Review Article

疫苗接种后免疫细胞的代谢重编程:从代谢产物到个体化疫苗学

卷 31, 期 9, 2024

发表于: 26 June, 2023

页: [1046 - 1068] 页: 23

弟呕挨: 10.2174/0929867330666230509110108

价格: $65

conference banner
摘要

识别由对疫苗的免疫反应诱导的代谢特征可以区分接种疫苗的受试者和未接种疫苗的人,并破译与宿主免疫反应相关的分子机制。这篇综述阐述并讨论了基于代谢组学的对疫苗的先天和适应性免疫反应、长期功能重编程(免疫记忆)和不良反应的研究结果。疫苗不会过度表达糖酵解,这表明免疫细胞对疫苗的反应在感染期间不需要快速的能量供应。疫苗强烈影响脂质代谢,包括饱和或不饱和脂肪酸、磷酸肌醇和胆固醇。胆固醇在活化的巨噬细胞和树突状细胞中合成25-羟基胆固醇具有策略性,并分别刺激M2巨噬细胞和Treg中巨噬细胞和T细胞的转化。总之,代谢组学的大规模应用使得能够识别疫苗有效性/耐受性的候选预测生物标志物。

关键词: 代谢组学,疫苗,代谢重编程,训练免疫,系统疫苗学,免疫细胞。

[1]
Domínguez-Andrés, J.; van Crevel, R.; Divangahi, M.; Netea, M.G. Designing the next generation of vaccines: Relevance for lics. MBio, 2020, 11(6), e02616-20.
[http://dx.doi.org/10.1128/mBio.02616-20] [PMID: 33443120]
[2]
Mayer, A.; Balasubramanian, V.; Walczak, A.M.; Mora, T. How a well-adapting immune system remembers. Proc. Natl. Acad. Sci., 2019, 116(18), 8815-23.
[http://dx.doi.org/10.1073/pnas.1812810116]
[3]
Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; Riksen, N.P.; Schlitzer, A.; Schultze, J.L.; Stabell Benn, C.; Sun, J.C.; Xavier, R.J.; Latz, E. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol., 2020, 20(6), 375-388.
[http://dx.doi.org/10.1038/s41577-020-0285-6] [PMID: 32132681]
[4]
Dominguez-Andres, J.; Netea, M.G. Long-term reprogramming of the innate immune system. J. Leukoc. Biol., 2019, 105(2), 329-338.
[http://dx.doi.org/10.1002/JLB.MR0318-104R] [PMID: 29999546]
[5]
Sánchez-Ramón, S.; Conejero, L.; Netea, M.G.; Sancho, D.; Palomares, Ó.; Subiza, J.L. Trained immunity-based vaccines: A new paradigm for the development of broad- spectrum anti-infectious formulations. Front. Immunol., 2018, 9, 2936.
[http://dx.doi.org/10.3389/fimmu.2018.02936] [PMID: 30619296]
[6]
Netea, M.G.; Giamarellos-Bourboulis, E.J.; Domínguez-Andrés, J.; Curtis, N.; van Crevel, R.; van de Veerdonk, F.L.; Bonten, M. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection Cell, 2020, 181(5), 969-77.
[http://dx.doi.org/10.1016/j.cell.2020.04.042]
[7]
Pinti, M.; Appay, V.; Campisi, J.; Frasca, D.; Fülöp, T.; Sauce, D.; Larbi, A.; Weinberger, B.; Cossarizza, A. Aging of the immune system: Focus on inflammation and vaccination. Eur. J. Immunol., 2016, 46(10), 2286-2301.
[http://dx.doi.org/10.1002/eji.201546178] [PMID: 27595500]
[8]
Diray-Arce, J.; Conti, M.G.; Petrova, B.; Kanarek, N.; Angelidou, A.; Levy, O. Integrative metabolomics to identify molecular signatures of responses to vaccines and infections. Metabolites, 2020, 10(12), 492.
[http://dx.doi.org/10.3390/metabo10120492] [PMID: 33266347]
[9]
Voss, K.; Hong, H.S.; Bader, J.E.; Sugiura, A.; Lyssiotis, C.A.; Rathmell, J.C. A guide to interrogating immunometabolism. Nat. Rev. Immunol., 2021, 21(10), 637-652.
[http://dx.doi.org/10.1038/s41577-021-00529-8] [PMID: 33859379]
[10]
Mussap, M.; Noto, A.; Piras, C.; Atzori, L.; Fanos, V. Slotting metabolomics into routine precision medicine. Expert Rev. Precis. Med. Drug Dev., 2021, 6(3), 173-187.
[http://dx.doi.org/10.1080/23808993.2021.1911639]
[11]
Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Personalized vaccinology: A review. Vaccine, 2018, 36(36), 5350-5357.
[http://dx.doi.org/10.1016/j.vaccine.2017.07.062] [PMID: 28774561]
[12]
O’Neill, L.A.J.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol., 2016, 16(9), 553-565.
[http://dx.doi.org/10.1038/nri.2016.70] [PMID: 27396447]
[13]
Sun, L.; Yang, X.; Yuan, Z.; Wang, H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 1990-2001.
[http://dx.doi.org/10.1161/ATVBAHA.120.314037] [PMID: 32698683]
[14]
Shen, W.; Gao, C.; Cueto, R.; Liu, L.; Fu, H.; Shao, Y.; Yang, W.Y.; Fang, P.; Choi, E.T.; Wu, Q.; Yang, X.; Wang, H. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol., 2020, 28, 101322.
[http://dx.doi.org/10.1016/j.redox.2019.101322] [PMID: 31605963]
[15]
Cameron, A.M.; Lawless, S.J.; Pearce, E.J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol., 2016, 28(5), 408-416.
[http://dx.doi.org/10.1016/j.smim.2016.10.003] [PMID: 28340958]
[16]
Rodríguez-Prados, J.C.; Través, P.G.; Cuenca, J.; Rico, D.; Aragonés, J.; Martín-Sanz, P.; Cascante, M.; Boscá, L. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J. Immunol., 2010, 185(1), 605-614.
[http://dx.doi.org/10.4049/jimmunol.0901698] [PMID: 20498354]
[17]
Galván-Peña, S.; O’Neill, L.A. Metabolic reprograming in macrophage polarization. Front. Immunol., 2014, 5, 420.
[http://dx.doi.org/10.3389/fimmu.2014.00420] [PMID: 25228902]
[18]
Arts, R.J.W.; Novakovic, B.; ter Horst, R.; Carvalho, A.; Bekkering, S.; Lachmandas, E.; Rodrigues, F.; Silvestre, R.; Cheng, S.C.; Wang, S.Y.; Habibi, E.; Gonçalves, L.G.; Mesquita, I.; Cunha, C.; van Laarhoven, A.; van de Veerdonk, F.L.; Williams, D.L.; van der Meer, J.W.M.; Logie, C.; O’Neill, L.A.; Dinarello, C.A.; Riksen, N.P.; van Crevel, R.; Clish, C.; Notebaart, R.A.; Joosten, L.A.B.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, 24(6), 807-819.
[http://dx.doi.org/10.1016/j.cmet.2016.10.008] [PMID: 27866838]
[19]
Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352(6284), aaf1098.
[http://dx.doi.org/10.1126/science.aaf1098] [PMID: 27102489]
[20]
Riksen, N.P.; Netea, M.G. Immunometabolic control of trained immunity. Mol. Aspects Med., 2021, 77, 100897.
[http://dx.doi.org/10.1016/j.mam.2020.100897] [PMID: 32891423]
[21]
Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; Amir, S.; Lubec, G.; Park, J.; Esterbauer, H.; Bilban, M.; Brizuela, L.; Pospisilik, J.A.; Otterbein, L.E.; Wagner, O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 2012, 15(6), 813-826.
[http://dx.doi.org/10.1016/j.cmet.2012.04.023] [PMID: 22682222]
[22]
O’Sullivan, D.; van der Windt, G.J.W.; Huang, S.C.C.; Curtis, J.D.; Chang, C.H.; Buck, M.D.; Qiu, J.; Smith, A.M.; Lam, W.Y.; DiPlato, L.M.; Hsu, F.F.; Birnbaum, M.J.; Pearce, E.J.; Pearce, E.L. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 2014, 41(1), 75-88.
[http://dx.doi.org/10.1016/j.immuni.2014.06.005] [PMID: 25001241]
[23]
Hertz, L.; Hertz, E. Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem. Int., 2003, 43(4-5), 355-361.
[http://dx.doi.org/10.1016/S0197-0186(03)00022-6] [PMID: 12742079]
[24]
Ferreira, A.V.; Domiguéz-Andrés, J.; Netea, M.G. The role of cell metabolism in innate immune memory. J. Innate Immun., 2022, 14(1), 42-50.
[http://dx.doi.org/10.1159/000512280] [PMID: 33378755]
[25]
Schebb, N.H.; Kühn, H.; Kahnt, A.S.; Rund, K.M.; O’Donnell, V.B.; Flamand, N.; Peters-Golden, M.; Jakobsson, P.J.; Weylandt, K.H.; Rohwer, N.; Murphy, R.C.; Geisslinger, G.; FitzGerald, G.A.; Hanson, J.; Dahlgren, C.; Alnouri, M.W.; Offermanns, S.; Steinhilber, D. Formation, signaling and occurrence of specialized pro-resolving lipid mediators—what is the evidence so far? Front. Pharmacol., 2022, 13, 838782.
[http://dx.doi.org/10.3389/fphar.2022.838782] [PMID: 35308198]
[26]
Bosch, M.; Sánchez-Álvarez, M.; Fajardo, A.; Kapetanovic, R.; Steiner, B.; Dutra, F.; Moreira, L.; López, J.A.; Campo, R.; Marí, M.; Morales-Paytuví, F.; Tort, O.; Gubern, A.; Templin, R.M.; Curson, J.E.B.; Martel, N.; Català, C.; Lozano, F.; Tebar, F.; Enrich, C.; Vázquez, J.; Del Pozo, M.A.; Sweet, M.J.; Bozza, P.T.; Gross, S.P.; Parton, R.G.; Pol, A. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370(6514), eaay8085.
[http://dx.doi.org/10.1126/science.aay8085] [PMID: 33060333]
[27]
Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.Y.; Huang, M.; Uphadhyay, A.A.; Gardinassi, L.; Petitdemange, C.; McCullough, M.P.; Johnson, S.J.; Gill, K.; Cervasi, B.; Zou, J.; Bretin, A.; Hahn, M.; Gewirtz, A.T.; Bosinger, S.E.; Wilson, P.C.; Li, S.; Alter, G.; Khurana, S.; Golding, H.; Pulendran, B. Antibiotics- Driven gut microbiome perturbation alters immunity to vaccines in humans. Cell, 2019, 178(6), 1313-1328.e13.
[http://dx.doi.org/10.1016/j.cell.2019.08.010] [PMID: 31491384]
[28]
Goll, J.B.; Li, S.; Edwards, J.L.; Bosinger, S.E.; Jensen, T.L.; Wang, Y.; Hooper, W.F.; Gelber, C.E.; Sanders, K.L.; Anderson, E.J.; Rouphael, N.; Natrajan, M.S.; Johnson, R.A.; Sanz, P.; Hoft, D.; Mulligan, M.J. Transcriptomic and metabolic responses to a live-attenuated Francisella tularensis vaccine. Vaccines, 2020, 8(3), 412.
[http://dx.doi.org/10.3390/vaccines8030412] [PMID: 32722194]
[29]
Khan, A.; Shin, O.S.; Na, J.; Kim, J.K.; Seong, R.K.; Park, M.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Park, Y.H.; Kim, W.J. A systems vaccinology approach reveals the mechanisms of immunogenic responses to hantavax vaccination in humans. Sci. Rep., 2019, 9(1), 4760.
[http://dx.doi.org/10.1038/s41598-019-41205-1] [PMID: 30886186]
[30]
Li, S.; Sullivan, N.L.; Rouphael, N.; Yu, T.; Banton, S.; Maddur, M.S.; McCausland, M.; Chiu, C.; Canniff, J.; Dubey, S.; Liu, K.; Tran, V.; Hagan, T.; Duraisingham, S.; Wieland, A.; Mehta, A.K.; Whitaker, J.A.; Subramaniam, S.; Jones, D.P.; Sette, A.; Vora, K.; Weinberg, A.; Mulligan, M.J.; Nakaya, H.I.; Levin, M.; Ahmed, R.; Pulendran, B. Metabolic phenotypes of response to vaccination in humans. Cell, 2017, 169(5), 862-877.e17.
[http://dx.doi.org/10.1016/j.cell.2017.04.026] [PMID: 28502771]
[31]
Wang, Y.; Wang, X.; Luu, L.D.W.; Chen, S.; Jin, F.; Wang, S.; Huang, X.; Wang, L.; Zhou, X.; Chen, X.; Cui, X.; Li, J.; Tai, J.; Zhu, X. Proteomic and metabolomic signatures associated with the immune response in healthy individuals immunized with an inactivated SARS-CoV-2 vaccine. Front. Immunol., 2022, 13, 848961.
[http://dx.doi.org/10.3389/fimmu.2022.848961] [PMID: 35686122]
[32]
He, M.; Huang, Y.; Wang, Y.; Liu, J.; Han, M.; Xiao, Y.; Zhang, N.; Gui, H.; Qiu, H.; Cao, L.; Jia, W.; Huang, S. Metabolomics-based investigation of SARS-CoV-2 vaccination (Sinovac) reveals an immune-dependent metabolite biomarker. Front. Immunol., 2022, 13, 954801.
[http://dx.doi.org/10.3389/fimmu.2022.954801] [PMID: 36248825]
[33]
Choi, I.; Son, H.; Baek, J.H. Tricarboxylic Acid (TCA) cycle intermediates: Regulators of immune responses. Life, 2021, 11(1), 69.
[http://dx.doi.org/10.3390/life11010069] [PMID: 33477822]
[34]
Williams, N.C.; O’Neill, L.A.J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol., 2018, 9, 141.
[http://dx.doi.org/10.3389/fimmu.2018.00141] [PMID: 29459863]
[35]
Langston, P.K.; Shibata, M.; Horng, T. Metabolism supports macrophage activation. Front. Immunol., 2017, 8, 61.
[http://dx.doi.org/10.3389/fimmu.2017.00061] [PMID: 28197151]
[36]
Hooftman, A.; O’Neill, L.A.J. The immunomodulatory potential of the metabolite itaconate. Trends Immunol., 2019, 40(8), 687-698.
[http://dx.doi.org/10.1016/j.it.2019.05.007] [PMID: 31178405]
[37]
Hooftman, A.; Angiari, S.; Hester, S.; Corcoran, S.E.; Runtsch, M.C.; Ling, C.; Ruzek, M.C.; Slivka, P.F.; McGettrick, A.F.; Banahan, K.; Hughes, M.M.; Irvine, A.D.; Fischer, R.; O’Neill, L.A.J. The immunomodulatory metabolite itaconate modifies nlrp3 and inhibits inflammasome activation. Cell Metab., 2020, 32(3), 468-478.e7.
[http://dx.doi.org/10.1016/j.cmet.2020.07.016] [PMID: 32791101]
[38]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[39]
Liu, P.S.; Wang, H.; Li, X.; Chao, T.; Teav, T.; Christen, S.; Di Conza, G.; Cheng, W.C.; Chou, C.H.; Vavakova, M.; Muret, C.; Debackere, K.; Mazzone, M.; Huang, H.D.; Fendt, S.M.; Ivanisevic, J.; Ho, P.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol., 2017, 18(9), 985-994.
[http://dx.doi.org/10.1038/ni.3796] [PMID: 28714978]
[40]
Jha, A.K.; Huang, S.C.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430.
[http://dx.doi.org/10.1016/j.immuni.2015.02.005] [PMID: 25786174]
[41]
Mills, E.; O’Neill, L.A.J. Succinate: A metabolic signal in inflammation. Trends Cell Biol., 2014, 24(5), 313-320.
[http://dx.doi.org/10.1016/j.tcb.2013.11.008] [PMID: 24361092]
[42]
Domínguez-Andrés, J.; Joosten, L.A.B.; Netea, M.G. Induction of innate immune memory: The role of cellular metabolism. Curr. Opin. Immunol., 2019, 56, 10-16.
[http://dx.doi.org/10.1016/j.coi.2018.09.001] [PMID: 30240964]
[43]
Wang, R.; Green, D.R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev., 2012, 249(1), 14-26.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01155.x] [PMID: 22889212]
[44]
Wang, R.; Dillon, C.P.; Shi, L.Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L.L.; Fitzgerald, P.; Chi, H.; Munger, J.; Green, D.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 2011, 35(6), 871-882.
[http://dx.doi.org/10.1016/j.immuni.2011.09.021] [PMID: 22195744]
[45]
Lochner, M.; Berod, L.; Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol., 2015, 36(2), 81-91.
[http://dx.doi.org/10.1016/j.it.2014.12.005] [PMID: 25592731]
[46]
Miles, E.A.; Childs, C.E.; Calder, P.C. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the developing immune system: A narrative review. Nutrients, 2021, 13(1), 247.
[http://dx.doi.org/10.3390/nu13010247] [PMID: 33467123]
[47]
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol., 2012, 188(1), 21-28.
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[48]
Chou, C.H.; Mohanty, S.; Kang, H.A.; Kong, L.; Avila- Pacheco, J.; Joshi, S.R.; Ueda, I.; Devine, L.; Raddassi, K.; Pierce, K.; Jeanfavre, S.; Bullock, K.; Meng, H.; Clish, C.; Santori, F.R.; Shaw, A.C.; Xavier, R.J. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell, 2022, 21(9), e13682.
[http://dx.doi.org/10.1111/acel.13682] [PMID: 35996998]
[49]
Maner-Smith, K.M.; Goll, J.B.; Khadka, M.; Jensen, T.L.; Colucci, J.K.; Gelber, C.E.; Albert, C.J.; Bosinger, S.E.; Franke, J.D.; Natrajan, M.; Rouphael, N.; Johnson, R.A.; Sanz, P.; Anderson, E.J.; Hoft, D.F.; Mulligan, M.J.; Ford, D.A.; Ortlund, E.A. Alterations in the human plasma lipidome in response to tularemia vaccination. Vaccines, 2020, 8(3), 414.
[http://dx.doi.org/10.3390/vaccines8030414] [PMID: 32722213]
[50]
Diray-Arce, J.; Angelidou, A.; Jensen, K.J.; Conti, M.G.; Kelly, R.S.; Pettengill, M.A.; Liu, M.; van Haren, S.D.; McCulloch, S.D.; Michelloti, G.; Idoko, O.; Kollmann, T.R.; Kampmann, B.; Steen, H.; Ozonoff, A.; Lasky-Su, J.; Benn, C.S.; Levy, O. Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vivo and in vitro. Cell Rep., 2022, 39(5), 110772.
[http://dx.doi.org/10.1016/j.celrep.2022.110772] [PMID: 35508141]
[51]
O’Donnell, V.B.; Rossjohn, J.; Wakelam, M.J.O. Phospholipid signaling in innate immune cells. J. Clin. Invest., 2018, 128(7), 2670-2679.
[http://dx.doi.org/10.1172/JCI97944] [PMID: 29683435]
[52]
Cathcart, M.K. Signal-activated phospholipase regulation of leukocyte chemotaxis. J. Lipid Res., 2009, 50(Suppl)(Suppl.), S231-S236.
[http://dx.doi.org/10.1194/jlr.R800096-JLR200] [PMID: 19109234]
[53]
Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res., 2020, 80, 101068.
[http://dx.doi.org/10.1016/j.plipres.2020.101068] [PMID: 33068601]
[54]
Knuplez, E.; Marsche, G. An updated review of pro- and anti-inflammatory properties of plasma lysophosphatidylcholines in the vascular system. Int. J. Mol. Sci., 2020, 21(12), 4501.
[http://dx.doi.org/10.3390/ijms21124501] [PMID: 32599910]
[55]
Dagla, I.; Iliou, A.; Benaki, D.; Gikas, E.; Mikros, E.; Bagratuni, T.; Kastritis, E.; Dimopoulos, M.A.; Terpos, E.; Tsarbopoulos, A. Plasma metabolomic alterations induced by COVID-19 vaccination reveal putative biomarkers reflecting the immune response. Cells, 2022, 11(7), 1241.
[http://dx.doi.org/10.3390/cells11071241] [PMID: 35406806]
[56]
Ghini, V.; Maggi, L.; Mazzoni, A.; Spinicci, M.; Zammarchi, L.; Bartoloni, A.; Annunziato, F.; Turano, P. Serum NMR profiling reveals differential alterations in the lipoproteome induced by Pfizer-BioNTech vaccine in COVID-19 recovered subjects and naïve subjects. Front. Mol. Biosci., 2022, 9, 839809.
[http://dx.doi.org/10.3389/fmolb.2022.839809] [PMID: 35480886]
[57]
Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature, 2014, 510(7503), 58-67.
[http://dx.doi.org/10.1038/nature13475] [PMID: 24899305]
[58]
Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol., 2011, 11(6), 403-415.
[http://dx.doi.org/10.1038/nri2974] [PMID: 21546914]
[59]
Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 175-191.
[http://dx.doi.org/10.1038/nrm.2017.107] [PMID: 29165427]
[60]
Arnon, T.I.; Horton, R.M.; Grigorova, I.L.; Cyster, J.G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature, 2013, 493(7434), 684-688.
[http://dx.doi.org/10.1038/nature11738] [PMID: 23263181]
[61]
Walzer, T.; Chiossone, L.; Chaix, J.; Calver, A.; Carozzo, C.; Garrigue-Antar, L.; Jacques, Y.; Baratin, M.; Tomasello, E.; Vivier, E. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol., 2007, 8(12), 1337-1344.
[http://dx.doi.org/10.1038/ni1523] [PMID: 17965716]
[62]
Gaggini, M.; Pingitore, A.; Vassalle, C. Plasma ceramides pathophysiology, measurements, challenges, and opportunities. Metabolites, 2021, 11(11), 719.
[http://dx.doi.org/10.3390/metabo11110719] [PMID: 34822377]
[63]
Reboldi, A.; Dang, E. Cholesterol metabolism in innate and adaptive response. F1000Res, 2018, 7, 1647.
[http://dx.doi.org/10.12688/f1000research.15500.1]
[64]
Fessler, M.B. Regulation of adaptive immunity in health and disease by cholesterol metabolism. Curr. Allergy Asthma Rep., 2015, 15(8), 48.
[http://dx.doi.org/10.1007/s11882-015-0548-7] [PMID: 26149587]
[65]
Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7), 2021.
[http://dx.doi.org/10.3390/nu12072021] [PMID: 32645995]
[66]
Kidani, Y.; Elsaesser, H.; Hock, M.B.; Vergnes, L.; Williams, K.J.; Argus, J.P.; Marbois, B.N.; Komisopoulou, E.; Wilson, E.B.; Osborne, T.F.; Graeber, T.G.; Reue, K.; Brooks, D.G.; Bensinger, S.J. Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol., 2013, 14(5), 489-499.
[http://dx.doi.org/10.1038/ni.2570] [PMID: 23563690]
[67]
Hu, X.; Wang, Y.; Hao, L.Y.; Liu, X.; Lesch, C.A.; Sanchez, B.M.; Wendling, J.M.; Morgan, R.W.; Aicher, T.D.; Carter, L.L.; Toogood, P.L.; Glick, G.D. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol., 2015, 11(2), 141-147.
[http://dx.doi.org/10.1038/nchembio.1714] [PMID: 25558972]
[68]
Bekkering, S.; Arts, R.J.W.; Novakovic, B.; Kourtzelis, I.; van der Heijden, C.D.C.C.; Li, Y.; Popa, C.D.; ter Horst, R.; van Tuijl, J.; Netea-Maier, R.T.; van de Veerdonk, F.L.; Chavakis, T.; Joosten, L.A.B.; van der Meer, J.W.M.; Stunnenberg, H.; Riksen, N.P.; Netea, M.G. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018, 172(1-2), 135-146.e9.
[http://dx.doi.org/10.1016/j.cell.2017.11.025] [PMID: 29328908]
[69]
Griffiths, W.J.; Wang, Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat., 2020, 147, 106381.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106381] [PMID: 31698146]
[70]
Mutemberezi, V.; Guillemot-Legris, O.; Muccioli, G.G. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res., 2016, 64, 152-169.
[http://dx.doi.org/10.1016/j.plipres.2016.09.002] [PMID: 27687912]
[71]
Reinmuth, L.; Hsiao, C.C.; Hamann, J.; Rosenkilde, M.; Mackrill, J. Multiple targets for oxysterols in their regulation of the immune system. Cells, 2021, 10(8), 2078.
[http://dx.doi.org/10.3390/cells10082078] [PMID: 34440846]
[72]
Spann, N.J.; Glass, C.K. Sterols and oxysterols in immune cell function. Nat. Immunol., 2013, 14(9), 893-900.
[http://dx.doi.org/10.1038/ni.2681] [PMID: 23959186]
[73]
Dang, E.V.; McDonald, J.G.; Russell, D.W.; Cyster, J.G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell, 2017, 171(5), 1057-1071.e11.
[http://dx.doi.org/10.1016/j.cell.2017.09.029] [PMID: 29033131]
[74]
Zang, R.; Case, J.B.; Yutuc, E.; Ma, X.; Shen, S.; Gomez Castro, M.F.; Liu, Z.; Zeng, Q.; Zhao, H.; Son, J. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci., 2020, 117(50), 32105-32113.
[http://dx.doi.org/10.1073/pnas.2012197117]
[75]
Wang, S.; Li, W.; Hui, H.; Tiwari, S.K.; Zhang, Q.; Croker, B.A.; Rawlings, S.; Smith, D.; Carlin, A.F.; Rana, T.M. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J., 2020, 39(21), e106057.
[http://dx.doi.org/10.15252/embj.2020106057] [PMID: 32944968]
[76]
Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metab., 2020, 32(2), 154-175.
[http://dx.doi.org/10.1016/j.cmet.2020.06.010] [PMID: 32649859]
[77]
Takahara, T.; Amemiya, Y.; Sugiyama, R.; Maki, M.; Shibata, H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J. Biomed. Sci., 2020, 27(1), 87.
[http://dx.doi.org/10.1186/s12929-020-00679-2] [PMID: 32799865]
[78]
Li, P.; Wu, G. Important roles of amino acids in immune responses. Br. J. Nutr., 2022, 127(3), 398-402.
[http://dx.doi.org/10.1017/S0007114521004566] [PMID: 34776020]
[79]
Holeček, M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients, 2020, 12(3), 848.
[http://dx.doi.org/10.3390/nu12030848] [PMID: 32235743]
[80]
Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol., 2014, 5, 532.
[http://dx.doi.org/10.3389/fimmu.2014.00532] [PMID: 25386178]
[81]
Sorgdrager, F.J.H.; Naudé, P.J.W.; Kema, I.P.; Nollen, E.A.; Deyn, P.P.D. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol., 2019, 10(10), 2565.
[http://dx.doi.org/10.3389/fimmu.2019.02565] [PMID: 31736978]
[82]
Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol., 2018, 11(4), 1024-1038.
[http://dx.doi.org/10.1038/s41385-018-0019-2] [PMID: 29626198]
[83]
Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol., 2010, 185(6), 3190-3198.
[http://dx.doi.org/10.4049/jimmunol.0903670] [PMID: 20720200]
[84]
Nguyen, N.T.; Kimura, A.; Nakahama, T.; Chinen, I.; Masuda, K.; Nohara, K.; Fujii-Kuriyama, Y.; Kishimoto, T. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci., 2010, 107(46), 19961-6.
[http://dx.doi.org/10.1073/pnas.1014465107]
[85]
Menni, C.; Kastenmüller, G.; Petersen, A.K.; Bell, J.T.; Psatha, M.; Tsai, P.C.; Gieger, C.; Schulz, H.; Erte, I.; John, S.; Brosnan, M.J.; Wilson, S.G.; Tsaprouni, L.; Lim, E.M.; Stuckey, B.; Deloukas, P.; Mohney, R.; Suhre, K.; Spector, T.D.; Valdes, A.M. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int. J. Epidemiol., 2013, 42(4), 1111-1119.
[http://dx.doi.org/10.1093/ije/dyt094] [PMID: 23838602]
[86]
Fanos, V.; Puddu, M.; Mussap, M. OMICS technologies and personalized vaccination in the COVID-19 era. J. Ped. Neo. Ind. Med. , 2022, 11(1), e110114.
[http://dx.doi.org/10.7363/110114]
[87]
Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; Chang, S.E.; Feng, A.; Dhingra, S.; Shah, M.; Lee, A.S.; Chinthrajah, S.; Sindher, S.B.; Mallajosyula, V.; Gao, F.; Sigal, N.; Kowli, S.; Gupta, S.; Pellegrini, K.; Tharp, G.; Maysel-Auslender, S.; Hamilton, S.; Aoued, H.; Hrusovsky, K.; Roskey, M.; Bosinger, S.E.; Maecker, H.T.; Boyd, S.D.; Davis, M.M.; Utz, P.J.; Suthar, M.S.; Khatri, P.; Nadeau, K.C.; Pulendran, B. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596(7872), 410-416.
[http://dx.doi.org/10.1038/s41586-021-03791-x] [PMID: 34252919]
[88]
Karagiannis, F.; Peukert, K.; Surace, L.; Michla, M.; Nikolka, F.; Fox, M.; Weiss, P.; Feuerborn, C.; Maier, P.; Schulz, S.; Al, B.; Seeliger, B.; Welte, T.; David, S.; Grondman, I.; de Nooijer, A.H.; Pickkers, P.; Kleiner, J.L.; Berger, M.M.; Brenner, T.; Putensen, C.; Abdullah, Z.; Latz, E.; Schmidt, S.; Hartmann, G.; Streeck, H.; Kümmerer, B.M.; Kato, H.; Garbi, N.; Netea, M.G.; Hiller, K.; Placek, K.; Bode, C.; Wilhelm, C. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature, 2022, 609(7928), 801-807.
[http://dx.doi.org/10.1038/s41586-022-05128-8] [PMID: 35901960]
[89]
McClenathan, B.M.; Stewart, D.A.; Spooner, C.E.; Pathmasiri, W.W.; Burgess, J.P.; McRitchie, S.L.; Choi, Y.S.; Sumner, S.C.J. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics. Vaccine, 2017, 35(9), 1238-1245.
[http://dx.doi.org/10.1016/j.vaccine.2017.01.056] [PMID: 28169076]
[90]
Sasaki, E.; Kusunoki, H.; Momose, H.; Furuhata, K.; Hosoda, K.; Wakamatsu, K.; Mizukami, T.; Hamaguchi, I. Changes of urine metabolite profiles are induced by inactivated influenza vaccine inoculations in mice. Sci. Rep., 2019, 9(1), 16249.
[http://dx.doi.org/10.1038/s41598-019-52686-5] [PMID: 31700085]
[91]
Koeken, V.A.C.M.; Qi, C.; Mourits, V.P.; de Bree, L.C.J.; Moorlag, S.J.C.F.M.; Sonawane, V.; Lemmers, H.; Dijkstra, H.; Joosten, L.A.B.; van Laarhoven, A.; Xu, C.J.; van Crevel, R.; Netea, M.G.; Li, Y. Plasma metabolome predicts trained immunity responses after antituberculosis BCG vaccination. PLoS Biol., 2022, 20(9), e3001765.
[http://dx.doi.org/10.1371/journal.pbio.3001765] [PMID: 36094960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy