Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology

Author(s): Michele Mussap*, Melania Puddu and Vassilios Fanos

Volume 31, Issue 9, 2024

Published on: 26 June, 2023

Page: [1046 - 1068] Pages: 23

DOI: 10.2174/0929867330666230509110108

Price: $65

conference banner
Abstract

Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.

Keywords: Metabolomics, vaccines, metabolic reprogramming, trained immunity, system vaccinology, immune cells.

[1]
Domínguez-Andrés, J.; van Crevel, R.; Divangahi, M.; Netea, M.G. Designing the next generation of vaccines: Relevance for lics. MBio, 2020, 11(6), e02616-20.
[http://dx.doi.org/10.1128/mBio.02616-20] [PMID: 33443120]
[2]
Mayer, A.; Balasubramanian, V.; Walczak, A.M.; Mora, T. How a well-adapting immune system remembers. Proc. Natl. Acad. Sci., 2019, 116(18), 8815-23.
[http://dx.doi.org/10.1073/pnas.1812810116]
[3]
Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; Riksen, N.P.; Schlitzer, A.; Schultze, J.L.; Stabell Benn, C.; Sun, J.C.; Xavier, R.J.; Latz, E. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol., 2020, 20(6), 375-388.
[http://dx.doi.org/10.1038/s41577-020-0285-6] [PMID: 32132681]
[4]
Dominguez-Andres, J.; Netea, M.G. Long-term reprogramming of the innate immune system. J. Leukoc. Biol., 2019, 105(2), 329-338.
[http://dx.doi.org/10.1002/JLB.MR0318-104R] [PMID: 29999546]
[5]
Sánchez-Ramón, S.; Conejero, L.; Netea, M.G.; Sancho, D.; Palomares, Ó.; Subiza, J.L. Trained immunity-based vaccines: A new paradigm for the development of broad- spectrum anti-infectious formulations. Front. Immunol., 2018, 9, 2936.
[http://dx.doi.org/10.3389/fimmu.2018.02936] [PMID: 30619296]
[6]
Netea, M.G.; Giamarellos-Bourboulis, E.J.; Domínguez-Andrés, J.; Curtis, N.; van Crevel, R.; van de Veerdonk, F.L.; Bonten, M. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection Cell, 2020, 181(5), 969-77.
[http://dx.doi.org/10.1016/j.cell.2020.04.042]
[7]
Pinti, M.; Appay, V.; Campisi, J.; Frasca, D.; Fülöp, T.; Sauce, D.; Larbi, A.; Weinberger, B.; Cossarizza, A. Aging of the immune system: Focus on inflammation and vaccination. Eur. J. Immunol., 2016, 46(10), 2286-2301.
[http://dx.doi.org/10.1002/eji.201546178] [PMID: 27595500]
[8]
Diray-Arce, J.; Conti, M.G.; Petrova, B.; Kanarek, N.; Angelidou, A.; Levy, O. Integrative metabolomics to identify molecular signatures of responses to vaccines and infections. Metabolites, 2020, 10(12), 492.
[http://dx.doi.org/10.3390/metabo10120492] [PMID: 33266347]
[9]
Voss, K.; Hong, H.S.; Bader, J.E.; Sugiura, A.; Lyssiotis, C.A.; Rathmell, J.C. A guide to interrogating immunometabolism. Nat. Rev. Immunol., 2021, 21(10), 637-652.
[http://dx.doi.org/10.1038/s41577-021-00529-8] [PMID: 33859379]
[10]
Mussap, M.; Noto, A.; Piras, C.; Atzori, L.; Fanos, V. Slotting metabolomics into routine precision medicine. Expert Rev. Precis. Med. Drug Dev., 2021, 6(3), 173-187.
[http://dx.doi.org/10.1080/23808993.2021.1911639]
[11]
Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Personalized vaccinology: A review. Vaccine, 2018, 36(36), 5350-5357.
[http://dx.doi.org/10.1016/j.vaccine.2017.07.062] [PMID: 28774561]
[12]
O’Neill, L.A.J.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol., 2016, 16(9), 553-565.
[http://dx.doi.org/10.1038/nri.2016.70] [PMID: 27396447]
[13]
Sun, L.; Yang, X.; Yuan, Z.; Wang, H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 1990-2001.
[http://dx.doi.org/10.1161/ATVBAHA.120.314037] [PMID: 32698683]
[14]
Shen, W.; Gao, C.; Cueto, R.; Liu, L.; Fu, H.; Shao, Y.; Yang, W.Y.; Fang, P.; Choi, E.T.; Wu, Q.; Yang, X.; Wang, H. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol., 2020, 28, 101322.
[http://dx.doi.org/10.1016/j.redox.2019.101322] [PMID: 31605963]
[15]
Cameron, A.M.; Lawless, S.J.; Pearce, E.J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol., 2016, 28(5), 408-416.
[http://dx.doi.org/10.1016/j.smim.2016.10.003] [PMID: 28340958]
[16]
Rodríguez-Prados, J.C.; Través, P.G.; Cuenca, J.; Rico, D.; Aragonés, J.; Martín-Sanz, P.; Cascante, M.; Boscá, L. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J. Immunol., 2010, 185(1), 605-614.
[http://dx.doi.org/10.4049/jimmunol.0901698] [PMID: 20498354]
[17]
Galván-Peña, S.; O’Neill, L.A. Metabolic reprograming in macrophage polarization. Front. Immunol., 2014, 5, 420.
[http://dx.doi.org/10.3389/fimmu.2014.00420] [PMID: 25228902]
[18]
Arts, R.J.W.; Novakovic, B.; ter Horst, R.; Carvalho, A.; Bekkering, S.; Lachmandas, E.; Rodrigues, F.; Silvestre, R.; Cheng, S.C.; Wang, S.Y.; Habibi, E.; Gonçalves, L.G.; Mesquita, I.; Cunha, C.; van Laarhoven, A.; van de Veerdonk, F.L.; Williams, D.L.; van der Meer, J.W.M.; Logie, C.; O’Neill, L.A.; Dinarello, C.A.; Riksen, N.P.; van Crevel, R.; Clish, C.; Notebaart, R.A.; Joosten, L.A.B.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, 24(6), 807-819.
[http://dx.doi.org/10.1016/j.cmet.2016.10.008] [PMID: 27866838]
[19]
Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352(6284), aaf1098.
[http://dx.doi.org/10.1126/science.aaf1098] [PMID: 27102489]
[20]
Riksen, N.P.; Netea, M.G. Immunometabolic control of trained immunity. Mol. Aspects Med., 2021, 77, 100897.
[http://dx.doi.org/10.1016/j.mam.2020.100897] [PMID: 32891423]
[21]
Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; Amir, S.; Lubec, G.; Park, J.; Esterbauer, H.; Bilban, M.; Brizuela, L.; Pospisilik, J.A.; Otterbein, L.E.; Wagner, O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 2012, 15(6), 813-826.
[http://dx.doi.org/10.1016/j.cmet.2012.04.023] [PMID: 22682222]
[22]
O’Sullivan, D.; van der Windt, G.J.W.; Huang, S.C.C.; Curtis, J.D.; Chang, C.H.; Buck, M.D.; Qiu, J.; Smith, A.M.; Lam, W.Y.; DiPlato, L.M.; Hsu, F.F.; Birnbaum, M.J.; Pearce, E.J.; Pearce, E.L. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 2014, 41(1), 75-88.
[http://dx.doi.org/10.1016/j.immuni.2014.06.005] [PMID: 25001241]
[23]
Hertz, L.; Hertz, E. Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem. Int., 2003, 43(4-5), 355-361.
[http://dx.doi.org/10.1016/S0197-0186(03)00022-6] [PMID: 12742079]
[24]
Ferreira, A.V.; Domiguéz-Andrés, J.; Netea, M.G. The role of cell metabolism in innate immune memory. J. Innate Immun., 2022, 14(1), 42-50.
[http://dx.doi.org/10.1159/000512280] [PMID: 33378755]
[25]
Schebb, N.H.; Kühn, H.; Kahnt, A.S.; Rund, K.M.; O’Donnell, V.B.; Flamand, N.; Peters-Golden, M.; Jakobsson, P.J.; Weylandt, K.H.; Rohwer, N.; Murphy, R.C.; Geisslinger, G.; FitzGerald, G.A.; Hanson, J.; Dahlgren, C.; Alnouri, M.W.; Offermanns, S.; Steinhilber, D. Formation, signaling and occurrence of specialized pro-resolving lipid mediators—what is the evidence so far? Front. Pharmacol., 2022, 13, 838782.
[http://dx.doi.org/10.3389/fphar.2022.838782] [PMID: 35308198]
[26]
Bosch, M.; Sánchez-Álvarez, M.; Fajardo, A.; Kapetanovic, R.; Steiner, B.; Dutra, F.; Moreira, L.; López, J.A.; Campo, R.; Marí, M.; Morales-Paytuví, F.; Tort, O.; Gubern, A.; Templin, R.M.; Curson, J.E.B.; Martel, N.; Català, C.; Lozano, F.; Tebar, F.; Enrich, C.; Vázquez, J.; Del Pozo, M.A.; Sweet, M.J.; Bozza, P.T.; Gross, S.P.; Parton, R.G.; Pol, A. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370(6514), eaay8085.
[http://dx.doi.org/10.1126/science.aay8085] [PMID: 33060333]
[27]
Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.Y.; Huang, M.; Uphadhyay, A.A.; Gardinassi, L.; Petitdemange, C.; McCullough, M.P.; Johnson, S.J.; Gill, K.; Cervasi, B.; Zou, J.; Bretin, A.; Hahn, M.; Gewirtz, A.T.; Bosinger, S.E.; Wilson, P.C.; Li, S.; Alter, G.; Khurana, S.; Golding, H.; Pulendran, B. Antibiotics- Driven gut microbiome perturbation alters immunity to vaccines in humans. Cell, 2019, 178(6), 1313-1328.e13.
[http://dx.doi.org/10.1016/j.cell.2019.08.010] [PMID: 31491384]
[28]
Goll, J.B.; Li, S.; Edwards, J.L.; Bosinger, S.E.; Jensen, T.L.; Wang, Y.; Hooper, W.F.; Gelber, C.E.; Sanders, K.L.; Anderson, E.J.; Rouphael, N.; Natrajan, M.S.; Johnson, R.A.; Sanz, P.; Hoft, D.; Mulligan, M.J. Transcriptomic and metabolic responses to a live-attenuated Francisella tularensis vaccine. Vaccines, 2020, 8(3), 412.
[http://dx.doi.org/10.3390/vaccines8030412] [PMID: 32722194]
[29]
Khan, A.; Shin, O.S.; Na, J.; Kim, J.K.; Seong, R.K.; Park, M.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Park, Y.H.; Kim, W.J. A systems vaccinology approach reveals the mechanisms of immunogenic responses to hantavax vaccination in humans. Sci. Rep., 2019, 9(1), 4760.
[http://dx.doi.org/10.1038/s41598-019-41205-1] [PMID: 30886186]
[30]
Li, S.; Sullivan, N.L.; Rouphael, N.; Yu, T.; Banton, S.; Maddur, M.S.; McCausland, M.; Chiu, C.; Canniff, J.; Dubey, S.; Liu, K.; Tran, V.; Hagan, T.; Duraisingham, S.; Wieland, A.; Mehta, A.K.; Whitaker, J.A.; Subramaniam, S.; Jones, D.P.; Sette, A.; Vora, K.; Weinberg, A.; Mulligan, M.J.; Nakaya, H.I.; Levin, M.; Ahmed, R.; Pulendran, B. Metabolic phenotypes of response to vaccination in humans. Cell, 2017, 169(5), 862-877.e17.
[http://dx.doi.org/10.1016/j.cell.2017.04.026] [PMID: 28502771]
[31]
Wang, Y.; Wang, X.; Luu, L.D.W.; Chen, S.; Jin, F.; Wang, S.; Huang, X.; Wang, L.; Zhou, X.; Chen, X.; Cui, X.; Li, J.; Tai, J.; Zhu, X. Proteomic and metabolomic signatures associated with the immune response in healthy individuals immunized with an inactivated SARS-CoV-2 vaccine. Front. Immunol., 2022, 13, 848961.
[http://dx.doi.org/10.3389/fimmu.2022.848961] [PMID: 35686122]
[32]
He, M.; Huang, Y.; Wang, Y.; Liu, J.; Han, M.; Xiao, Y.; Zhang, N.; Gui, H.; Qiu, H.; Cao, L.; Jia, W.; Huang, S. Metabolomics-based investigation of SARS-CoV-2 vaccination (Sinovac) reveals an immune-dependent metabolite biomarker. Front. Immunol., 2022, 13, 954801.
[http://dx.doi.org/10.3389/fimmu.2022.954801] [PMID: 36248825]
[33]
Choi, I.; Son, H.; Baek, J.H. Tricarboxylic Acid (TCA) cycle intermediates: Regulators of immune responses. Life, 2021, 11(1), 69.
[http://dx.doi.org/10.3390/life11010069] [PMID: 33477822]
[34]
Williams, N.C.; O’Neill, L.A.J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol., 2018, 9, 141.
[http://dx.doi.org/10.3389/fimmu.2018.00141] [PMID: 29459863]
[35]
Langston, P.K.; Shibata, M.; Horng, T. Metabolism supports macrophage activation. Front. Immunol., 2017, 8, 61.
[http://dx.doi.org/10.3389/fimmu.2017.00061] [PMID: 28197151]
[36]
Hooftman, A.; O’Neill, L.A.J. The immunomodulatory potential of the metabolite itaconate. Trends Immunol., 2019, 40(8), 687-698.
[http://dx.doi.org/10.1016/j.it.2019.05.007] [PMID: 31178405]
[37]
Hooftman, A.; Angiari, S.; Hester, S.; Corcoran, S.E.; Runtsch, M.C.; Ling, C.; Ruzek, M.C.; Slivka, P.F.; McGettrick, A.F.; Banahan, K.; Hughes, M.M.; Irvine, A.D.; Fischer, R.; O’Neill, L.A.J. The immunomodulatory metabolite itaconate modifies nlrp3 and inhibits inflammasome activation. Cell Metab., 2020, 32(3), 468-478.e7.
[http://dx.doi.org/10.1016/j.cmet.2020.07.016] [PMID: 32791101]
[38]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[39]
Liu, P.S.; Wang, H.; Li, X.; Chao, T.; Teav, T.; Christen, S.; Di Conza, G.; Cheng, W.C.; Chou, C.H.; Vavakova, M.; Muret, C.; Debackere, K.; Mazzone, M.; Huang, H.D.; Fendt, S.M.; Ivanisevic, J.; Ho, P.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol., 2017, 18(9), 985-994.
[http://dx.doi.org/10.1038/ni.3796] [PMID: 28714978]
[40]
Jha, A.K.; Huang, S.C.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430.
[http://dx.doi.org/10.1016/j.immuni.2015.02.005] [PMID: 25786174]
[41]
Mills, E.; O’Neill, L.A.J. Succinate: A metabolic signal in inflammation. Trends Cell Biol., 2014, 24(5), 313-320.
[http://dx.doi.org/10.1016/j.tcb.2013.11.008] [PMID: 24361092]
[42]
Domínguez-Andrés, J.; Joosten, L.A.B.; Netea, M.G. Induction of innate immune memory: The role of cellular metabolism. Curr. Opin. Immunol., 2019, 56, 10-16.
[http://dx.doi.org/10.1016/j.coi.2018.09.001] [PMID: 30240964]
[43]
Wang, R.; Green, D.R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev., 2012, 249(1), 14-26.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01155.x] [PMID: 22889212]
[44]
Wang, R.; Dillon, C.P.; Shi, L.Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L.L.; Fitzgerald, P.; Chi, H.; Munger, J.; Green, D.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 2011, 35(6), 871-882.
[http://dx.doi.org/10.1016/j.immuni.2011.09.021] [PMID: 22195744]
[45]
Lochner, M.; Berod, L.; Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol., 2015, 36(2), 81-91.
[http://dx.doi.org/10.1016/j.it.2014.12.005] [PMID: 25592731]
[46]
Miles, E.A.; Childs, C.E.; Calder, P.C. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the developing immune system: A narrative review. Nutrients, 2021, 13(1), 247.
[http://dx.doi.org/10.3390/nu13010247] [PMID: 33467123]
[47]
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol., 2012, 188(1), 21-28.
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[48]
Chou, C.H.; Mohanty, S.; Kang, H.A.; Kong, L.; Avila- Pacheco, J.; Joshi, S.R.; Ueda, I.; Devine, L.; Raddassi, K.; Pierce, K.; Jeanfavre, S.; Bullock, K.; Meng, H.; Clish, C.; Santori, F.R.; Shaw, A.C.; Xavier, R.J. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell, 2022, 21(9), e13682.
[http://dx.doi.org/10.1111/acel.13682] [PMID: 35996998]
[49]
Maner-Smith, K.M.; Goll, J.B.; Khadka, M.; Jensen, T.L.; Colucci, J.K.; Gelber, C.E.; Albert, C.J.; Bosinger, S.E.; Franke, J.D.; Natrajan, M.; Rouphael, N.; Johnson, R.A.; Sanz, P.; Anderson, E.J.; Hoft, D.F.; Mulligan, M.J.; Ford, D.A.; Ortlund, E.A. Alterations in the human plasma lipidome in response to tularemia vaccination. Vaccines, 2020, 8(3), 414.
[http://dx.doi.org/10.3390/vaccines8030414] [PMID: 32722213]
[50]
Diray-Arce, J.; Angelidou, A.; Jensen, K.J.; Conti, M.G.; Kelly, R.S.; Pettengill, M.A.; Liu, M.; van Haren, S.D.; McCulloch, S.D.; Michelloti, G.; Idoko, O.; Kollmann, T.R.; Kampmann, B.; Steen, H.; Ozonoff, A.; Lasky-Su, J.; Benn, C.S.; Levy, O. Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vivo and in vitro. Cell Rep., 2022, 39(5), 110772.
[http://dx.doi.org/10.1016/j.celrep.2022.110772] [PMID: 35508141]
[51]
O’Donnell, V.B.; Rossjohn, J.; Wakelam, M.J.O. Phospholipid signaling in innate immune cells. J. Clin. Invest., 2018, 128(7), 2670-2679.
[http://dx.doi.org/10.1172/JCI97944] [PMID: 29683435]
[52]
Cathcart, M.K. Signal-activated phospholipase regulation of leukocyte chemotaxis. J. Lipid Res., 2009, 50(Suppl)(Suppl.), S231-S236.
[http://dx.doi.org/10.1194/jlr.R800096-JLR200] [PMID: 19109234]
[53]
Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res., 2020, 80, 101068.
[http://dx.doi.org/10.1016/j.plipres.2020.101068] [PMID: 33068601]
[54]
Knuplez, E.; Marsche, G. An updated review of pro- and anti-inflammatory properties of plasma lysophosphatidylcholines in the vascular system. Int. J. Mol. Sci., 2020, 21(12), 4501.
[http://dx.doi.org/10.3390/ijms21124501] [PMID: 32599910]
[55]
Dagla, I.; Iliou, A.; Benaki, D.; Gikas, E.; Mikros, E.; Bagratuni, T.; Kastritis, E.; Dimopoulos, M.A.; Terpos, E.; Tsarbopoulos, A. Plasma metabolomic alterations induced by COVID-19 vaccination reveal putative biomarkers reflecting the immune response. Cells, 2022, 11(7), 1241.
[http://dx.doi.org/10.3390/cells11071241] [PMID: 35406806]
[56]
Ghini, V.; Maggi, L.; Mazzoni, A.; Spinicci, M.; Zammarchi, L.; Bartoloni, A.; Annunziato, F.; Turano, P. Serum NMR profiling reveals differential alterations in the lipoproteome induced by Pfizer-BioNTech vaccine in COVID-19 recovered subjects and naïve subjects. Front. Mol. Biosci., 2022, 9, 839809.
[http://dx.doi.org/10.3389/fmolb.2022.839809] [PMID: 35480886]
[57]
Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature, 2014, 510(7503), 58-67.
[http://dx.doi.org/10.1038/nature13475] [PMID: 24899305]
[58]
Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol., 2011, 11(6), 403-415.
[http://dx.doi.org/10.1038/nri2974] [PMID: 21546914]
[59]
Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 175-191.
[http://dx.doi.org/10.1038/nrm.2017.107] [PMID: 29165427]
[60]
Arnon, T.I.; Horton, R.M.; Grigorova, I.L.; Cyster, J.G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature, 2013, 493(7434), 684-688.
[http://dx.doi.org/10.1038/nature11738] [PMID: 23263181]
[61]
Walzer, T.; Chiossone, L.; Chaix, J.; Calver, A.; Carozzo, C.; Garrigue-Antar, L.; Jacques, Y.; Baratin, M.; Tomasello, E.; Vivier, E. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol., 2007, 8(12), 1337-1344.
[http://dx.doi.org/10.1038/ni1523] [PMID: 17965716]
[62]
Gaggini, M.; Pingitore, A.; Vassalle, C. Plasma ceramides pathophysiology, measurements, challenges, and opportunities. Metabolites, 2021, 11(11), 719.
[http://dx.doi.org/10.3390/metabo11110719] [PMID: 34822377]
[63]
Reboldi, A.; Dang, E. Cholesterol metabolism in innate and adaptive response. F1000Res, 2018, 7, 1647.
[http://dx.doi.org/10.12688/f1000research.15500.1]
[64]
Fessler, M.B. Regulation of adaptive immunity in health and disease by cholesterol metabolism. Curr. Allergy Asthma Rep., 2015, 15(8), 48.
[http://dx.doi.org/10.1007/s11882-015-0548-7] [PMID: 26149587]
[65]
Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7), 2021.
[http://dx.doi.org/10.3390/nu12072021] [PMID: 32645995]
[66]
Kidani, Y.; Elsaesser, H.; Hock, M.B.; Vergnes, L.; Williams, K.J.; Argus, J.P.; Marbois, B.N.; Komisopoulou, E.; Wilson, E.B.; Osborne, T.F.; Graeber, T.G.; Reue, K.; Brooks, D.G.; Bensinger, S.J. Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol., 2013, 14(5), 489-499.
[http://dx.doi.org/10.1038/ni.2570] [PMID: 23563690]
[67]
Hu, X.; Wang, Y.; Hao, L.Y.; Liu, X.; Lesch, C.A.; Sanchez, B.M.; Wendling, J.M.; Morgan, R.W.; Aicher, T.D.; Carter, L.L.; Toogood, P.L.; Glick, G.D. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol., 2015, 11(2), 141-147.
[http://dx.doi.org/10.1038/nchembio.1714] [PMID: 25558972]
[68]
Bekkering, S.; Arts, R.J.W.; Novakovic, B.; Kourtzelis, I.; van der Heijden, C.D.C.C.; Li, Y.; Popa, C.D.; ter Horst, R.; van Tuijl, J.; Netea-Maier, R.T.; van de Veerdonk, F.L.; Chavakis, T.; Joosten, L.A.B.; van der Meer, J.W.M.; Stunnenberg, H.; Riksen, N.P.; Netea, M.G. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018, 172(1-2), 135-146.e9.
[http://dx.doi.org/10.1016/j.cell.2017.11.025] [PMID: 29328908]
[69]
Griffiths, W.J.; Wang, Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat., 2020, 147, 106381.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106381] [PMID: 31698146]
[70]
Mutemberezi, V.; Guillemot-Legris, O.; Muccioli, G.G. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res., 2016, 64, 152-169.
[http://dx.doi.org/10.1016/j.plipres.2016.09.002] [PMID: 27687912]
[71]
Reinmuth, L.; Hsiao, C.C.; Hamann, J.; Rosenkilde, M.; Mackrill, J. Multiple targets for oxysterols in their regulation of the immune system. Cells, 2021, 10(8), 2078.
[http://dx.doi.org/10.3390/cells10082078] [PMID: 34440846]
[72]
Spann, N.J.; Glass, C.K. Sterols and oxysterols in immune cell function. Nat. Immunol., 2013, 14(9), 893-900.
[http://dx.doi.org/10.1038/ni.2681] [PMID: 23959186]
[73]
Dang, E.V.; McDonald, J.G.; Russell, D.W.; Cyster, J.G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell, 2017, 171(5), 1057-1071.e11.
[http://dx.doi.org/10.1016/j.cell.2017.09.029] [PMID: 29033131]
[74]
Zang, R.; Case, J.B.; Yutuc, E.; Ma, X.; Shen, S.; Gomez Castro, M.F.; Liu, Z.; Zeng, Q.; Zhao, H.; Son, J. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci., 2020, 117(50), 32105-32113.
[http://dx.doi.org/10.1073/pnas.2012197117]
[75]
Wang, S.; Li, W.; Hui, H.; Tiwari, S.K.; Zhang, Q.; Croker, B.A.; Rawlings, S.; Smith, D.; Carlin, A.F.; Rana, T.M. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J., 2020, 39(21), e106057.
[http://dx.doi.org/10.15252/embj.2020106057] [PMID: 32944968]
[76]
Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metab., 2020, 32(2), 154-175.
[http://dx.doi.org/10.1016/j.cmet.2020.06.010] [PMID: 32649859]
[77]
Takahara, T.; Amemiya, Y.; Sugiyama, R.; Maki, M.; Shibata, H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J. Biomed. Sci., 2020, 27(1), 87.
[http://dx.doi.org/10.1186/s12929-020-00679-2] [PMID: 32799865]
[78]
Li, P.; Wu, G. Important roles of amino acids in immune responses. Br. J. Nutr., 2022, 127(3), 398-402.
[http://dx.doi.org/10.1017/S0007114521004566] [PMID: 34776020]
[79]
Holeček, M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients, 2020, 12(3), 848.
[http://dx.doi.org/10.3390/nu12030848] [PMID: 32235743]
[80]
Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol., 2014, 5, 532.
[http://dx.doi.org/10.3389/fimmu.2014.00532] [PMID: 25386178]
[81]
Sorgdrager, F.J.H.; Naudé, P.J.W.; Kema, I.P.; Nollen, E.A.; Deyn, P.P.D. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol., 2019, 10(10), 2565.
[http://dx.doi.org/10.3389/fimmu.2019.02565] [PMID: 31736978]
[82]
Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol., 2018, 11(4), 1024-1038.
[http://dx.doi.org/10.1038/s41385-018-0019-2] [PMID: 29626198]
[83]
Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol., 2010, 185(6), 3190-3198.
[http://dx.doi.org/10.4049/jimmunol.0903670] [PMID: 20720200]
[84]
Nguyen, N.T.; Kimura, A.; Nakahama, T.; Chinen, I.; Masuda, K.; Nohara, K.; Fujii-Kuriyama, Y.; Kishimoto, T. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci., 2010, 107(46), 19961-6.
[http://dx.doi.org/10.1073/pnas.1014465107]
[85]
Menni, C.; Kastenmüller, G.; Petersen, A.K.; Bell, J.T.; Psatha, M.; Tsai, P.C.; Gieger, C.; Schulz, H.; Erte, I.; John, S.; Brosnan, M.J.; Wilson, S.G.; Tsaprouni, L.; Lim, E.M.; Stuckey, B.; Deloukas, P.; Mohney, R.; Suhre, K.; Spector, T.D.; Valdes, A.M. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int. J. Epidemiol., 2013, 42(4), 1111-1119.
[http://dx.doi.org/10.1093/ije/dyt094] [PMID: 23838602]
[86]
Fanos, V.; Puddu, M.; Mussap, M. OMICS technologies and personalized vaccination in the COVID-19 era. J. Ped. Neo. Ind. Med. , 2022, 11(1), e110114.
[http://dx.doi.org/10.7363/110114]
[87]
Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; Chang, S.E.; Feng, A.; Dhingra, S.; Shah, M.; Lee, A.S.; Chinthrajah, S.; Sindher, S.B.; Mallajosyula, V.; Gao, F.; Sigal, N.; Kowli, S.; Gupta, S.; Pellegrini, K.; Tharp, G.; Maysel-Auslender, S.; Hamilton, S.; Aoued, H.; Hrusovsky, K.; Roskey, M.; Bosinger, S.E.; Maecker, H.T.; Boyd, S.D.; Davis, M.M.; Utz, P.J.; Suthar, M.S.; Khatri, P.; Nadeau, K.C.; Pulendran, B. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596(7872), 410-416.
[http://dx.doi.org/10.1038/s41586-021-03791-x] [PMID: 34252919]
[88]
Karagiannis, F.; Peukert, K.; Surace, L.; Michla, M.; Nikolka, F.; Fox, M.; Weiss, P.; Feuerborn, C.; Maier, P.; Schulz, S.; Al, B.; Seeliger, B.; Welte, T.; David, S.; Grondman, I.; de Nooijer, A.H.; Pickkers, P.; Kleiner, J.L.; Berger, M.M.; Brenner, T.; Putensen, C.; Abdullah, Z.; Latz, E.; Schmidt, S.; Hartmann, G.; Streeck, H.; Kümmerer, B.M.; Kato, H.; Garbi, N.; Netea, M.G.; Hiller, K.; Placek, K.; Bode, C.; Wilhelm, C. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature, 2022, 609(7928), 801-807.
[http://dx.doi.org/10.1038/s41586-022-05128-8] [PMID: 35901960]
[89]
McClenathan, B.M.; Stewart, D.A.; Spooner, C.E.; Pathmasiri, W.W.; Burgess, J.P.; McRitchie, S.L.; Choi, Y.S.; Sumner, S.C.J. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics. Vaccine, 2017, 35(9), 1238-1245.
[http://dx.doi.org/10.1016/j.vaccine.2017.01.056] [PMID: 28169076]
[90]
Sasaki, E.; Kusunoki, H.; Momose, H.; Furuhata, K.; Hosoda, K.; Wakamatsu, K.; Mizukami, T.; Hamaguchi, I. Changes of urine metabolite profiles are induced by inactivated influenza vaccine inoculations in mice. Sci. Rep., 2019, 9(1), 16249.
[http://dx.doi.org/10.1038/s41598-019-52686-5] [PMID: 31700085]
[91]
Koeken, V.A.C.M.; Qi, C.; Mourits, V.P.; de Bree, L.C.J.; Moorlag, S.J.C.F.M.; Sonawane, V.; Lemmers, H.; Dijkstra, H.; Joosten, L.A.B.; van Laarhoven, A.; Xu, C.J.; van Crevel, R.; Netea, M.G.; Li, Y. Plasma metabolome predicts trained immunity responses after antituberculosis BCG vaccination. PLoS Biol., 2022, 20(9), e3001765.
[http://dx.doi.org/10.1371/journal.pbio.3001765] [PMID: 36094960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy