Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective

Author(s): Biswadip Chakraborty, Shivangi Agarwal, Shivam Kori, Ratnesh Das, Varsha Kashaw, Arun K. Iyer and Sushil Kumar Kashaw*

Volume 31, Issue 22, 2024

Published on: 13 July, 2023

Page: [3286 - 3326] Pages: 41

DOI: 10.2174/0929867330666230505165031

Price: $65

Abstract

In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.

Keywords: Biomarkers, pathogenesis, monoclonal antibody, vaccines, phytopharmaceuticals, clinical investigation, colorectal cancer.

[1]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[2]
Chu, KC; Tarone, KE; Chow, WH; Hankey, BF; Gloeckler-Ries, LA Temporal patterns in colorectal cancer incidence, survival, and mortality from 1950 through 1990. J Nat1 Cancer Inst, 1994, 86, 997-1006.
[http://dx.doi.org/10.1093/jnci/86.13.997] [PMID: 7980765]
[3]
Lynch, H.T.; Smyrk, T.; Lynch, J. An update of HNPCC (Lynch syndrome). Cancer Genet. Cytogenet., 1997, 93(1), 84-99.
[http://dx.doi.org/10.1016/S0165-4608(96)00290-7] [PMID: 9062584]
[4]
Radice, P.; Cama, A.; Mariani-Costantini, R. Molecular genetics of polyposis and hereditary colorectal cancer. Forum, 1996, 6, 275-291.
[5]
Ponz de Leon, M. Genetic basis of tumour development. Ital. J. Gastroenterol., 1996, 28(4), 232-245.
[PMID: 8842841]
[6]
Sakai, E.; Nakajima, A.; Kaneda, A. Accumulation of aberrant DNA methylation during colorectal cancer development. World J. Gastroenterol., 2014, 20(4), 978-987.
[http://dx.doi.org/10.3748/wjg.v20.i4.978] [PMID: 24574770]
[7]
Øines, M.; Helsingen, L.M.; Bretthauer, M.; Emilsson, L. Epidemiology and risk factors of colorectal polyps. Best Pract. Res. Clin. Gastroenterol., 2017, 31(4), 419-424.
[http://dx.doi.org/10.1016/j.bpg.2017.06.004] [PMID: 28842051]
[8]
Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int. J. Mol. Sci., 2013, 14(8), 16365-16385.
[http://dx.doi.org/10.3390/ijms140816365] [PMID: 23965959]
[9]
Nazemalhosseini Mojarad, E.; Kuppen, P.J.; Aghdaei, H.A.; Zali, M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench, 2013, 6, 120-128.
[10]
Worthley, D.L.; Leggett, B.A.; Aghdaei, H.A.; Zali, M.R. Colorectal cancer: Molecular features and clinical opportunities. Clin. Biochem. Rev., 2010, 31, 31-38.
[11]
dos Reis, S.A.; da Conceição, L.L.; Siqueira, N.P.; Rosa, D.D.; da Silva, L.L.; Peluzio, M.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res., 2017, 37, 1-19.
[http://dx.doi.org/10.1016/j.nutres.2016.11.009] [PMID: 28215310]
[12]
Hu, T.; Li, L.; Shen, J.; Zhang, L.; Cho, C. Chronic inflammation and colorectal cancer: the role of vascular endothelial growth factor. Curr. Pharm. Des., 2015, 21(21), 2960-2967.
[http://dx.doi.org/10.2174/1381612821666150514104244] [PMID: 26004415]
[13]
Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol., 2014, 20(29), 9872-9881.
[http://dx.doi.org/10.3748/wjg.v20.i29.9872] [PMID: 25110418]
[14]
Bogaert, J.; Prenen, H. Molecular genetics of colorectal cancer. Ann. Gastroenterol., 2014, 27(1), 9-14.
[PMID: 24714764]
[15]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[16]
Markowitz, S.D.; Bertagnolli, M.M. Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588]
[17]
Samowitz, W.S.; Curtin, K.; Ma, K.N.; Schaffer, D.; Coleman, L.W.; Leppert, M.; Slattery, M.L. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomarkers Prev., 2001, 10(9), 917-923.
[PMID: 11535541]
[18]
Kim, G.P.; Colangelo, L.H.; Wieand, H.S.; Paik, S.; Kirsch, I.R.; Wolmark, N.; Allegra, C.J. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: A national cancer institute-national surgical adjuvant breast and bowel project collaborative study. J. Clin. Oncol., 2007, 25(7), 767-772.
[http://dx.doi.org/10.1200/JCO.2006.05.8172] [PMID: 17228023]
[19]
Watanabe, T.; Wu, T.T.; Catalano, P.J.; Ueki, T.; Satriano, R.; Haller, D.G.; Benson, A.B., III; Hamilton, S.R. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med., 2001, 344(16), 1196-1206.
[http://dx.doi.org/10.1056/NEJM200104193441603] [PMID: 11309634]
[20]
Iliopoulos, D.; Kavousanaki, M.; Ioannou, M.; Boumpas, D.; Verginis, P. The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur. J. Immunol., 2011, 41(6), 1754-1763.
[http://dx.doi.org/10.1002/eji.201040646] [PMID: 21469086]
[21]
Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742.
[PMID: 32266087]
[22]
Van Coillie, S.; Wiernicki, B.; Xu, J. Molecular and cellular functions of CTLA-4. Adv. Exp. Med. Biol., 2020, 1248, 7-32.
[http://dx.doi.org/10.1007/978-981-15-3266-5_2] [PMID: 32185705]
[23]
Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity, 2016, 44(5), 989-1004.
[http://dx.doi.org/10.1016/j.immuni.2016.05.001] [PMID: 27192565]
[24]
Borrego, F.; Masilamani, M.; Marusina, A.I.; Tang, X.; Coligan, J.E. The CD94/NKG2 family of receptors: From molecules and cells to clinical relevance. Immunol. Res., 2006, 35(3), 263-278.
[http://dx.doi.org/10.1385/IR:35:3:263] [PMID: 17172651]
[25]
Lanier, L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol., 2008, 9(5), 495-502.
[http://dx.doi.org/10.1038/ni1581] [PMID: 18425106]
[26]
Zhang, Q.; Zhang, H.; Ding, J.; Liu, H.; Li, H.; Li, H.; Lu, M.; Miao, Y.; Li, L.; Zheng, J. Combination therapy with EpCAM-CAR-NK-92 cells and regorafenib against human colorectal cancer models. J. Immunol. Res., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/4263520] [PMID: 30410941]
[27]
Goodin, S. Development of monoclonal antibodies for the treatment of colorectal cancer. Am. J. Health Syst. Pharm., 2008, 65(S4), S3-S7.
[http://dx.doi.org/10.2146/ajhp080100] [PMID: 18499888]
[28]
Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov., 2019, 18(8), 585-608.
[http://dx.doi.org/10.1038/s41573-019-0028-1] [PMID: 31175342]
[29]
Takegawa, N.; Yonesaka, K. HER2 as an emerging oncotarget for colorectal cancer treatment after failure of anti-epidermal growth factor receptor therapy. Clin. Colorectal Cancer, 2017, 16(4), 247-251.
[http://dx.doi.org/10.1016/j.clcc.2017.03.001] [PMID: 28363756]
[30]
Stenger, M. Trastuzumab Deruxtecan-nxki in HER2-Positive Metastatic Colorectal Cancer: DESTINY-CRC01. 2021. Available from: https://ascopost.com/news/may-2021/trastuzumab-deruxtecan-nxki-in-her2-positive-metastatic-colorectal-cancerdestiny-crc01/
[31]
Koganemaru, S.; Kuboki, Y.; Koga, Y.; Kojima, T.; Yamauchi, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Yasunaga, M.; Matsumura, Y.; Doi, T. U3-1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol. Cancer Ther., 2019, 18(11), 2043-2050.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0452] [PMID: 31395690]
[32]
Lédel, F.; Stenstedt, K.; Hallström, M.; Ragnhammar, P.; Edler, D. HER3 expression in primary colorectal cancer including corresponding metastases in lymph node and liver. Acta Oncol., 2015, 54(4), 480-486.
[http://dx.doi.org/10.3109/0284186X.2014.983654] [PMID: 25601452]
[33]
Ning, S.T.; Lee, S.Y.; Wei, M.F.; Peng, C.L.; Lin, S.Y.F.; Tsai, M.H.; Lee, P.C.; Shih, Y.H.; Lin, C.Y.; Luo, T.Y.; Shieh, M.J. Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(28), 17793-17804.
[http://dx.doi.org/10.1021/acsami.6b04403] [PMID: 27348241]
[34]
(a) Wu, Z.; Guo, H-F.; Xu, H.; Cheung, N-K.V. Development of a tetravalent anti-gpa33/anti-cd3 bispecific antibody for colorectal cancers. Mol. Cancer Ther, 2018, 17, 2164-2175.;
(b) Rageul, Z.; Mottier, S.; Jarry, A.; Shah, Y.; Théoleyre, S.; Masson, D.; Laboisse, C.L.; Denis, M.G. KLF4-dependent, PPARgamma-induced expression of GPA33 in colon cancer cell lines. Int. J. Cancer, 2009, 125, 2802-2809.
[35]
Shiozawa, M.; Chang, C.H.; Huang, Y.C.; Chen, Y.C.; Chi, M.S.; Hao, H.C.; Chang, Y.C.; Takeda, S.; Chi, K.H.; Wang, Y.S. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol., 2018, 19(1), 27.
[http://dx.doi.org/10.1186/s12865-018-0262-z] [PMID: 30075754]
[36]
Mathur, D.; Root, A.R.; Bugaj-Gaweda, B.; Bisulco, S.; Tan, X.; Fang, W.; Kearney, J.C.; Lucas, J.; Guffroy, M.; Golas, J.; Rohde, C.M.; Stevens, C.; Kamperschroer, C.; Kelleher, K.; Lawrence-Henderson, R.F.; Upeslacis, E.; Yao, J.; Narula, J.; LaVallie, E.R.; Fernandez, D.R.; Buetow, B.S.; Rosfjord, E.; Bloom, L.; King, L.E.; Tchistiakova, L.; Nguyen, A.; Sapra, P. A novel GUCY2C-CD3 T-cell engaging bispecific construct (PF-07062119) for the treatment of gastrointestinal cancers. Clin. Cancer Res., 2020, 26(9), 2188-2202.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3275] [PMID: 31996389]
[37]
Zhu, G.; Pei, L.; Xia, H.; Tang, Q.; Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer, 2021, 20(1), 143.
[http://dx.doi.org/10.1186/s12943-021-01441-4] [PMID: 34742312]
[38]
Hidalgo, M.; Martinez-Garcia, M.; Le Tourneau, C.; Massard, C.; Garralda, E.; Boni, V.; Taus, A.; Albanell, J.; Sablin, M.P.; Alt, M.; Bahleda, R.; Varga, A.; Boetsch, C.; Franjkovic, I.; Heil, F.; Lahr, A.; Lechner, K.; Morel, A.; Nayak, T.; Rossomanno, S.; Smart, K.; Stubenrauch, K.; Krieter, O. First-in-human phase I study of single-agent Vanucizumab, A first-in-class bispecific anti-angiopoietin-2/Anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin. Cancer Res., 2018, 24(7), 1536-1545.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1588] [PMID: 29217526]
[39]
Michel, M.; Kaps, L.; Maderer, A.; Galle, P.R.; Moehler, M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel), 2021, 13(10), 2296.
[http://dx.doi.org/10.3390/cancers13102296] [PMID: 34064974]
[40]
Patnaik, A.; Gordon, M.; Tsai, F.; Papadopoulous, K.; Rasco, D.; Beeram, S.M.; Fu, S.; Janku, F.; Hynes, S.M.; Gundala, S.R.; Willard, M.D.; Zhang, W.; Lin, A.B.; Hong, D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol., 2018, 82(3), 407-418.
[http://dx.doi.org/10.1007/s00280-018-3623-7] [PMID: 29926131]
[41]
Safaie Qamsari, E.; Safaei Ghaderi, S.; Zarei, B.; Dorostkar, R.; Bagheri, S.; Jadidi-Niaragh, F.; Somi, M.H.; Yousefi, M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol., 2017, 39(5)
[http://dx.doi.org/10.1177/1010428317699118] [PMID: 28459362]
[42]
Wu, G.S.; Burns, T.F.; McDonald, E.R., III; Jiang, W.; Meng, R.; Krantz, I.D.; Kao, G.; Gan, D.D.; Zhou, J.Y.; Muschel, R.; Hamilton, S.R.; Spinner, N.B.; Markowitz, S.; Wu, G.; El-Deiry, W.S. KILLER/DR5 is a DNA damage–inducible p53–regulated death receptor gene. Nat. Genet., 1997, 17(2), 141-143.
[http://dx.doi.org/10.1038/ng1097-141] [PMID: 9326928]
[43]
Takahashi, H.; Jin, C.; Rajabi, H.; Pitroda, S.; Alam, M.; Ahmad, R.; Raina, D.; Hasegawa, M.; Suzuki, Y.; Tagde, A.; Bronson, R.T.; Weichselbaum, R.; Kufe, D. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene, 2015, 34(40), 5187-5197.
[http://dx.doi.org/10.1038/onc.2014.442] [PMID: 25659581]
[44]
Xiao, T.; Xiao, Y.; Wang, W.; Tang, Y.Y.; Xiao, Z.; Su, M. Targeting EphA2 in cancer. J. Hematol. Oncol., 2020, 13(1), 114.
[http://dx.doi.org/10.1186/s13045-020-00944-9] [PMID: 32811512]
[45]
(a) Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res., 2008, 14, 5000-5005.;
(b) Cai, Y.; Ma, W.; Cao, L.; Li, H.; Jiang, Y.; Lu, N.; Yin, Y. Effect of survivin on tumor growth of colorectal cancer in vivo. Int. J. Clin. Exp. Pathol., 2015, 8, 13267-13672.
[46]
Sherman, E.J.; Mitchell, D.C.; Garner, A.L. The RNA-binding protein SART3 promotes miR-34a biogenesis and G1 cell cycle arrest in lung cancer cells. J. Biol. Chem., 2019, 294(46), 17188-17196.
[http://dx.doi.org/10.1074/jbc.AC119.010419] [PMID: 31619517]
[47]
Bartnik, A.; Nirmal, A.J.; Yang, S.Y. Peptide vaccine therapy in colorectal cancer. Vaccines, 2012, 1(1), 1-16.
[http://dx.doi.org/10.3390/vaccines1010001] [PMID: 26343847]
[48]
Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer, 2021, 21(8), 481-499.
[http://dx.doi.org/10.1038/s41568-021-00363-z] [PMID: 34083781]
[49]
Reichert, T.E.; Watkins, S.; Stanson, J.; Johnson, J.T.; Whiteside, T.L. Endogenous IL-2 in cancer cells: a marker of cellular proliferation. J. Histochem. Cytochem., 1998, 46(5), 603-611.
[http://dx.doi.org/10.1177/002215549804600506] [PMID: 9562569]
[50]
Polin, R.A.; Abman, S.H.; Rowitch, D.; Benitz, W.E. Fetal and Neonatal Physiology, 5th ed; Elsevier: Philadelphia, PA, USA, 2017.
[51]
Rébé, C.; Ghiringhelli, F. Interleukin-1β and cancer. Cancers (Basel), 2020, 12(7), 1791.
[http://dx.doi.org/10.3390/cancers12071791] [PMID: 32635472]
[52]
Baker, K.J.; Houston, A.; Brint, E. IL-1 family members in cancer; two sides to every story. Front. Immunol., 2019, 10, 1197.
[http://dx.doi.org/10.3389/fimmu.2019.01197] [PMID: 31231372]
[53]
Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol., 2018, 9, 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[54]
Kienzl, M.; Hasenoehrl, C.; Valadez-Cosmes, P.; Maitz, K.; Sarsembayeva, A.; Sturm, E.; Heinemann, A.; Kargl, J.; Schicho, R. IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. OncoImmunology, 2020, 9(1), 1776059.
[http://dx.doi.org/10.1080/2162402X.2020.1776059] [PMID: 32923137]
[55]
Griesenauer, B.; Paczesny, S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front. Immunol., 2017, 8, 475.
[http://dx.doi.org/10.3389/fimmu.2017.00475] [PMID: 28484466]
[56]
CCR5-blockade in metastatic colorectal cancer. Patent NCT01736813, Available from: https://ClinicalTrials.gov/show/NCT01736813
[57]
Mukaida, N. CCR5 antagonist, an ally to fight against metastatic colorectal cancer. Transl. Cancer Res., 2016, 5(S2), S309-S312.
[http://dx.doi.org/10.21037/tcr.2016.06.36]
[58]
Zhu, Y.; An, X.; Zhang, X.; Qiao, Y.; Zheng, T.; Li, X. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer, 2019, 18(1), 152.
[http://dx.doi.org/10.1186/s12943-019-1087-y] [PMID: 31679519]
[59]
Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81.
[http://dx.doi.org/10.1186/s13045-020-00916-z] [PMID: 32571374]
[60]
Ponz de Leon, M.; Percesepe, A. Pathogenesis of colorectal cancer. Dig. Liver Dis., 2000, 32(9), 807-821.
[http://dx.doi.org/10.1016/S1590-8658(00)80361-8]
[61]
Fearon, ER; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61, 759-767.
[http://dx.doi.org/10.1016/0092-8674(90)90186-I]
[62]
Deschner, EE; Godbold, J; Lynch, HT Rectal epithelial cell proliferation in a group in young adults. Cancer, 1988, 61, 2286-2290.39.
[63]
Grady, W.M.; Markowitz, S. Colorectal cancer: Genetic alterations. In: Gastrointestinal oncology: principles and practice; Kelsen, D.; Daly, J.; Kern, S.; Levin, B.; Tepper, J., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2002; pp. 685-702.
[64]
Fearon, E.R.; Bommer, G.T. Molecular biology of colorectal cancer. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology; DeVita, V.T., Jr; Lawrence, T.S.; Rosenberg, S.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2008, Vol. 1, pp. 1218-1231.
[65]
Leach, F.S.; Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Jen, J.; Parsons, R.; Peltomäki, P.; Sistonen, P.; Aaltonen, L.A.; Nyström-Lahti, M.; Guan, X-Y.; Zhang, J.; Meltzer, P.S.; Yu, J-W.; Kao, F-T.; Chen, D.J.; Cerosaletti, K.M.; Fournier, R.E.K.; Todd, S.; Lewis, T.; Leach, R.J.; Naylor, S.L.; Weissenbach, J.; Mecklin, J-P.; Järvinen, H.; Petersen, G.M.; Hamilton, S.R.; Green, J.; Jass, J.; Watson, P.; Lynch, H.T.; Trent, J.M.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993, 75(6), 1215-1225.
[http://dx.doi.org/10.1016/0092-8674(93)90330-S] [PMID: 8261515]
[66]
Papadopoulos, N.; Nicolaides, N.C.; Wei, Y.F.; Ruben, S.M.; Carter, K.C.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M.; Adams, M.D.; Venter, J.C.; Hamilton, S.R.; Petersen, G.M.; Watson, P.; Lynch, H.T.; Peltomäki, P.; Mecklin, J-P.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B. Mutation of a mutL homolog in hereditary colon cancer. Science, 1994, 263(5153), 1625-1629.
[http://dx.doi.org/10.1126/science.8128251] [PMID: 8128251]
[67]
Fishel, R.; Lescoe, M.K.; Rao, M.R.S.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 1993, 75(5), 1027-1038.
[http://dx.doi.org/10.1016/0092-8674(93)90546-3] [PMID: 8252616]
[68]
Bronner, C.E.; Baker, S.M.; Morrison, P.T.; Warren, G.; Smith, L.G.; Lescoe, M.K.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994, 368(6468), 258-261.
[http://dx.doi.org/10.1038/368258a0] [PMID: 8145827]
[69]
Lynch, H.T.; Lynch, J.F.; Lynch, P.M.; Attard, T. Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam. Cancer, 2008, 7(1), 27-39.
[http://dx.doi.org/10.1007/s10689-007-9165-5] [PMID: 17999161]
[70]
Boland, C.R.; Koi, M.; Chang, D.K.; Carethers, J.M. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside. Fam. Cancer, 2008, 7(1), 41-52.
[http://dx.doi.org/10.1007/s10689-007-9145-9] [PMID: 17636426]
[71]
Al-Tassan, N.; Chmiel, N.H.; Maynard, J.; Fleming, N.; Livingston, A.L.; Williams, G.T.; Hodges, A.K.; Davies, D.R.; David, S.S.; Sampson, J.R.; Cheadle, J.P. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet., 2002, 30(2), 227-232.
[http://dx.doi.org/10.1038/ng828] [PMID: 11818965]
[72]
Kastrinos, F.; Syngal, S. Recently identified colon cancer predispositions: MYH and MSH6 mutations. Semin. Oncol., 2007, 34(5), 418-424.
[http://dx.doi.org/10.1053/j.seminoncol.2007.07.005] [PMID: 17920897]
[73]
Jones, S.; Emmerson, P.; Maynard, J.; Best, J.M.; Jordan, S.; Williams, G.T.; Sampson, J.R.; Cheadle, J.P. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C->T:A mutations. Hum. Mol. Genet., 2002, 11(23), 2961-2967.
[http://dx.doi.org/10.1093/hmg/11.23.2961] [PMID: 12393807]
[74]
Issa, J.P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer, 2004, 4(12), 988-993.
[http://dx.doi.org/10.1038/nrc1507] [PMID: 15573120]
[75]
Kondo, Y.; Issa, J.P.J. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1/2), 29-39.
[http://dx.doi.org/10.1023/A:1025806911782] [PMID: 15000147]
[76]
Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8681-8686.
[http://dx.doi.org/10.1073/pnas.96.15.8681] [PMID: 10411935]
[77]
Goss, K.H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol., 2000, 18(9), 1967-1979.
[http://dx.doi.org/10.1200/JCO.2000.18.9.1967] [PMID: 10784639]
[78]
Baker, S.J.; Fearon, E.R.; Nigro, J.M.; Hamilton, S.R.; Preisinger, A.C.; Jessup, J.M.; vanTuinen, P.; Ledbetter, D.H.; Barker, D.F.; Nakamura, Y.; White, R.; Vogelstein, B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 1989, 244(4901), 217-221.
[http://dx.doi.org/10.1126/science.2649981] [PMID: 2649981]
[79]
Baker, S.J.; Markowitz, S.; Fearon, E.R.; Willson, J.K.V.; Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990, 249(4971), 912-915.
[http://dx.doi.org/10.1126/science.2144057] [PMID: 2144057]
[80]
Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987.
[http://dx.doi.org/10.1038/nrd2656] [PMID: 19043449]
[81]
Baker, S.J.; Preisinger, A.C.; Jessup, J.M.; Paraskeva, C.; Markowitz, S.; Willson, J.K.; Hamilton, S.; Vogelstein, B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res., 1990, 50(23), 7717-7722.
[PMID: 2253215]
[82]
Grady, W.M.; Markowitz, S.D. TGF-β signaling pathway and tumor suppression. In: The TGF-β family; Derynck, R.; Miyazano, K., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2008; pp. 889-938.
[83]
Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B.; Brattain, M.; Willson, J.K.V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 1995, 268(5215), 1336-1338.
[http://dx.doi.org/10.1126/science.7761852] [PMID: 7761852]
[84]
Grady, W.M.; Myeroff, L.L.; Swinler, S.E.; Rajput, A.; Thiagalingam, S.; Lutterbaugh, J.D.; Neumann, A.; Brattain, M.G.; Chang, J.; Kim, S.J.; Kinzler, K.W.; Vogelstein, B.; Willson, J.K.; Markowitz, S. Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res., 1999, 59(2), 320-324.
[PMID: 9927040]
[85]
Sjöblom, T.; Jones, S.; Wood, LD The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314, 268-274.
[http://dx.doi.org/10.1126/science.1133427] [PMID: 16959974]
[86]
Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P.A.; Kaminker, J.S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J.K.V.; Sukumar, S.; Polyak, K.; Park, B.H.; Pethiyagoda, C.L.; Pant, P.V.K.; Ballinger, D.G.; Sparks, A.B.; Hartigan, J.; Smith, D.R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853), 1108-1113.
[http://dx.doi.org/10.1126/science.1145720] [PMID: 17932254]
[87]
Leary, R.J.; Lin, J.C.; Cummins, J.; Boca, S.; Wood, L.D.; Parsons, D.W.; Jones, S.; Sjöblom, T.; Park, B.H.; Parsons, R.; Willis, J.; Dawson, D.; Willson, J.K.V.; Nikolskaya, T.; Nikolsky, Y.; Kopelovich, L.; Papadopoulos, N.; Pennacchio, L.A.; Wang, T.L.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16224-16229.
[http://dx.doi.org/10.1073/pnas.0808041105] [PMID: 18852474]
[88]
Thiagalingam, S.; Lengauer, C.; Leach, F.S.; Schutte, M.; Hahn, S.A.; Overhauser, J.; Willson, J.K.V.; Markowitz, S.; Hamilton, S.R.; Kern, S.E.; Kinzler, K.W.; Vogelstein, B. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet., 1996, 13(3), 343-346.
[http://dx.doi.org/10.1038/ng0796-343] [PMID: 8673134]
[89]
Eppert, K.; Scherer, S.W.; Ozcelik, H.; Pirone, R.; Hoodless, P.; Kim, H.; Tsui, L.C.; Bapat, B.; Gallinger, S.; Andrulis, I.L.; Thomsen, G.H.; Wrana, J.L.; Attisano, L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell, 1996, 86(4), 543-552.
[http://dx.doi.org/10.1016/S0092-8674(00)80128-2] [PMID: 8752209]
[90]
Riggins, G.J.; Thiagalingam, S.; Rozenblum, E.; Weinstein, C.L.; Kern, S.E.; Hamilton, S.R.; Willson, J.K.V.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B. Mad-related genes in the human. Nat. Genet., 1996, 13(3), 347-349.
[http://dx.doi.org/10.1038/ng0796-347] [PMID: 8673135]
[91]
Nosho, K.; Irahara, N.; Shima, K.; Kure, S.; Kirkner, G.J.; Schernhammer, E.S.; Hazra, A.; Hunter, D.J.; Quackenbush, J.; Spiegelman, D.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008, 3(11), e3698.
[http://dx.doi.org/10.1371/journal.pone.0003698] [PMID: 19002263]
[92]
Bos, J.L.; Fearon, E.R.; Hamilton, S.R.; Vries, M.V.; van Boom, J.H.; van der Eb, A.J.; Vogelstein, B. Prevalence of ras gene mutations in human colorectal cancers. Nature, 1987, 327(6120), 293-297.
[http://dx.doi.org/10.1038/327293a0] [PMID: 3587348]
[93]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[94]
Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. RAF/RAS oncogenes and mismatch-repair status. Nature, 2002, 418(6901), 934.
[http://dx.doi.org/10.1038/418934a] [PMID: 12198537]
[95]
Siena, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Balfour, J.; Bardelli, A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst., 2009, 101(19), 1308-1324.
[http://dx.doi.org/10.1093/jnci/djp280] [PMID: 19738166]
[96]
Shen, L.; Toyota, M.; Kondo, Y.; Lin, E.; Zhang, L.; Guo, Y.; Hernandez, N.S.; Chen, X.; Ahmed, S.; Konishi, K.; Hamilton, S.R.; Issa, J.P.J. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18654-18659.
[http://dx.doi.org/10.1073/pnas.0704652104] [PMID: 18003927]
[97]
Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793.
[http://dx.doi.org/10.1038/ng1834] [PMID: 16804544]
[98]
O’Brien, M.J. Hyperplastic and serrated polyps of the colorectum. Gastroenterol. Clin. North Am., 2007, 36(4), 947-968.
[http://dx.doi.org/10.1016/j.gtc.2007.08.007] [PMID: 17996799]
[99]
Jass, J.R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology, 2007, 50(1), 113-130.
[http://dx.doi.org/10.1111/j.1365-2559.2006.02549.x] [PMID: 17204026]
[100]
Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670), 554.
[http://dx.doi.org/10.1126/science.1096502] [PMID: 15016963]
[101]
Parsons, D.W.; Wang, T.L.; Samuels, Y.; Bardelli, A.; Cummins, J.M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C.; Velculescu, V.E. Mutations in a signalling pathway. Nature, 2005, 436(7052), 792.
[http://dx.doi.org/10.1038/436792a] [PMID: 16094359]
[102]
Markowitz, S.D. Aspirin and colon cancer--targeting prevention? N. Engl. J. Med., 2007, 356(21), 2195-2198.
[http://dx.doi.org/10.1056/NEJMe078044] [PMID: 17522404]
[103]
Cha, Y.I.; DuBois, R.N. NSAIDs and cancer prevention: targets downstream of COX-2. Annu. Rev. Med., 2007, 58(1), 239-252.
[http://dx.doi.org/10.1146/annurev.med.57.121304.131253] [PMID: 17100552]
[104]
Yan, M.; Rerko, R.M.; Platzer, P.; Dawson, D.; Willis, J.; Tong, M.; Lawrence, E.; Lutterbaugh, J.; Lu, S.; Willson, J.K.V.; Luo, G.; Hensold, J.; Tai, H.H.; Wilson, K.; Markowitz, S.D. 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-β-induced suppressor of human gastrointestinal cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(50), 17468-17473.
[http://dx.doi.org/10.1073/pnas.0406142101] [PMID: 15574495]
[105]
Myung, S.J.; Rerko, R.M.; Yan, M.; Platzer, P.; Guda, K.; Dotson, A.; Lawrence, E.; Dannenberg, A.J.; Lovgren, A.K.; Luo, G.; Pretlow, T.P.; Newman, R.A.; Willis, J.; Dawson, D.; Markowitz, S.D. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12098-12102.
[http://dx.doi.org/10.1073/pnas.0603235103] [PMID: 16880406]
[106]
Backlund, M.G.; Mann, J.R.; Holla, V.R.; Buchanan, F.G.; Tai, H.H.; Musiek, E.S.; Milne, G.L.; Katkuri, S.; DuBois, R.N. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem., 2005, 280(5), 3217-3223.
[http://dx.doi.org/10.1074/jbc.M411221200] [PMID: 15542609]
[107]
Saltz, L.B.; Meropol, N.J.; Loehrer, P.J., Sr; Needle, M.N.; Kopit, J.; Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(7), 1201-1208.
[http://dx.doi.org/10.1200/JCO.2004.10.182] [PMID: 14993230]
[108]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[109]
Meyerhardt, J.A.; Mayer, R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med., 2005, 352(5), 476-487.
[http://dx.doi.org/10.1056/NEJMra040958] [PMID: 15689586]
[110]
Van Cutsem, E.; Peeters, M.; Siena, S.; Humblet, Y.; Hendlisz, A.; Neyns, B.; Canon, J.L.; Van Laethem, J.L.; Maurel, J.; Richardson, G.; Wolf, M.; Amado, R.G. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol., 2007, 25(13), 1658-1664.
[http://dx.doi.org/10.1200/JCO.2006.08.1620] [PMID: 17470858]
[111]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[112]
Boman, B.M.; Huang, E. Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J. Clin. Oncol., 2008, 26(17), 2828-2838.
[http://dx.doi.org/10.1200/JCO.2008.17.6941] [PMID: 18539961]
[113]
O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445(7123), 106-110.
[http://dx.doi.org/10.1038/nature05372] [PMID: 17122772]
[114]
Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115.
[http://dx.doi.org/10.1038/nature05384] [PMID: 17122771]
[115]
Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Simeone, D.M.; Shelton, A.A.; Parmiani, G.; Castelli, C.; Clarke, M.F. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10158-10163.
[http://dx.doi.org/10.1073/pnas.0703478104] [PMID: 17548814]
[116]
Woods, D.; Turchi, J.J. Chemotherapy induced DNA damage response. Cancer Biol. Ther., 2013, 14(5), 379-389.
[http://dx.doi.org/10.4161/cbt.23761] [PMID: 23380594]
[117]
Lindskog, E.B.; Gunnarsdóttir, K.Á.; Derwinger, K.; Wettergren, Y.; Glimelius, B.; Kodeda, K. A population-based cohort study on adherence to practice guidelines for adjuvant chemotherapy in colorectal cancer. BMC Cancer, 2014, 14(1), 948.
[http://dx.doi.org/10.1186/1471-2407-14-948] [PMID: 25495897]
[118]
de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; Papamichael, D.; Le Bail, N.; Louvet, C.; Hendler, D.; de Braud, F.; Wilson, C.; Morvan, F.; Bonetti, A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 2000, 18(16), 2938-2947.
[http://dx.doi.org/10.1200/JCO.2000.18.16.2938] [PMID: 10944126]
[119]
Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M.; Gruia, G.; Awad, L.; Rougier, P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet, 2000, 355(9209), 1041-1047.
[http://dx.doi.org/10.1016/S0140-6736(00)02034-1] [PMID: 10744089]
[120]
Pardini, B.; Kumar, R.; Naccarati, A.; Novotny, J.; Prasad, R.B.; Forsti, A.; Hemminki, K.; Vodicka, P.; Lorenzo Bermejo, J. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol., 2011, 72(1), 162-163.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03892.x] [PMID: 21204909]
[121]
Assed Bastos, D.; Coelho Ribeiro, S.; de Freitas, D.; Hoff, P.M. Review: Combination therapy in high-risk stage II or stage III colon cancer: current practice and future prospects. Ther. Adv. Med. Oncol., 2010, 2(4), 261-272.
[http://dx.doi.org/10.1177/1758834010367905] [PMID: 21789139]
[122]
Nautiyal, J.; Kanwar, S.S.; Yu, Y.; Majumdar, A.P.N. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J. Mol. Signal., 2011, 6, 7.
[http://dx.doi.org/10.1186/1750-2187-6-7] [PMID: 21774804]
[123]
Details available in treatment of colorectal cancer segment of cancer.gov database. 2011.
[124]
Bokemeyer, C.; Cutsem, E.V.; Rougier, P.; Ciardiello, F.; Heeger, S.; Schlichting, M.; Celik, I.; Köhne, C.H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: Pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer, 2012, 48(10), 1466-1475.
[http://dx.doi.org/10.1016/j.ejca.2012.02.057] [PMID: 22446022]
[125]
Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Williams, R.; Rong, A.; Wiezorek, J.; Sidhu, R.; Patterson, S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med., 2013, 369(11), 1023-1034.
[http://dx.doi.org/10.1056/NEJMoa1305275] [PMID: 24024839]
[126]
Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev., 2010, 236(1), 219-242.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x] [PMID: 20636820]
[127]
Tsai, M.H.; Pan, C.H.; Peng, C.L.; Shieh, M.J. Panitumumab-conjugated pt-drug nanomedicine for enhanced efficacy of combination targeted chemotherapy against colorectal cancer. Adv. Healthc. Mater., 2017, 6(13), 1700111.
[http://dx.doi.org/10.1002/adhm.201700111] [PMID: 28418176]
[128]
Tabernero, J.; Melero, I.; Ros, W.; Argiles, G.; Marabelle, A.; Rodriguez-Ruiz, M.E.; Albanell, J.; Calvo, E.; Moreno, V.; Cleary, J.M.; Eder, J.P.; Karanikas, V.; Bouseida, S.; Sandoval, F.; Sabanes, D.; Sreckovic, S.; Hurwitz, H.; Paz-Ares, L.G.; Saro Suarez, J.M.; Segal, N.H. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J. Clin. Oncol., 2017, 35(15_suppl), 3002-3002.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.3002]
[129]
Moradi, A.; Pourseif, M.M.; Jafari, B.; Parvizpour, S.; Omidi, Y. Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacol. Res., 2020, 156, 104790.
[http://dx.doi.org/10.1016/j.phrs.2020.104790] [PMID: 32278043]
[130]
Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61.
[http://dx.doi.org/10.1126/science.aaa8172] [PMID: 25838373]
[131]
Overman, M.J.; Ernstoff, M.S.; Morse, M.A. Where we stand with immunotherapy in colorectal cancer: Deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 239-247.
[http://dx.doi.org/10.1200/EDBK_200821] [PMID: 30231358]
[132]
FDA Approves First-Line Immunotherapy for Patients with MSI-H/dMMR Metastatic Colorectal Cancer. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-line-immunotherapy-patients-msi-hdmmrmetastatic-colorectal-cancer
[133]
Administration USFaD. FDA Grants Nivolumab Accelerated Approval for MSI-H or dMMR Colorectal Cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approvalmsi-h-or-dmmr-colorectal-cancer
[134]
Liu, L.; Mayes, P.A.; Eastman, S.; Shi, H.; Yadavilli, S.; Zhang, T.; Yang, J.; Seestaller-Wehr, L.; Zhang, S.Y.; Hopson, C.; Tsvetkov, L.; Jing, J.; Zhang, S.; Smothers, J.; Hoos, A. The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res., 2015, 21(7), 1639-1651.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2339] [PMID: 25589619]
[135]
Loi, S.; Dushyanthen, S.; Beavis, P.A.; Salgado, R.; Denkert, C.; Savas, P.; Combs, S.; Rimm, D.L.; Giltnane, J.M.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; Cook, R.S.; Pilkinton, M.A.; Mallal, S.A.; Wang, K.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Doimi, F.D.; Gómez, H.; Ryzhov, S.V.; Darcy, P.K.; Arteaga, C.L.; Balko, J.M. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res., 2016, 22(6), 1499-1509.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1125] [PMID: 26515496]
[136]
Ebert, P.J.R.; Cheung, J.; Yang, Y.; McNamara, E.; Hong, R.; Moskalenko, M.; Gould, S.E.; Maecker, H.; Irving, B.A.; Kim, J.M.; Belvin, M.; Mellman, I. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 2016, 44(3), 609-621.
[http://dx.doi.org/10.1016/j.immuni.2016.01.024] [PMID: 26944201]
[137]
An investigational immuno-therapy study of nivolumab, and nivolumab in combination with other anti-cancer drugs, in colon cancer that has come back or has spread. Patent NCT02060188., Available from: https://clinicaltrials.gov/ct2/show/NCT02060188
[138]
Study of nivolumab and relatlimab in patients with microsatellite stable (mss) advanced colorectal cancer. Patent NCT03642067., Available from: https://clinicaltrials.gov/ct2/show/NCT03642067
[139]
Study of TSR-033 with an anti-programmed cell death-1 receptor (PD-1) in participants with advanced solid tumors. Patent NCT03250832., Available from: https://clinicaltrials. gov/ct2/show/NCT03250832
[140]
Smith, C.M.; Li, A.; Krishnamurthy, N.; Lemmon, M.A. Phosphatidylserine binding directly regulates TIM-3 function. Biochem. J., 2021, 478(17), 3331-3349.
[http://dx.doi.org/10.1042/BCJ20210425] [PMID: 34435619]
[141]
Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol., 2020, 20(3), 173-185.
[http://dx.doi.org/10.1038/s41577-019-0224-6] [PMID: 31676858]
[142]
Yang, R.; Sun, L.; Li, C.F.; Wang, Y.H.; Yao, J.; Li, H.; Yan, M.; Chang, W.C.; Hsu, J.M.; Cha, J.H.; Hsu, J.L.; Chou, C.W.; Sun, X.; Deng, Y.; Chou, C.K.; Yu, D.; Hung, M.C. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun., 2021, 12(1), 832.
[http://dx.doi.org/10.1038/s41467-021-21099-2] [PMID: 33547304]
[143]
Huang, H.; Wang, X.; Zhang, Y.; Zheng, X.; Wei, H.; Sun, R. Up-regulation of NKG2F receptor, a functionally unknown killer receptor, of human natural killer cells by interleukin-2 and interleukin-15. Oncol. Rep., 2010, 24(4), 1043-1048.
[PMID: 20811687]
[144]
Rodriguez-Salas, N.; Dominguez, G.; Barderas, R.; Mendiola, M.; García-Albéniz, X.; Maurel, J.; Batlle, J.F. Clinical relevance of colorectal cancer molecular subtypes. Crit. Rev. Oncol. Hematol., 2017, 109, 9-19.
[http://dx.doi.org/10.1016/j.critrevonc.2016.11.007] [PMID: 28010901]
[145]
Peltomäki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol., 2003, 21(6), 1174-1179.
[http://dx.doi.org/10.1200/JCO.2003.04.060] [PMID: 12637487]
[146]
Pawlik, T.M.; Raut, C.P.; Rodriguez-Bigas, M.A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers, 2004, 20(4-5), 199-206.
[http://dx.doi.org/10.1155/2004/368680] [PMID: 15528785]
[147]
Salipante, S.J.; Scroggins, S.M.; Hampel, H.L.; Turner, E.H.; Pritchard, C.C. Microsatellite instability detection by next generation sequencing. Clin. Chem., 2014, 60(9), 1192-1199.
[http://dx.doi.org/10.1373/clinchem.2014.223677] [PMID: 24987110]
[148]
Ganesh, K.; Zsofia, K.S.; Andrea, C.; Robin, B.; Mendelsohn, J.S.; Neil, H.S.; Luis, A. Diaz Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375.
[http://dx.doi.org/10.1038/s41575-019-0126-x] [PMID: 30886395]
[149]
Ooki, A.; Shinozaki, E.; Yamaguchi, K. Immunotherapy in colorectal cancer: current and future strategies. J. Anus Rectum Colon, 2021, 5(1), 11-24.
[http://dx.doi.org/10.23922/jarc.2020-064] [PMID: 33537496]
[150]
Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; Jones, T.; Jucknischke, U.; Scheiblich, S.; Kaluza, K.; Gorr, I.H.; Walz, A.; Abiraj, K.; Cassier, P.A.; Sica, A.; Gomez-Roca, C.; de Visser, K.E.; Italiano, A.; Le Tourneau, C.; Delord, J.P.; Levitsky, H.; Blay, J.Y.; Rüttinger, D. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014, 25(6), 846-859.
[http://dx.doi.org/10.1016/j.ccr.2014.05.016] [PMID: 24898549]
[151]
Ciardiello, D.; Vitiello, P.P.; Cardone, C.; Martini, G.; Troiani, T.; Martinelli, E.; Ciardiello, F. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev., 2019, 76, 22-32.
[http://dx.doi.org/10.1016/j.ctrv.2019.04.003] [PMID: 31079031]
[152]
Beatty, G.L.; O’Dwyer, P.J.; Clark, J.; Shi, J.G.; Bowman, K.J.; Scherle, P. First-inhuman phase 1 study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clincanres.2272.2016. Clin. Cancer Res., 2017.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2272]
[153]
Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev., 2009, 229(1), 173-191.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00766.x] [PMID: 19426222]
[154]
Kalyan, A.; Kircher, S.; Shah, H.; Mulcahy, M.; Benson, A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol., 2018, 9(1), 160-169.
[http://dx.doi.org/10.21037/jgo.2018.01.17] [PMID: 29564182]
[155]
Petty, J.K.; He, K.; Corless, C.L.; Vetto, J.T.; Weinberg, A.D. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). Am. J. Surg., 2002, 183(5), 512-518.
[http://dx.doi.org/10.1016/S0002-9610(02)00831-0] [PMID: 12034383]
[156]
Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer, 2017, 17, 70.
[157]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[158]
Keenan, T.E.; Burke, K.P.; Van Allen, E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med., 2019, 25(3), 389-402.
[http://dx.doi.org/10.1038/s41591-019-0382-x] [PMID: 30842677]
[159]
Kopetz, S SA; Wertheim, M; Kim, E M7824 (MSB0011359 C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with heavily pretreated CRC: Preliminary results from a phase I trial. Clin Cancer Res., 2018, 36(S4), 1287-1295.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2653] [PMID: 29298798]
[160]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[161]
Troiani, T; Martinelli, E; Ciardiello, D Phase II study of avelumab in combination with cetuximab in pre-treated RAS wild type metastatic colorectal cancer patients: CAVE (cetuximabavelumab) Colon. Clin. Oncol., 2019, 37(4), TPS731.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.TPS731]
[162]
Bendell, JC PJ; Lieu, CH Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). Clin. Oncol., 2015, 33(3)
[http://dx.doi.org/10.1200/jco.2015.33.3_suppl.704]
[163]
Lee, JJ; Yothers, G; Jacobs, SA Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) study (NRGGI004/SWOG-S1610): A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients (pts) with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer (mCRC). Clin. Oncol., 2019, 37(4), TPS3647-TPS3647.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.TPS3647]
[164]
Antoniotti, C.; Borelli, B.; Rossini, D.; Pietrantonio, F.; Morano, F.; Salvatore, L.; Lonardi, S.; Marmorino, F.; Tamberi, S.; Corallo, S.; Tortora, G.; Bergamo, F.; Brunella, D.S.; Boccaccino, A.; Grassi, E.; Racca, P.; Tamburini, E.; Aprile, G.; Moretto, R.; Boni, L.; Falcone, A.; Cremolini, C. AtezoTRIBE: a randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer. BMC Cancer, 2020, 20(1), 683.
[http://dx.doi.org/10.1186/s12885-020-07169-6] [PMID: 32698790]
[165]
Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; Hirano, N.; Wakabayashi, M.; Nomura, S.; Sato, A.; Kuwata, T.; Togashi, Y.; Nishikawa, H.; Shitara, K. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol., 2020, 38(18), 2053-2061.
[http://dx.doi.org/10.1200/JCO.19.03296] [PMID: 32343640]
[166]
Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63.
[http://dx.doi.org/10.1186/s13045-019-0759-9] [PMID: 31227004]
[167]
Reid, J.C.; Bennett, N.C.; Stephens, C.R.; Carroll, M.L.; Magdolen, V.; Clements, J.A.; Hooper, J.D. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B. Biol. Chem., 2016, 397(12), 1299-1305.
[http://dx.doi.org/10.1515/hsz-2016-0163] [PMID: 27533117]
[168]
Van Cutsem, E.; Eng, C.; Nowara, E.; Świeboda-Sadlej, A.; Tebbutt, N.C.; Mitchell, E.; Davidenko, I.; Stephenson, J.; Elez, E.; Prenen, H.; Deng, H.; Tang, R.; McCaffery, I.; Oliner, K.S.; Chen, L.; Gansert, J.; Loh, E.; Smethurst, D.; Tabernero, J. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin. Cancer Res., 2014, 20(16), 4240-4250.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2752] [PMID: 24919569]
[169]
Shah, M.A.; Bang, Y.J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; Phan, S.; Cunningham, D. Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-negative, MET-positive gastroesophageal adenocarcinoma: the METGastric Randomized Clinical Trial. JAMA Oncol., 2017, 3(5), 620-627.
[http://dx.doi.org/10.1001/jamaoncol.2016.5580] [PMID: 27918764]
[170]
Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[171]
Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 family cytokines in cancer and immunotherapy. Cancers, 2021, 13(2), 167.
[http://dx.doi.org/10.3390/cancers13020167] [PMID: 33418929]
[172]
Ward-Kavanagh, L.K.; Lin, W.W.; Šedý, J.R.; Ware, C.F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity, 2016, 44(5), 1005-1019.
[http://dx.doi.org/10.1016/j.immuni.2016.04.019] [PMID: 27192566]
[173]
Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; Frei, R.; Garbani, M.; Globinska, A.; Hess, L.; Huitema, C.; Kubo, T.; Komlosi, Z.; Konieczna, P.; Kovacs, N.; Kucuksezer, U.C.; Meyer, N.; Morita, H.; Olzhausen, J.; O’Mahony, L.; Pezer, M.; Prati, M.; Rebane, A.; Rhyner, C.; Rinaldi, A.; Sokolowska, M.; Stanic, B.; Sugita, K.; Treis, A.; van de Veen, W.; Wanke, K.; Wawrzyniak, M.; Wawrzyniak, P.; Wirz, O.F.; Zakzuk, J.S.; Akdis, C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol., 2016, 138(4), 984-1010.
[http://dx.doi.org/10.1016/j.jaci.2016.06.033] [PMID: 27577879]
[174]
Parker, B.S.; Rautela, J.; Hertzog, P.J. Antitumour actions of interferons: Implications for cancer therapy. Nat. Rev. Cancer, 2016, 16(3), 131-144.
[http://dx.doi.org/10.1038/nrc.2016.14] [PMID: 26911188]
[175]
Kim, D.S.; Endo, A.; Fang, F.G.; Huang, K.C.; Bao, X.; Choi, H.; Majumder, U.; Shen, Y.Y.; Mathieu, S.; Zhu, X.; Sanders, K.; Noland, T.; Hao, M.H.; Chen, Y.; Wang, J.Y.; Yasui, S.; TenDyke, K.; Wu, J.; Ingersoll, C.; Loiacono, K.A.; Hutz, J.E.; Sarwar, N. E7766, a macrocycle‐bridged stimulator of interferon genes (STING) agonist with potent pan‐genotypic activity. ChemMedChem, 2021, 16(11), 1741-1744.
[http://dx.doi.org/10.1002/cmdc.202100068] [PMID: 33522135]
[176]
Stewart, A.K. Medicine. How thalidomide works against cancer. Science, 2014, 343(6168), 256-257.
[http://dx.doi.org/10.1126/science.1249543] [PMID: 24436409]
[177]
Ruella, M.; Kalos, M. Adoptive immunotherapy for cancer. Immunol. Rev., 2014, 257(1), 14-38.
[http://dx.doi.org/10.1111/imr.12136] [PMID: 24329787]
[178]
Turin, I.; Delfanti, S.; Ferulli, F.; Brugnatelli, S.; Tanzi, M.; Maestri, M.; Cobianchi, L.; Lisini, D.; Luinetti, O.; Paulli, M.; Perotti, C.; Todisco, E.; Pedrazzoli, P.; Montagna, D. In vitro killing of colorectal carcinoma cells by autologous activated NK cells are boosted by anti-epidermal growth factor receptor-induced ADCC regardless of RAS mutation status. J. Immunother., 2018, 41(4), 190-200.
[http://dx.doi.org/10.1097/CJI.0000000000000205] [PMID: 29293164]
[179]
Rosenberg, S.A.; Spiess, P.; Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 1986, 233(4770), 1318-1321.
[http://dx.doi.org/10.1126/science.3489291] [PMID: 3489291]
[180]
Carlsen, L.; Huntington, K.E.; El-Deiry, W.S. Immunotherapy for colorectal cancer: Mechanisms and predictive biomarkers. Cancers, 2022, 14(4), 1028.
[http://dx.doi.org/10.3390/cancers14041028] [PMID: 35205776]
[181]
Nor, A.J.; Nur, F.S. Colorectal cancer immunotherapy: Options and strategies. Front Immunol, 2020, 11, 1624.
[http://dx.doi.org/10.3389/fimmu.2020.01624]
[182]
Barrett, D.M.; Grupp, S.A.; June, C.H. Chimeric antigen receptor– and TCR Modified T cells enter main street and wall street. J. Immunol., 2015, 195(3), 755-761.
[http://dx.doi.org/10.4049/jimmunol.1500751] [PMID: 26188068]
[183]
Geevarghese, S.K.; Geller, D.A.; de Haan, H.A.; Hörer, M.; Knoll, A.E.; Mescheder, A.; Nemunaitis, J.; Reid, T.R.; Sze, D.Y.; Tanabe, K.K.; Tawfik, H. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum. Gene Ther., 2010, 21(9), 1119-1128.
[http://dx.doi.org/10.1089/hum.2010.020] [PMID: 20486770]
[184]
Fifis, T.; Lam, I.; Lin, D.; Malcontenti-Wilson, C.; Christophi, C.; Loveland, B. Vaccination with in vitro grown whole tumor cells induces strong immune responses and retards tumor growth in a murine model of colorectal liver metastases. Vaccine, 2008, 26(2), 241-249.
[http://dx.doi.org/10.1016/j.vaccine.2007.10.068] [PMID: 18069095]
[185]
Wrobel, P.; Ahmed, S. Current status of immunotherapy in metastatic colorectal cancer. Int. J. Colorectal Dis., 2019, 34(1), 13-25.
[http://dx.doi.org/10.1007/s00384-018-3202-8] [PMID: 30465238]
[186]
Blank, C.; Brown, I.; Peterson, A.C.; Spiotto, M.; Iwai, Y.; Honjo, T.; Gajewski, T.F. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res., 2004, 64(3), 1140-1145.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3259] [PMID: 14871849]
[187]
Tsuruma, T.; Hata, F.; Torigoe, T.; Furuhata, T.; Idenoue, S.; Kurotaki, T.; Yamamoto, M.; Yagihashi, A.; Ohmura, T.; Yamaguchi, K.; Katsuramaki, T.; Yasoshima, T.; Sasaki, K.; Mizushima, Y.; Minamida, H.; Kimura, H.; Akiyama, M.; Hirohashi, Y.; Asanuma, H.; Tamura, Y.; Shimozawa, K.; Sato, N.; Hirata, K. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J. Transl. Med., 2004, 2(1), 19.
[http://dx.doi.org/10.1186/1479-5876-2-19] [PMID: 15193151]
[188]
Moulton, H.M.; Yoshihara, P.H.; Mason, D.H.; Iversen, P.L.; Triozzi, P.L. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: Antibody response is associated with improved survival. Clin. Cancer Res., 2002, 8(7), 2044-2051.
[PMID: 12114402]
[189]
Okuno, K.; Sugiura, F.; Hida, J.I.; Tokoro, T.; Ishimaru, E.; Sukegawa, Y.; Ueda, K. Phase I clinical trial of a novel peptide vaccine in combination with UFT/LV for metastatic colorectal cancer. Exp. Ther. Med., 2011, 2(1), 73-79.
[http://dx.doi.org/10.3892/etm.2010.182] [PMID: 22977472]
[190]
Miyagi, Y.; Imai, N.; Sasatomi, T.; Yamada, A.; Mine, T.; Katagiri, K.; Nakagawa, M.; Muto, A.; Okouchi, S.; Isomoto, H.; Shirouzu, K.; Yamana, H.; Itoh, K. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin. Cancer Res., 2001, 7(12), 3950-3962.
[PMID: 11751487]
[191]
Toubaji, A.; Achtar, M.; Provenzano, M.; Herrin, V.E.; Behrens, R.; Hamilton, M.; Bernstein, S.; Venzon, D.; Gause, B.; Marincola, F.; Khleif, S.N. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother., 2008, 57(9), 1413-1420.
[http://dx.doi.org/10.1007/s00262-008-0477-6] [PMID: 18297281]
[192]
Koido, S.; Ohkusa, T.; Homma, S.; Namiki, Y.; Takakura, K.; Saito, K.; Ito, Z.; Kobayashi, H.; Kajihara, M.; Uchiyama, K.; Arihiro, S.; Arakawa, H.; Okamoto, M.; Gong, J.; Tajiri, H. Immunotherapy for colorectal cancer. World J. Gastroenterol., 2013, 19(46), 8531-8542.
[http://dx.doi.org/10.3748/wjg.v19.i46.8531] [PMID: 24379570]
[193]
Hörig, H.; Lee, D.S.; Conkright, W.; Divito, J.; Hasson, H.; LaMare, M.; Rivera, A.; Park, D.; Tine, J.; Guito, K.; Tsang, K.W.Y.; Schlom, J.; Kaufman, H.L. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol. Immunother., 2000, 49(9), 504-514.
[http://dx.doi.org/10.1007/s002620000146] [PMID: 11092617]
[194]
Kaufman, H.L.; Lenz, H.J.; Marshall, J.; Singh, D.; Garett, C.; Cripps, C.; Moore, M.; von Mehren, M.; Dalfen, R.; Heim, W.J.; Conry, R.M.; Urba, W.J.; Benson, A.B., III; Yu, M.; Caterini, J.; Kim-Schulze, S.; DeBenedette, M.; Salha, D.; Vogel, T.; Elias, I.; Berinstein, N.L. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin. Cancer Res., 2008, 14(15), 4843-4849.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0276] [PMID: 18676757]
[195]
Redmond, W.L.; Ruby, C.E.; Weinberg, A.D. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol., 2009, 29(3), 187-201.
[http://dx.doi.org/10.1615/CritRevImmunol.v29.i3.10] [PMID: 19538134]
[196]
Morse, M.A.; Chaudhry, A.; Gabitzsch, E.S.; Hobeika, A.C.; Osada, T.; Clay, T.M.; Amalfitano, A.; Burnett, B.K.; Devi, G.R.; Hsu, D.S.; Xu, Y.; Balcaitis, S.; Dua, R.; Nguyen, S.; Balint, J.P., Jr; Jones, F.R.; Lyerly, H.K. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol. Immunother., 2013, 62(8), 1293-1301.
[http://dx.doi.org/10.1007/s00262-013-1400-3] [PMID: 23624851]
[197]
Fong, L.; Hou, Y.; Rivas, A.; Benike, C.; Yuen, A.; Fisher, G.A.; Davis, M.M.; Engleman, E.G. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci., 2001, 98(15), 8809-8814.
[http://dx.doi.org/10.1073/pnas.141226398] [PMID: 11427731]
[198]
Boland, P.; Ma, W. Immunotherapy for colorectal cancer. Cancers, 2017, 9(12), 50.
[http://dx.doi.org/10.3390/cancers9050050] [PMID: 28492495]
[199]
Sinicrope, F.A.; Ou, F-S.; Shi, Q.; Nixon, A.B.; Mody, K.; Levasseur, A.; Dueck, A.C.; Dhanarajan, A.R.; Lieu, C.H.; Cohen, D.J.; Innocenti, F.; Behrens, R.J.; Peters, W.; Sargent, D.J.; Sommer, N.; O’Reilly, E.M.; Meyerhardt, J. Randomized trial of FOLFOX alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient DNA mismatch repair or microsatellite instability (ATOMIC, Alliance A021502). J. Clin. Oncol., 2017, 35(15_suppl), TPS3630.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.TPS3630]
[200]
García-Martínez, E.; Smith, M.; Buqué, A.; Aranda, F.; Peña, F.A.; Ivars, A.; Cánovas, M.S.; Conesa, M.A.V.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Immunostimulation with recombinant cytokines for cancer therapy. OncoImmunology, 2018, 7(6), e1433982.
[http://dx.doi.org/10.1080/2162402X.2018.1433982] [PMID: 29872569]
[201]
Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem., 2017, 144, 582-594.
[202]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy