig, K.; Muhammetoglu, T.; Maciążek-Jurczyk, M. Spectroscopic analysis of an antimalarial drug’s (Quinine) influence on human serum albumin reduction and antioxidant potential. Molecules, 2022, 27(18), 6027.
[http://dx.doi.org/10.3390/molecules27186027] [PMID: 36144764]
[44]
Boonyasuppayakorn, S.; Reichert, E.D.; Manzano, M.; Nagarajan, K.; Padmanabhan, R. Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antiviral Res., 2014, 106, 125-134.
[http://dx.doi.org/10.1016/j.antiviral.2014.03.014] [PMID: 24680954]
[45]
Olliaro, P.L.; Mussano, P. Amodiaquine for treating malaria. Cochrane Database Syst. Rev., 2003, 2000(2), CD000016.
[http://dx.doi.org/10.1002/14651858.CD000016]
[46]
Samari, F.; Shamsipur, M.; Hemmateenejad, B.; Khayamian, T.; Gharaghani, S. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling. Eur. J. Med. Chem., 2012, 54, 255-263.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.007] [PMID: 22658498]
[47]
Singh, S.; Sharma, K.; Awasthi, S.K. The interaction of (7-chloroquinolin-4-yl)-(2,5-dimethoxyphenyl)-amine hydrochloride dihydrate with serum albumin proteins, inputs from spectroscopic, molecular docking and X-ray diffraction studies. RSC Advances, 2015, 5(104), 85854-85861.
[http://dx.doi.org/10.1039/C5RA02815A]
[48]
Wu, W.; Liang, Y.; Wu, G.; Su, Y.; Zhang, H.; Zhang, Z.; Deng, C.; Wang, Q.; Huang, B.; Tan, B.; Zhou, C.; Song, J. Effect of artemisinin-piperaquine treatment on the electrocardiogram of malaria patients. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180453.
[http://dx.doi.org/10.1590/0037-8682-0453-2018] [PMID: 31141053]
[49]
Davis, T.M.E.; Hung, T.Y.; Sim, I.K.; Karunajeewa, H.A.; Ilett, K.F. Piperaquine. Drugs, 2005, 65(1), 75-87.
[http://dx.doi.org/10.2165/00003495-200565010-00004] [PMID: 15610051]
[50]
Chinh, N.T.; Travers, T.; Edstein, M.D.; Thanh, N.X.; Dai, B.; Quang, N.N. Pharmacokinetics of the antimalarial drug piperaquine in healthy Vietnamese subjects. Am. J. Trop. Med. Hyg., 2008, 79(4), 620-623.
[http://dx.doi.org/10.4269/ajtmh.2008.79.620] [PMID: 18840754]
[51]
Ma, R.; Guo, D.X.; Li, H.F.; Liu, H.X.; Zhang, Y.R.; Ji, J.B.; Xing, J.; Wang, S.Q. Spectroscopic methodologies and molecular docking studies on the interaction of antimalarial drug piperaquine and its metabolites with human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 222, 117158.
[http://dx.doi.org/10.1016/j.saa.2019.117158] [PMID: 31181505]
[52]
Huang, L.; Sok, V.; Aslam-Mir, U.; Marzan, F.; Whalen, M.; Rosenthal, P.J.; Aweeka, F. Determination of unbound piperaquine in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatography Open, 2022, 2, 100042.
[http://dx.doi.org/10.1016/j.jcoa.2022.100042] [PMID: 35531322]
[53]
Gupta, Y.K.; Gupta, M.; Aneja, S.; Kohli, K. Current drug therapy of protozoal diarrhoea. Indian J. Pediatr., 2004, 71(1), 55-58.
[http://dx.doi.org/10.1007/BF02725657] [PMID: 14979387]
[54]
Phopin, K.; Sinthupoom, N.; Treeratanapiboon, L.; Kunwittaya, S.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes. EXCLI J., 2016, 15, 144-152.
[PMID: 27103894]
[55]
Ruankham, W.; Phopin, K.; Pingaew, R.; Prachayasittikul, S.; Prachayasittikul, V.; Tantimongcolwat, T. In silico and multi-spectroscopic analyses on the interaction of 5-amino-8-hydroxyquinoline and bovine serum albumin as a potential anticancer agent. Sci. Rep., 2021, 11(1), 20187.
[http://dx.doi.org/10.1038/s41598-021-99690-2] [PMID: 34642420]
[56]
Terkuile, F.; White, N.J.; Holloway, P.; Pasvol, G.; Krishna, S. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol., 1993, 76(1), 85-95.
[http://dx.doi.org/10.1006/expr.1993.1010] [PMID: 8467901]
[57]
Veerappan, A.; Eichhorn, T.; Zeino, M.; Efferth, T.; Schneider, D. Differential interactions of the broad spectrum drugs artemisinin, dihydroartemisinin and artesunate with serum albumin. Phytomedicine, 2013, 20(11), 969-974.
[http://dx.doi.org/10.1016/j.phymed.2013.04.003] [PMID: 23684544]
[58]
Titulaer, H A C.; Zuidema, J.; Kager, P.A.; Wetsteyn, J.C F M.; Lugt, C.B.; Merkus, F.W.H.M. The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to volunteers. J. Pharm. Pharmacol., 2011, 42(11), 810-813.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07030.x] [PMID: 1982311]
[59]
Olliaro, P.L.; Nair, N.K.; Sathasivam, K.; Mansor, S.M.; Navaratnam, V. Pharmacokinetics of artesunate after single oral administration to rats. BMC Pharmacol., 2001, 1(1), 12.
[http://dx.doi.org/10.1186/1471-2210-1-12] [PMID: 11835690]
[60]
Jeong, H.; Ranallo, S.; Rossetti, M.; Heo, J.; Shin, J.; Park, K.; Ricci, F.; Hong, J. Electronic activation of a DNA nanodevice using a multilayer nanofilm. Small, 2016, 12(40), 5572-5578.
[http://dx.doi.org/10.1002/smll.201601273] [PMID: 27577954]
[61]
Ginosyan, S.; Grabski, H.; Tiratsuyan, S. In vitro and in silico determination of the interaction of artemisinin with human serum albumin. Mol. Biol., 2020, 54(4), 653-666.
[PMID: 32799228]
[62]
Ginosyan, S.; Grabski, H.; Tiratsuyan, S. In vitro and in silico identification of the mechanism of interaction of antimalarial drug–artemisinin with human serum albumin and genomic DNA. bioRxiv, 2019, 519710.
[http://dx.doi.org/10.1101/519710]
[63]
Primikyri, A.; Papamokos, G.; Venianakis, T.; Sakka, M.; Kontogianni, V.G.; Gerothanassis, I.P. Structural basis of artemisinin binding sites in serum albumin with the combined use of nmr and docking calculations. Molecules, 2022, 27(18), 5912.
[http://dx.doi.org/10.3390/molecules27185912] [PMID: 36144648]
[64]
Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr., 2000, 130(9), 2243-2250.
[http://dx.doi.org/10.1093/jn/130.9.2243] [PMID: 10958819]
[65]
Pal, H.C.; Pearlman, R.L.; Afaq, F. Fisetin and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 213-244.
[http://dx.doi.org/10.1007/978-3-319-41334-1_10]
[66]
Jin, H.; Xu, Z.; Cui, K.; Zhang, T.; Lu, W.; Huang, J. Dietary flavonoids fisetin and myricetin: Dual inhibitors of Plasmodium falciparum falcipain-2 and plasmepsin II. Fitoterapia, 2014, 94, 55-61.
[http://dx.doi.org/10.1016/j.fitote.2014.01.017] [PMID: 24468190]
[67]
Singha Roy, A.; Kumar Dinda, A.; Dasgupta, S. Study of the interaction between fisetin and human serum albumin: A biophysical approach. Protein Pept. Lett., 2012, 19(6), 604-615.
[http://dx.doi.org/10.2174/092986612800493995] [PMID: 22519532]
[68]
Park, J.M.; Do, V.; Seo, Y.S.; Duong, M.; Ahn, H.C.; Huh, H.; Lee, M.Y. Application of fisetin to the quantitation of serum albumin. J. Clin. Med., 2020, 9(2), 459.
[http://dx.doi.org/10.3390/jcm9020459] [PMID: 32046075]
[69]
Awasthi, S.; Saraswathi, N.T. Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. J. Biomol. Struct. Dyn., 2016, 34(10), 2224-2232.
[http://dx.doi.org/10.1080/07391102.2015.1110835] [PMID: 26488200]
[70]
Okeola, V.O.; Adaramoye, O.A.; Nneji, C.M.; Falade, C.O.; Farombi, E.O.; Ademowo, O.G. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelli nigeriensis. Parasitol. Res., 2011, 108(6), 1507-1512.
[http://dx.doi.org/10.1007/s00436-010-2204-4] [PMID: 21153838]
[71]
Ali, M.S.; Rehman, M.T.; Al-Lohedan, H.; AlAjmi, M.F. Spectroscopic and molecular docking investigation on the interaction of cumin components with plasma protein: Assessment of the comparative interactions of aldehyde and alcohol with human serum albumin. Int. J. Mol. Sci., 2022, 23(8), 4078.
[http://dx.doi.org/10.3390/ijms23084078] [PMID: 35456897]
[72]
Andromeda, S.E.; Berbudi, A. The role of curcumin as an antimalarial agent. Systematic Reviews in Pharmacy, 2020, 11(7), 18-25.
[73]
Kar, T.; Basak, P.; Sen, S.; Ghosh, R.K.; Bhattacharyya, M. Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation. Front. Biol., 2017, 12(3), 199-209.
[http://dx.doi.org/10.1007/s11515-017-1449-z]
[74]
Sahoo, B.K.; Ghosh, K.S.; Dasgupta, S. Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers, 2009, 91(2), 108-119.
[http://dx.doi.org/10.1002/bip.21092] [PMID: 18814316]
[75]
Hudson, E.A.; de Paula, H.M.C.; Ferreira, G.M.D.; Ferreira, G.M.D.; Hespanhol, M.C.; da Silva, L.H.M.; Pires, A.C.S. Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding. Food Chem., 2018, 242, 505-512.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.092] [PMID: 29037721]
[76]
Peng, X.; Wang, J.; Peng, W.; Wu, F-X.; Pan, Y. Protein-protein interactions: Detection, reliability assessment and applications. Brief. Bioinform., 2017, 18(5), 798-819.
[PMID: 27444371]
[77]
Behjati Hosseini, S.; Asadzadeh-Lotfabad, M.; Erfani, M.; Babayan-Mashhadi, F.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. A novel vision into the binding behavior of curcumin with human serum albumin-holo transferrin complex: molecular dynamic simulation and multi-spectroscopic perspectives. J. Biomol. Struct. Dyn., 2021, 1-19.
[PMID: 34328379]
[78]
Jahanban-Esfahlan, A.; Roufegarinejad, L.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Amarowicz, R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, 207, 120317.
[http://dx.doi.org/10.1016/j.talanta.2019.120317] [PMID: 31594596]
[79]
Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci., 2012, 112, 31-88.
[http://dx.doi.org/10.1016/B978-0-12-415813-9.00003-9] [PMID: 22974737]
[80]
Hu, X.L.; Gao, C.; Xu, Z.; Liu, M.L.; Feng, L.S.; Zhang, G.D. Recent development of coumarin derivatives as potential antiplasmodial and antimalarial agents. Curr. Top. Med. Chem., 2018, 18(2), 114-123.
[http://dx.doi.org/10.2174/1568026618666171215101158] [PMID: 29243579]
[81]
Yeggoni, D.P.; Gokara, M.; Mark Manidhar, D.; Rachamallu, A.; Nakka, S.; Reddy, C.S.; Subramanyam, R. Binding and molecular dynamics studies of 7-hydroxycoumarin derivatives with human serum albumin and its pharmacological importance. Mol. Pharm., 2014, 11(4), 1117-1131.
[http://dx.doi.org/10.1021/mp500051f] [PMID: 24495045]
[82]
Khan, S.; Zafar, A.; Naseem, I. Probing the interaction of a coumarin-di(2-picolyl)amine hybrid drug-like molecular entity with human serum albumin: Multiple spectroscopic and molecular modeling techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 223, 117330.
[http://dx.doi.org/10.1016/j.saa.2019.117330] [PMID: 31280128]
[83]
Sharma, K.; Yadav, P.; Sharma, B.; Pandey, M.; Awasthi, S.K. Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies. J. Mol. Recognit., 2020, 33(6), e2834.
[http://dx.doi.org/10.1002/jmr.2834] [PMID: 32017307]
[84]
Pillai, L.S.; Nair, B.R. Molecular docking studies using Sinigrin and Tamoxifen. J. Pharmacogn. Phytochem., 2018, 7(2), 3217-3221.
[85]
Walter, N.S.; Gorki, V.; Chauhan, M.; Dhingra, N.; Kaur, S. Sinigrin in combination with artesunate provides protection against lethal murine malaria via falcipain-3 inhibition and immune modulation. Int. Immunopharmacol., 2021, 101(Pt A), 108320.
[http://dx.doi.org/10.1016/j.intimp.2021.108320] [PMID: 34741871]
[86]
Toovey, S. Mefloquine neurotoxicity: A literature review. Travel Med. Infect. Dis., 2009, 7(1), 2-6.
[http://dx.doi.org/10.1016/j.tmaid.2008.12.004] [PMID: 19174293]
[87]
Lee, S.J.; ter Kuile, F.O.; Price, R.N.; Luxemburger, C.; Nosten, F. Adverse effects of mefloquine for the treatment of uncomplicated malaria in Thailand: A pooled analysis of 19, 850 individual patients. PLoS One, 2017, 12(2), e0168780.
[http://dx.doi.org/10.1371/journal.pone.0168780] [PMID: 28192434]
[88]
Musa, K.A.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S. Combination mode of antimalarial drug mefloquine and human serum albumin: Insights from spectroscopic and docking approaches. Biopolymers, 2020, 111(2), e23337.
[http://dx.doi.org/10.1002/bip.23337] [PMID: 31691964]
[89]
Organization, W.H. Guidelines for the treatment of malaria; World Health Organization, 2015.
[90]
Musa, K.A.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies. J. Biomol. Struct. Dyn., 2021, 39(2), 691-702.
[http://dx.doi.org/10.1080/07391102.2020.1713215] [PMID: 31913089]
[91]
Mishra, K.; Dash, A.P.; Dey, N. Andrographolide: A novel antimalarial diterpene lactone compound from andrographis paniculata and its interaction with curcumin and artesunate. J. Trop. Med., 2011, 2011, 579518.
[http://dx.doi.org/10.1155/2011/579518]
[92]
Yeggoni, D.P.; Kuehne, C.; Rachamallu, A.; Subramanyam, R. Elucidating the binding interaction of andrographolide with the plasma proteins: Biophysical and computational approach. RSC Advances, 2017, 7(9), 5002-5012.
[http://dx.doi.org/10.1039/C6RA25671F]
[93]
Bhattacharjee, M.K. In Chemistry of antibiotics and related drugs; Springer, 2016, pp. 95-108.
[http://dx.doi.org/10.1007/978-3-319-40746-3_4]
[94]
Bareng, A.P.; Espino, F.E.; Chaijaroenkul, W.; Na-Bangchang, K. Molecular monitoring of dihydrofolatereductase (dhfr) and dihydropteroatesynthetase (dhps) associated with sulfadoxine-pyrimethamine resistance in Plasmodium vivax isolates of Palawan, Philippines. Acta Trop., 2018, 180, 81-87.
[http://dx.doi.org/10.1016/j.actatropica.2018.01.006] [PMID: 29352991]
[95]
Bagalkoti, J.T.; Joshi, S.D.; Nandibewoor, S.T. Spectral and molecular modelling studies of sulfadoxine interaction with bovine serum albumin. J. Photochem. Photobiol. Chem., 2019, 382, 111871.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111871]
[96]
Francis, J.A.; Shalauddin, M.; Ridzwan, N.F.W.; Mohamad, S.B.; Basirun, W.J.; Tayyab, S. Interaction mechanism of an antimalarial drug, sulfadoxine with human serum albumin. Spectrosc. Lett., 2020, 53(5), 391-405.
[http://dx.doi.org/10.1080/00387010.2020.1764588]
[97]
Zsila, F.; Visy, J.; Mády, G.; Fitos, I. Selective plasma protein binding of antimalarial drugs to α1-acid glycoprotein. Bioorg. Med. Chem., 2008, 16(7), 3759-3772.
[http://dx.doi.org/10.1016/j.bmc.2008.01.053] [PMID: 18289858]
[98]
Najahi, E.; Valentin, A.; Fabre, P.L.; Reybier, K.; Nepveu, F. 2-Aryl-3H-indol-3-ones: Synthesis, electrochemical behaviour and antiplasmodial activities. Eur. J. Med. Chem., 2014, 78, 269-274.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.059] [PMID: 24686013]
[99]
Nepveu, F.; Kim, S.; Boyer, J.; Chatriant, O.; Ibrahim, H.; Reybier, K.; Monje, M.C.; Chevalley, S.; Perio, P.; Lajoie, B.H.; Bouajila, J.; Deharo, E.; Sauvain, M.; Tahar, R.; Basco, L.; Pantaleo, A.; Turini, F.; Arese, P.; Valentin, A.; Thompson, E.; Vivas, L.; Petit, S.; Nallet, J.P. Synthesis and antiplasmodial activity of new indolone N-oxide derivatives. J. Med. Chem., 2010, 53(2), 699-714.
[http://dx.doi.org/10.1021/jm901300d] [PMID: 20014857]
[100]
Rakotoarivelo, N.V.; Perio, P.; Najahi, E.; Nepveu, F. Interaction between antimalarial 2-aryl-3H-indol-3-one derivatives and human serum albumin. J. Phys. Chem. B, 2014, 118(47), 13477-13485.
[http://dx.doi.org/10.1021/jp507569e] [PMID: 25360713]
[101]
Pasricha, S.; Sharma, D.; Ojha, H.; Gahlot, P.; Pathak, M.; Basu, M.; Chawla, R.; Singhal, S.; Singh, A.; Goel, R.; Kukreti, S.; Shukla, S. Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin. Luminescence, 2017, 32(7), 1252-1262.
[http://dx.doi.org/10.1002/bio.3319] [PMID: 28512990]
[102]
Gupta, S.P. Hydroxamic acids: a unique family of chemicals with multiple biological activities; Springer, 2013.
[http://dx.doi.org/10.1007/978-3-642-38111-9]
[103]
Vinh, N.B.; Drinkwater, N.; Malcolm, T.R.; Kassiou, M.; Lucantoni, L.; Grin, P.M.; Butler, G.S.; Duffy, S.; Overall, C.M.; Avery, V.M.; Scammells, P.J.; McGowan, S. Hydroxamic acid inhibitors provide cross-species inhibition of Plasmodium M1 and M17 aminopeptidases. J. Med. Chem., 2019, 62(2), 622-640.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01310] [PMID: 30537832]
[104]
Agrawal, R.; Siddiqi, M.K.; Thakur, Y.; Tripathi, M.; Asatkar, A.K.; Khan, R.H.; Pande, R. Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity. Luminescence, 2019, 34(6), 628-643.
[http://dx.doi.org/10.1002/bio.3645] [PMID: 31190435]
[105]
Tuite, E.M.; Kelly, J.M. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J. Photochem. Photobiol. B, 1993, 21(2-3), 103-124.
[http://dx.doi.org/10.1016/1011-1344(93)80173-7] [PMID: 8301408]
[106]
Kishen, A.; Upadya, M.; Tegos, G.P.; Hamblin, M.R. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem. Photobiol., 2010, 86(6), 1343-1349.
[http://dx.doi.org/10.1111/j.1751-1097.2010.00792.x] [PMID: 20860692]
[107]
Vennerstrom, J.L.; Makler, M.T.; Angerhofer, C.K.; Williams, J.A. Antimalarial dyes revisited: Xanthenes, azines, oxazines, and thiazines. Antimicrob. Agents Chemother., 1995, 39(12), 2671-2677.
[http://dx.doi.org/10.1128/AAC.39.12.2671] [PMID: 8593000]
[108]
Das, S.; Islam, M.M.; Jana, G.C.; Patra, A.; Jha, P.K.; Hossain, M. Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study. J. Mol. Recognit., 2017, 30(7), e2609.
[http://dx.doi.org/10.1002/jmr.2609] [PMID: 28101950]
[109]
Yadav, P.; Sharma, B.; Sharma, C.; Singh, P.; Awasthi, S.K. Interaction between the antimalarial drug dispiro-tetraoxanes and human serum albumin: A combined study with spectroscopic methods and computational studies. ACS Omega, 2020, 5(12), 6472-6480.
[http://dx.doi.org/10.1021/acsomega.9b04095] [PMID: 32258882]
[110]
Fonte, M.; Tassi, N.; Gomes, P.; Teixeira, C. Acridine-based antimalarials—from the very first synthetic antimalarial to recent developments. Molecules, 2021, 26(3), 600.
[http://dx.doi.org/10.3390/molecules26030600] [PMID: 33498868]
[111]
de M Silva, M.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Soares, M.B.P.; da C Pereira, A.L.; de L Serafim, V.; Mendonça-Júnior, F.J.B.; do Carmo A de Lima, M.; de Moura, R.O.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X.; de A Dantas, M.D.; de O O Nascimento, E.; Maciel, T.M.S.; de Aquino, T.M.; Figueiredo, I.M.; Santos, J.C.C. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. J. Photochem. Photobiol. B, 2018, 189, 165-175.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.016] [PMID: 30366283]
[112]
Liu, H.; Qin, Y.; Zhai, D.; Zhang, Q.; Gu, J.; Tang, Y.; Yang, J.; Li, K.; Yang, L.; Chen, S.; Zhong, W.; Meng, J.; Liu, Y.; Sun, T.; Yang, C. Antimalarial drug pyrimethamine plays a dual role in antitumor proliferation and metastasis through targeting DHFR and TP. Mol. Cancer Ther., 2019, 18(3), 541-555.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0936] [PMID: 30642883]
[113]
Ramakrishnan, G.; Chandra, N.; Srinivasan, N. Exploring anti-malarial potential of FDA approved drugs: An in silico approach. Malar. J., 2017, 16(1), 290.
[http://dx.doi.org/10.1186/s12936-017-1937-2] [PMID: 28720135]
[114]
Musa, K.A.; Ning, T.; Mohamad, S.B.; Tayyab, S. Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study. J. Mol. Liq., 2020, 311, 113270.
[http://dx.doi.org/10.1016/j.molliq.2020.113270]
[115]
Winter, R.W.; Kelly, J.X.; Smilkstein, M.J.; Dodean, R.; Bagby, G.C.; Rathbun, R.K.; Levin, J.I.; Hinrichs, D.; Riscoe, M.K. Evaluation and lead optimization of anti-malarial acridones. Exp. Parasitol., 2006, 114(1), 47-56.
[http://dx.doi.org/10.1016/j.exppara.2006.03.014] [PMID: 16828746]
[116]
Winter, R.W.; Kelly, J.X.; Smilkstein, M.J.; Dodean, R.; Hinrichs, D.; Riscoe, M.K. Antimalarial quinolones: Synthesis, potency, and mechanistic studies. Exp. Parasitol., 2008, 118(4), 487-497.
[http://dx.doi.org/10.1016/j.exppara.2007.10.016] [PMID: 18082162]
[117]
Balogun, T.A.; Omoboyowa, D.A.; Saibu, O.A. In silico anti-malaria activity of quinolone compounds against Plasmodium falciparum dihydrofolate reductase (pfDHFR). Int. J. Biochem. Res. Rev., 2020, 29(8), 10-17.
[http://dx.doi.org/10.9734/ijbcrr/2020/v29i830208]
[118]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[119]
Verma, G.; Khan, M.F.; Mohan Nainwal, L.; Ishaq, M.; Akhter, M.; Bakht, A.; Anwer, T.; Afrin, F.; Islamuddin, M.; Husain, I.; Alam, M.M.; Shaquiquzzaman, M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg. Chem., 2019, 89, 102986.
[http://dx.doi.org/10.1016/j.bioorg.2019.102986] [PMID: 31146198]
[120]
Ladani, G.G.; Patel, M.P. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J. Chem., 2015, 39(12), 9848-9857.
[http://dx.doi.org/10.1039/C5NJ02566D]
[121]
Al-Wahaibi, L.H.; Santhosh Kumar, N.; El-Emam, A.A.; Venkataramanan, N.S.; Ghabbour, H.A.; Al-Tamimi, A.M.S.; Percino, J.; Thamotharan, S. Investigation of potential anti-malarial lead candidate 2-(4-fluorobenzylthio)-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole: Insights from crystal structure, DFT, QTAIM and hybrid QM/MM binding energy analysis. J. Mol. Struct., 2019, 1175, 230-240.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.102]
[122]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1, 3, 4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[123]
Laskar, K.; Alam, P.; Khan, R.H.; Rauf, A. Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): A combined multi-spectroscopic and molecular docking study. Eur. J. Med. Chem., 2016, 122, 72-78.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.012] [PMID: 27343854]
[124]
Mishra, N.P.; Satish, L.; Mohapatra, S.; Nayak, S.; Sahoo, H. A spectroscopic insight into the interaction of chromene 1,2,4-oxadiazole-based compounds with bovine serum albumin. Res. Chem. Intermed., 2021, 47(3), 1181-1195.
[http://dx.doi.org/10.1007/s11164-020-04323-4]
[125]
Rudrapal, M.; Chetia, D. Plant flavonoids as potential source of future antimalarial leads. System. Rev. Pharm., 2016, 8(1), 13-18.
[http://dx.doi.org/10.5530/srp.2017.1.4]
[126]
Hidayati, A.R.; Widyawaruyanti, A.; Ilmi, H.; Tanjung, M.; Widiandani, T.; Siswandono S, S.; Syafruddin, D.; Hafid, A.F. Antimalarial activity of flavonoid compound isolated from leaves of artocarpus altilis. Pharmacogn. J., 2020, 12(4), 835-842.
[http://dx.doi.org/10.5530/pj.2020.12.120]
[127]
Olusola, A.; Ogunsina, O.; Olusola, A. Antimalarial potential of flavonoid-rich extract of Lannea acida and chloroquine in mice infected with Plasmodium berghei. Int. J. Sci. Eng. Res., 2020, 11(3), 201-206.
[128]
Herlina, T.; Rudiana, T.; Julaeha, E.; Parubak, A. In Journal of Physics: Conference Series. IOP Publishing, 2019, 1280, 022010.
[129]
Francis, P.; Suseem, S.R. Antimalarial potential of isolated flavonoids-a review. Res. J. Pharm. Technol., 2017, 10(11), 4057-4062.
[http://dx.doi.org/10.5958/0974-360X.2017.00736.3]
[130]
Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 2021, 26(13), 4021.
[http://dx.doi.org/10.3390/molecules26134021] [PMID: 34209338]
[131]
Rauf, A.; Raza, M.; Humayun Khan, M.; Hemeg, H.A.; Al-Awthan, Y.S.; Bahattab, O.; Bawazeer, S.; Naz, S.; Basoglu, F.; Saleem, M.; Khan, M.; Seyyedamirhossein, H.; Mubarak, M.S.; Erdogan, O.I. In vitro and in silico studies on clinically important enzymes inhibitory activities of flavonoids isolated from Euphorbia pulcherrima. Ann. Med., 2022, 54(1), 495-506.
[http://dx.doi.org/10.1080/07853890.2022.2033826] [PMID: 35112936]
[132]
Medić-Šarić, M.; Rastija, V.; Bojić, M.; Maleš, Ž. From functional food to medicinal product: Systematic approach in analysis of polyphenolics from propolis and wine. Nutr. J., 2009, 8(1), 33.
[http://dx.doi.org/10.1186/1475-2891-8-33] [PMID: 19624827]
[133]
Bolli, A.; Marino, M.; Rimbach, G.; Fanali, G.; Fasano, M.; Ascenzi, P. Flavonoid binding to human serum albumin. Biochem. Biophys. Res. Commun., 2010, 398(3), 444-449.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.096] [PMID: 20599706]
[134]
Liu, S.; Guo, C.; Guo, Y.; Yu, H.; Greenaway, F.; Sun, M-Z. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin. Iran. J. Pharm. Res., 2014, 13(3), 1019-1028.
[PMID: 25276204]
[135]
Wang, B.; Qin, Q.; Chang, M.; Li, S.; Shi, X.; Xu, G. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Anal. Bioanal. Chem., 2018, 410(3), 827-837.
[http://dx.doi.org/10.1007/s00216-017-0564-7] [PMID: 28840311]
[136]
Zothantluanga, J.H.; Aswin, S.K.; Rudrapal, M.; Cheita, D. ntimalarial flavonoid-glycoside from acacia pennata with inhibitory potential against PfDHFR-TS: An in silico study. Biointerface Res. Appl. Chem., 2021, 12(4), 4871-4887.
[137]
Chaianantakul, N.; Sirawaraporn, R.; Sirawaraporn, W. Insights into the role of the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Malar. J., 2013, 12(1), 91.
[http://dx.doi.org/10.1186/1475-2875-12-91] [PMID: 23497065]
[138]
Xue, P.; Zhang, G.; Zhang, J.; Ren, L. Interaction of flavonoids with serum albumin: A review. Curr. Protein Pept. Sci., 2021, 22(3), 217-227.
[http://dx.doi.org/10.2174/1389203721666201109112220] [PMID: 33167830]
[139]
Gujjari, L.; Kalani, H.; Pindiprolu, S.K.; Arakareddy, B.P.; Yadagiri, G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control, 2022, 17, e00244.
[http://dx.doi.org/10.1016/j.parepi.2022.e00244] [PMID: 35243049]
[140]
Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[141]
Sidhaye, A.A.; Bhuran, K.C.; Zambare, S.; Abubaker, M.; Nirmalan, N.; Singh, K.K. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine, 2016, 11(21), nnm-2016-0235.
[http://dx.doi.org/10.2217/nnm-2016-0235] [PMID: 27759489]
[142]
Bannister, L.H.; Hopkins, J.M.; Fowler, R.E.; Krishna, S.; Mitchell, G.H. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today, 2000, 16(10), 427-433.
[http://dx.doi.org/10.1016/S0169-4758(00)01755-5] [PMID: 11006474]
[143]
Krishna, S.; Uhlemann, A.; Haynes, R. Artemisinins: Mechanisms of action and potential for resistance. Drug Resist. Updat., 2004, 7(4-5), 233-244.
[http://dx.doi.org/10.1016/j.drup.2004.07.001] [PMID: 15533761]
[144]
Boateng-Marfo, Y.; Dong, Y.; Loh, Z.H.; Lin, H.; Ng, W.K. Intravenous human serum albumin (HSA)-bound artemether nanoparticles for treatment of severe malaria. Colloids Surf. A Physicochem. Eng. Asp., 2018, 536, 20-29.
[http://dx.doi.org/10.1016/j.colsurfa.2017.08.016]
[145]
Memvanga, P.B.; Nkanga, C.I. Liposomes for malaria management: The evolution from 1980 to 2020. Malar. J., 2021, 20(1), 327.
[http://dx.doi.org/10.1186/s12936-021-03858-0] [PMID: 34315484]
[146]
Taguchi, K.; Okamoto, Y.; Matsumoto, K.; Otagiri, M.; Chuang, V. When albumin meets liposomes: A feasible drug carrier for biomedical applications. Pharmaceuticals, 2021, 14(4), 296.
[http://dx.doi.org/10.3390/ph14040296] [PMID: 33810483]
[147]
Wei, X.Q.; Ba, K. Construction a long-circulating delivery system of liposomal curcumin by coating albumin. ACS Omega, 2020, 5(27), 16502-16509.
[http://dx.doi.org/10.1021/acsomega.0c00930] [PMID: 32685814]
[148]
Peng, Q.; Zhang, S.; Yang, Q.; Zhang, T.; Wei, X.Q.; Jiang, L.; Zhang, C.L.; Chen, Q.M.; Zhang, Z.R.; Lin, Y.F. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013, 34(33), 8521-8530.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.102] [PMID: 23932500]
[149]
Mohapatra, P.; Chandrasekaran, N. Effects of black cumin-based antimalarial drug loaded with nano-emulsion of bovine and human serum albumins by spectroscopic and molecular docking studies. Heliyon, 2023, 9(1), e12677.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12677] [PMID: 36632107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy