Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Meta-Analysis

Blood-based microRNAs as Potential Diagnostic Biomarkers for Melanoma: A Meta-Analysis

Author(s): AmirHossein Aalami*, Hossein Abdeahad, Ali Mokhtari, Farnoosh Aalami, Amir Amirabadi, Ehsan Kargar Aliabadi, Omid Pirzade and Amirhossein Sahebkar*

Volume 31, Issue 31, 2024

Published on: 12 July, 2023

Page: [5083 - 5096] Pages: 14

DOI: 10.2174/0929867330666230509110111

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Circulating microRNAs (miRNAs) serve as noninvasive diagnostic markers in many cancers. This meta-analysis aims to evaluate the diagnostic efficacy of circulating microRNAs for melanoma.

Materials and Methods: The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and ROC curve were evaluated using the Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.3.3 software packages. To investigate the heterogeneity, the I2 and Chi-square tests were used. The publishing bias was evaluated using Begg’s rank correlation and Egger regression asymmetry tests.

Results: A total of 9 articles covering 13 studies (more than 50 miRs individually and in combination) were included, containing 1,355 participants (878 cases and 477 controls). The overall pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and AUC were 0.78 (95% CI: 0.76-0.81), 0.80 (95% CI: 0.77-0.83), 4.32 (95% CI: 3.21-5.82), 0.17 (95% CI: 0.09-0.32), 28.0 (95% CI: 15.34-51.09), and 0.91, respectively. According to Begg's and Egger's tests, there was no publication bias (Begg's p = 0.160 and Egger's p = 0.289).

Conclusion: Circulating miRNAs can serve as fair and non-invasive diagnostic biomarkers for melanoma. Additionally, specific miRNAs still need to be discovered for diagnosing melanoma.

Keywords: Malignant melanoma, circulating miRNAs, diagnostic, biomarker, skin cancer, ROC curve, meta-analysis.

[1]
Woźniak, M.; Nowak, M.; Lazebna, A.; Więcek, K.; Jabłońska, I.; Szpadel, K.; Grzeszczak, A.; Gubernator, J.; Ziółkowski, P. The comparison of in vitro photosensitizing efficacy of curcumin-loaded liposomes following photodynamic therapy on melanoma MUG-Mel2, squamous cell carcinoma SCC-25, and normal keratinocyte HaCaT cells. Pharmaceuticals, 2021, 14(4), 374.
[http://dx.doi.org/10.3390/ph14040374] [PMID: 33920669]
[2]
Cullen, J.K.; Simmons, J.L.; Parsons, P.G.; Boyle, G.M. Topical treatments for skin cancer. Adv. Drug Deliv. Rev., 2020, 153, 54-64.
[http://dx.doi.org/10.1016/j.addr.2019.11.002] [PMID: 31705912]
[3]
Nehal, K.S.; Bichakjian, C.K. Update on keratinocyte carcinomas. N. Engl. J. Med., 2018, 379(4), 363-374.
[http://dx.doi.org/10.1056/NEJMra1708701] [PMID: 30044931]
[4]
Haggenmüller, S.; Maron, R.C.; Hekler, A.; Utikal, J.S.; Barata, C.; Barnhill, R.L.; Beltraminelli, H.; Berking, C.; Betz-Stablein, B.; Blum, A.; Braun, S.A.; Carr, R.; Combalia, M.; Fernandez-Figueras, M.T.; Ferrara, G.; Fraitag, S.; French, L.E.; Gellrich, F.F.; Ghoreschi, K.; Goebeler, M.; Guitera, P.; Haenssle, H.A.; Haferkamp, S.; Heinzerling, L.; Heppt, M.V.; Hilke, F.J.; Hobelsberger, S.; Krahl, D.; Kutzner, H.; Lallas, A.; Liopyris, K.; Llamas-Velasco, M.; Malvehy, J.; Meier, F.; Müller, C.S.L.; Navarini, A.A.; Navarrete-Dechent, C.; Perasole, A.; Poch, G.; Podlipnik, S.; Requena, L.; Rotemberg, V.M.; Saggini, A.; Sangueza, O.P.; Santonja, C.; Schadendorf, D.; Schilling, B.; Schlaak, M.; Schlager, J.G.; Sergon, M.; Sondermann, W.; Soyer, H.P.; Starz, H.; Stolz, W.; Vale, E.; Weyers, W.; Zink, A.; Krieghoff-Henning, E.; Kather, J.N.; von Kalle, C.; Lipka, D.B.; Fröhling, S.; Hauschild, A.; Kittler, H.; Brinker, T.J. Skin cancer classification via convolutional neural networks: Systematic review of studies involving human experts. Eur. J. Cancer, 2021, 156, 202-216.
[http://dx.doi.org/10.1016/j.ejca.2021.06.049] [PMID: 34509059]
[5]
Shi, X.; Zhou, Q.; Huang, B.; Xia, S.; Jiang, Y.; Fang, S.; Lin, J. Prognostic and immune-related value of STK17B in skin cutaneous melanoma. PLoS One, 2022, 17(2), e0263311.
[http://dx.doi.org/10.1371/journal.pone.0263311] [PMID: 35171924]
[6]
Liu, C.; Liu, Y.; Yu, Y.; Zhao, Y.; Yu, A. Comprehensive analysis of ferroptosis-related genes and prognosis of cutaneous melanoma. BMC Med. Genomics, 2022, 15(1), 39.
[http://dx.doi.org/10.1186/s12920-022-01194-z] [PMID: 35232428]
[7]
Viale, P.H. The American Cancer Society’s facts & figures: 2020 edition. J. Adv. Pract. Oncol., 2020, 11(2), 135-136.
[PMID: 33532112]
[8]
Keyghobadi, N.; Rafiemanesh, H.; Mohammadian-Hafshejani, A.; Enayatrad, M.; Salehiniya, H. Epidemiology and trend of cancers in the province of Kerman: Southeast of Iran. Asian Pac. J. Cancer Prev., 2015, 16(4), 1409-1413.
[http://dx.doi.org/10.7314/APJCP.2015.16.4.1409] [PMID: 25743807]
[9]
Ma, Y.; Qu, S.; Xu, L.; Lu, H.; Li, B. An in vitro study of the effect of 5-ALA-mediated photodynamic therapy on oral squamous cell carcinoma. BMC Oral Health, 2020, 20(1), 258.
[http://dx.doi.org/10.1186/s12903-020-01239-8] [PMID: 32938451]
[10]
Akasov, R.A.; Sholina, N.V.; Khochenkov, D.A.; Alova, A.V.; Gorelkin, P.V.; Erofeev, A.S.; Generalova, A.N.; Khaydukov, E.V. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide. Sci. Rep., 2019, 9(1), 9679.
[http://dx.doi.org/10.1038/s41598-019-46115-w] [PMID: 31273268]
[11]
Trager, M.H.; Geskin, L.J.; Samie, F.H.; Liu, L. Biomarkers in melanoma and non-melanoma skin cancer prevention and risk stratification. Exp. Dermatol., 2022, 31(1), 4-12.
[http://dx.doi.org/10.1111/exd.14114] [PMID: 32415889]
[12]
Al Bitar, S.; Ballouz, T.; Doughan, S.; Gali-Muhtasib, H.; Rizk, N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J. Gastrointest. Pathophysiol., 2021, 12(4), 59-83.
[http://dx.doi.org/10.4291/wjgp.v12.i4.59] [PMID: 34354849]
[13]
Fathullahzadeh, S.; Mirzaei, H.; Honardoost, M.A.; Sahebkar, A.; Salehi, M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther., 2016, 23(10), 327-332.
[http://dx.doi.org/10.1038/cgt.2016.34] [PMID: 27659777]
[14]
Mirzaei, H.; Sahebkar, A.; Mohammadi, M.; Yari, R.; Salehi, H.; Jafari, M.; Namdar, A.; Khabazian, E.; Jaafari, M.; Mirzaei, H. Circulating micrornas in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers. Curr. Pharm. Des., 2016, 22(34), 5257-5269.
[http://dx.doi.org/10.2174/1381612822666160303110838] [PMID: 26935703]
[15]
Raji, S.; Sahranavard, M.; Mottaghi, M.; Sahebkar, A. MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: A systematic review and meta-analysis. Cancer Cell Int., 2022, 22(1), 163.
[http://dx.doi.org/10.1186/s12935-022-02584-0] [PMID: 35473623]
[16]
Aalami, A.H.; Abdeahad, H.; Mesgari, M.; Sahebkar, A. MicroRNA-223 in gastrointestinal cancers: A systematic review and diagnostic meta-analysis. Eur. J. Clin. Invest., 2021, 51(2), e13448.
[http://dx.doi.org/10.1111/eci.13448] [PMID: 33244751]
[17]
Aalami, A.H.; Abdeahad, H.; Shoghi, A.; Mesgari, M.; Amirabadi, A.; Sahebkar, A. Brain tumors and circulating micrornas: A systematic review and diagnostic meta-analysis. Expert Rev. Mol. Diagn., 2022, 22(2), 201-211.
[http://dx.doi.org/10.1080/14737159.2022.2019016] [PMID: 34906021]
[18]
Aalami, A.H.; Mesgari, M.; Sahebkar, A. Synthesis and characterization of green zinc oxide nanoparticles with antiproliferative effects through apoptosis induction and microRNA modulation in breast cancer cells. Bioinorganic chemistry and applications, 2020, 2020
[19]
Aalami, A.H.; Abdeahad, H.; Aalami, F.; Amirabadi, A. Can microRNAs be utilized as tumor markers for recurrence following nephrectomy in renal cell carcinoma patients? A meta-analysis provides the answer. Urologic oncology, 2023, 41(1), 52-e1-. e10.
[20]
Aalami, A.H.; Hoseinzadeh, M.; Hosseini Manesh, P.; Jiryai Sharahi, A.; Kargar Aliabadi, E. Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Mol. Biol. Rep., 2022, 49(12), 12227-12238.
[http://dx.doi.org/10.1007/s11033-022-07897-x] [PMID: 36269534]
[21]
Goradel, N.H.; Mohammadi, N.; Haghi-Aminjan, H.; Farhood, B.; Negahdari, B.; Sahebkar, A. Regulation of tumor angiogenesis by microRNAs: State of the art. J. Cell. Physiol., 2019, 234(2), 1099-1110.
[http://dx.doi.org/10.1002/jcp.27051] [PMID: 30070704]
[22]
Ahadi, A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life, 2020, 72(5), 884-898.
[http://dx.doi.org/10.1002/iub.2259] [PMID: 32078236]
[23]
Ghafouri-Fard, S.; Vafaee, R.; Shoorei, H.; Taheri, M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene, 2020, 757, 144937.
[http://dx.doi.org/10.1016/j.gene.2020.144937] [PMID: 32640300]
[24]
Fattahi, S.; Nikbakhsh, N.; Ranaei, M.; Sabour, D.; Akhavan-Niaki, H. Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci. Rep., 2021, 11(1), 1-12.
[PMID: 33414495]
[25]
Rahimi, H.R.; Mojarrad, M.; Moghbeli, M. MicroRNA-96: A therapeutic and diagnostic tumor marker. Iran. J. Basic Med. Sci., 2022, 25(1), 3-13.
[PMID: 35656454]
[26]
Varamo, C.; Occelli, M.; Vivenza, D.; Merlano, M.; Lo Nigro, C. MicroRNAs role as potential biomarkers and key regulators in melanoma. Genes Chromosomes Cancer, 2017, 56(1), 3-10.
[http://dx.doi.org/10.1002/gcc.22402] [PMID: 27561079]
[27]
Mione, M.; Bosserhoff, A. MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res., 2015, 28(3), 340-354.
[http://dx.doi.org/10.1111/pcmr.12346] [PMID: 25515738]
[28]
Binder, H.; Schmidt, M.; Loeffler-Wirth, H.; Mortensen, L.S.; Kunz, M. Melanoma single-cell biology in experimental and clinical settings. J. Clin. Med., 2021, 10(3), 506.
[http://dx.doi.org/10.3390/jcm10030506] [PMID: 33535416]
[29]
McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; Hunt, H.A.; Hyde, C.J.; Korevaar, D.A.; Leeflang, M.M.G.; Macaskill, P.; Reitsma, J.B.; Rodin, R.; Rutjes, A.W.S.; Salameh, J.P.; Stevens, A.; Takwoingi, Y.; Tonelli, M.; Weeks, L.; Whiting, P.; Willis, B.H. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA, 2018, 319(4), 388-396.
[http://dx.doi.org/10.1001/jama.2017.19163] [PMID: 29362800]
[30]
Armand-Labit, V.; Meyer, N.; Casanova, A.; Bonnabau, H.; Platzer, V.; Tournier, E.; Sansas, B.; Verdun, S.; Thouvenot, B.; Hilselberger, B.; Doncescu, A.; Lamant, L.; Lacroix-Triki, M.; Favre, G.; Pradines, A. Identification of a circulating microRNA profile as a biomarker of metastatic cutaneous melanoma. Acta Derm. Venereol., 2016, 96(1), 29-34.
[http://dx.doi.org/10.2340/00015555-2156] [PMID: 26039581]
[31]
Guo, S.; Guo, W.; Li, S.; Dai, W.; Zhang, N.; Zhao, T.; Wang, H.; Ma, J.; Yi, X.; Ge, R.; Wang, G.; Gao, T.; Li, C. Serum miR-16: A potential biomarker for predicting melanoma prognosis. J. Invest. Dermatol., 2016, 136(5), 985-993.
[http://dx.doi.org/10.1016/j.jid.2015.12.041] [PMID: 26829037]
[32]
Stark, M.S.; Klein, K.; Weide, B.; Haydu, L.E.; Pflugfelder, A.; Tang, Y.H.; Palmer, J.M.; Whiteman, D.C.; Scolyer, R.A.; Mann, G.J.; Thompson, J.F.; Long, G.V.; Barbour, A.P.; Soyer, H.P.; Garbe, C.; Herington, A.; Pollock, P.M.; Hayward, N.K. The prognostic and predictive value of melanoma-related microRNAs using tissue and serum: A microRNA expression analysis. EBioMedicine, 2015, 2(7), 671-680.
[http://dx.doi.org/10.1016/j.ebiom.2015.05.011] [PMID: 26288839]
[33]
Ono, S.; Oyama, T.; Lam, S.; Chong, K.; Foshag, L.J.; Hoon, D.S.B. A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients. Oncotarget, 2015, 6(9), 7053-7064.
[http://dx.doi.org/10.18632/oncotarget.3142] [PMID: 25749524]
[34]
Tengda, L.; Shuping, L.; Mingli, G.; Jie, G.; Yun, L.; Weiwei, Z.; Anmei, D. Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res., 2018, 28(4), 295-303.
[http://dx.doi.org/10.1097/CMR.0000000000000450] [PMID: 29750752]
[35]
Bai, M.; Zhang, H.; Si, L.; Yu, N.; Zeng, A.; Zhao, R. Upregulation of serum miR-10b is associated with poor prognosis in patients with melanoma. J. Cancer, 2017, 8(13), 2487-2491.
[http://dx.doi.org/10.7150/jca.18824] [PMID: 28900486]
[36]
Fogli, S.; Polini, B.; Carpi, S.; Pardini, B.; Naccarati, A.; Dubbini, N.; Lanza, M.; Breschi, M.C.; Romanini, A.; Nieri, P. Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma. Tumour Biol., 2017, 39(5)
[http://dx.doi.org/10.1177/1010428317701646] [PMID: 28466785]
[37]
Leidinger, P.; Keller, A.; Borries, A.; Reichrath, J.; Rass, K.; Jager, S.U.; Lenhof, H.P.; Meese, E. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer, 2010, 10(1), 262.
[http://dx.doi.org/10.1186/1471-2407-10-262] [PMID: 20529253]
[38]
Van Laar, R.; Lincoln, M.; Van Laar, B. Development and validation of a plasma-based melanoma biomarker suitable for clinical use. Br. J. Cancer, 2018, 118(6), 857-866.
[http://dx.doi.org/10.1038/bjc.2017.477] [PMID: 29360813]
[39]
Ferracin, M.; Veronese, A.; Negrini, M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev. Mol. Diagn., 2010, 10(3), 297-308.
[http://dx.doi.org/10.1586/erm.10.11] [PMID: 20370587]
[40]
Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50(4), 1088-1101.
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[41]
Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109), 629-634.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[42]
Singh, S.R.K.; Malapati, S.J.; Kumar, R.; Willner, C.; Wang, D. NCDB Analysis of Melanoma 2004–2015: Epidemiology and outcomes by subtype, sociodemographic factors impacting clinical presentation, and real-world survival benefit of immunotherapy approval. Cancers, 2021, 13(6), 1455.
[http://dx.doi.org/10.3390/cancers13061455] [PMID: 33810182]
[43]
Brown, M.C.; Kindred, C. Physiology of Skin Pigmentation. In: Ethnic skin and hair and other cultural considerations; Springer, 2021; pp. 35-40.
[http://dx.doi.org/10.1007/978-3-030-64830-5_4]
[44]
Bhattacharya, B.; Chauhan, D.; Singh, A.K.; Chatterjee, M. Melanin based classification of skin types and their susceptibility to UV-induced cancer. In: Skin Cancer: Pathogenesis and Diagnosis; Springer, 2021; pp. 41-67.
[http://dx.doi.org/10.1007/978-981-16-0364-8_3]
[45]
Liu, D. Tumors and cancers: Skin–Soft Tissue–Bone–Urogenitals; CRC Press, 2017.
[46]
Simon, A.; Kourie, H.R.; Kerger, J. Is there still a role for cytotoxic chemotherapy after targeted therapy and immunotherapy in metastatic melanoma? A case report and literature review. Chin. J. Cancer, 2017, 36(1), 10.
[http://dx.doi.org/10.1186/s40880-017-0179-6] [PMID: 28086948]
[47]
Bravo-Vázquez, L.A.; Frías-Reid, N.; Ramos-Delgado, A.G.; Osorio-Pérez, S.M.; Zlotnik-Chávez, H.R.; Pathak, S.; Banerjee, A.; Bandyopadhyay, A.; Duttaroy, A.K.; Paul, S. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl. Oncol., 2023, 27, 101579.
[http://dx.doi.org/10.1016/j.tranon.2022.101579] [PMID: 36332600]
[48]
Mirzaei, H.; Gholamin, S.; Shahidsales, S.; Sahebkar, A.; Jaafari, M.R.; Mirzaei, H.R.; Hassanian, S.M.; Avan, A. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur. J. Cancer, 2016, 53, 25-32.
[http://dx.doi.org/10.1016/j.ejca.2015.10.009] [PMID: 26693896]
[49]
Gajos-Michniewicz, A.; Czyz, M. Role of miRNAs in melanoma metastasis. Cancers, 2019, 11(3), 326.
[http://dx.doi.org/10.3390/cancers11030326] [PMID: 30866509]
[50]
Li, W.; Sanki, A.; Karim, R.Z.; Thompson, J.F.; Soon Lee, C.; Zhuang, L.; McCarthy, S.W.; Scolyer, R.A. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology, 2006, 38(4), 287-301.
[http://dx.doi.org/10.1080/00313020600817951] [PMID: 16916716]
[51]
Wang, J.; Yu, F.; Jia, X.; Iwanowycz, S.; Wang, Y.; Huang, S.; Ai, W.; Fan, D. MicroRNA-155 deficiency enhances the recruitment and functions of myeloid-derived suppressor cells in tumor microenvironment and promotes solid tumor growth. Int. J. Cancer, 2015, 136(6), E602-E613.
[http://dx.doi.org/10.1002/ijc.29151] [PMID: 25143000]
[52]
El Hajj, P.; Gilot, D.; Migault, M.; Theunis, A.; van Kempen, L.C.; Salés, F.; Fayyad-Kazan, H.; Badran, B.; Larsimont, D.; Awada, A.; Bachelot, L.; Galibert, M-D.; Ghanem, G.; Journe, F. SNPs at miR-155 binding sites of TYRP1 explain discrepancy between mRNA and protein and refine TYRP1 prognostic value in melanoma. Br. J. Cancer, 2015, 113(1), 91-98.
[http://dx.doi.org/10.1038/bjc.2015.194] [PMID: 26068396]
[53]
Zhou, X.; Yan, T.; Huang, C.; Xu, Z.; Wang, L.; Jiang, E.; Wang, H.; Chen, Y.; Liu, K.; Shao, Z.; Shang, Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 242.
[http://dx.doi.org/10.1186/s13046-018-0911-3] [PMID: 30285793]
[54]
Jiang, L.; Lv, X.; Li, J.; Li, J.; Li, X.; Li, W.; Li, Y. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem., 2012, 114(6), 582-588.
[http://dx.doi.org/10.1016/j.acthis.2011.11.001] [PMID: 22130252]
[55]
Satzger, I.; Mattern, A.; Kuettler, U.; Weinspach, D.; Niebuhr, M.; Kapp, A.; Gutzmer, R. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp. Dermatol., 2012, 21(7), 509-514.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01510.x] [PMID: 22716245]
[56]
MicroRNA heterogeneity in melanoma progression. In: Seminars in cancer biology; Thyagarajan, A.; Tsai, K.Y.; Sahu, R.P., Eds.; Elsevier, 2019.
[57]
Dar, A.A.; Majid, S.; de Semir, D.; Nosrati, M.; Bezrookove, V.; Kashani-Sabet, M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J. Biol. Chem., 2011, 286(19), 16606-16614.
[http://dx.doi.org/10.1074/jbc.M111.227611] [PMID: 21454583]
[58]
Aalami, A.H.; Aalami, F.; Sahebkar, A. Gastric cancer and circulating microRNAs: An updated systematic review and diagnostic meta-analysis. Curr. Med. Chem., 2023.
[PMID: 36411580]
[59]
Ye, Q.; Wang, J.; Xu, D.; Liu, Y.; Zhang, D.; Ye, J.; Li, H. Diagnostic performance of urine and blood microRNAs for bladder cancer: A meta-analysis. Expert Rev. Anticancer Ther., 2022, 22(12), 1357-1369.
[http://dx.doi.org/10.1080/14737140.2022.2147511] [PMID: 36374119]
[60]
Zafari, N.; Bahramy, A.; Majidi Zolbin, M.; Emadi Allahyari, S.; Farazi, E.; Hassannejad, Z.; Yekaninejad, M.S. microRNAs as novel diagnostic biomarkers in endometriosis patients: A systematic review and meta-analysis. Expert Rev. Mol. Diagn., 2022, 22(4), 479-495.
[http://dx.doi.org/10.1080/14737159.2021.1960508] [PMID: 34304687]
[61]
Fathi, S.; Guessous, F.; Karkouri, M. Diagnostic value of potential microRNAs in CRC: A meta-analysis. MicroRNA, 2022, 11(3), 190-205.
[http://dx.doi.org/10.2174/2211536611666220523103316] [PMID: 35616664]
[62]
Durante, G; Broseghini, E; Comito, F; Naddeo, M; Milani, M; Salamon, I; Campione, E; Dika, E; Ferracin, M Circulating microRNA biomarkers in melanoma and non-melanoma skin cancer. Exp. Rev. Mol. Diag., 2022.
[http://dx.doi.org/10.1080/14737159.2022.2049243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy