Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Synthesis and Self-assembly of a Novel Amphiphilic Tri-arm Star-shaped Copolymer Poly(ethylene oxide)-b-Poly(ε-caprolactone)

Author(s): Xiaoyan Zhang*, Kexin Kang and Tao Wu

Volume 20, Issue 10, 2023

Published on: 15 June, 2023

Page: [908 - 915] Pages: 8

DOI: 10.2174/1570178620666230505144013

Price: $65

conference banner
Abstract

Amphiphilic tri-arm star-shaped copolymers, poly(ethylene oxide)-b-poly(ε-caprolactone) PEO3-b-PCL3, with different poly (ε-caprolactone) (PCL) molecular weights were successfully synthesized by ring-opening polymerization (ROP). Firstly, the tri-arm star-shaped PEO3 was prepared by ROP of trimethylolpropane and ethylene oxide (EO). The ring-opening polymerization (ROP) of ε- caprolactone (CL) was initiated using the tri-arm star-shaped PEO3 with the hydroxyl group as macroinitiator and Sn(Oct)2 as a catalyst. Amphiphilic tri-arm star-shaped copolymers PEO3-b-PCL3 were obtained. By changing the ratio of monomer and macroinitiator, a series of PEO3-b-PCL3 were prepared with a well-defined structure, molecular weight control, and narrow molecular weight distribution. The expected intermediates and final products were confirmed by 1H NMR and Gel Permeation Chromatography (GPC) analyses. In addition, the sizes and morphologies of the obtained micelles with different PCL segment lengths were investigated with dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. It was found that the self-assembly morphologies were spherical micelle in aqueous solution.

Keywords: Tri-arm star-shaped copolymer, self-assembly, amphiphilic, poly (ethylene oxide), poly (ε-caprolactone), ringopening polymerization (ROP).

Graphical Abstract
[1]
Machakanur, S.S.; Patil, B.R.; Badiger, D.S.; Bakale, R.P.; Gudasi, K.B.; Annie Bligh, S.W. J. Mol. Struct., 2012, 1011, 121-127.
[http://dx.doi.org/10.1016/j.molstruc.2011.12.023]
[2]
Li, Y.; Fang, H.G.; Zhang, D.; Bahader, A.; Zhen, B.; Xu, P.Y.S. J. Therm. Anal. Calorim., 2016, 125(2), 849-860.
[http://dx.doi.org/10.1007/s10973-016-5481-z]
[3]
Xiao, R.; Xiang, Y.; Cao, X.; Li, N.; Huang, T.; Zhou, C.; Zou, Y.; Xie, G.; Yang, C. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(16), 5580-5586.
[http://dx.doi.org/10.1039/C9TC07049D]
[4]
Todd, E.M.; Zimmerman, S.C. J. Am. Chem. Soc., 2007, 129(47), 14534-14535.
[http://dx.doi.org/10.1021/ja075453j] [PMID: 17983229]
[5]
Dou, R.; Cai, X.M.; Ruan, L.; Zhang, J.Y.; Rouzi, A.; Chen, J.; Chai, Z.F.; Hu, Y. ACS Appl. Bio Mater., 2022, 5, 4103-4117.
[6]
Piñón-Balderrama, C.I.; Leyva-Porras, C.; Conejo-Dávila, A.S.; Zaragoza-Contreras, E.A. Polymers, 2022, 14, 5081.
[7]
Mf, A.; Yj, A.; Ak, B.; Has, D. Mater. Today Commun., 2022, 31, 103529.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103529]
[8]
Qian, L.H.; Ding, Y.; Fujita, T.; Chen, M.W. Langmuir, 2008, 24(9), 4426-4429.
[http://dx.doi.org/10.1021/la703621c] [PMID: 18355096]
[9]
Guo, S.; Zhang, Y. J. Polym. Sci., B, Polym. Phys., 2008, 46(13), 1412-1418.
[http://dx.doi.org/10.1002/polb.21467]
[10]
Mai, B.; Li, Z.; Liu, R.; Feng, S.; Wu, Q.; Liang, G.; Gao, H.; Zhu, F. J. Polym. Res., 2013, 20(11), 299.
[http://dx.doi.org/10.1007/s10965-013-0299-x]
[11]
Xiong, X.B. Uludağ H.; Lavasanifar. Acta Biomater., 2009, 30(2), 242-253.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.025] [PMID: 18838158]
[12]
Jarfari, A.; Yan, L.Y.; Mohamed, A.M.; Wu, Y.; Cheng, C. Materials, 2020, 13(7), 1510.
[http://dx.doi.org/10.3390/ma13071510] [PMID: 32224890]
[13]
Yan, L.; Yang, L.; He, H.; Hu, X.; Xie, Z.; Huang, Y.; Jing, X. Polym. Chem., 2012, 3(5), 1300-1307.
[http://dx.doi.org/10.1039/c2py20049j]
[14]
Chaparro, F.J.; Presley, K.F.; Coutinho da Silva, M.A.; Mandan, N.; Colachis, M.L.; Posner, M.; Arnold, R.M.; Fan, F.; Moraes, C.R.; Lannutti, J.J. J. Appl. Polym. Sci., 2019, 136(26), 47731.
[http://dx.doi.org/10.1002/app.47731]
[15]
Yang, L.F.; Zhang, J.; Xue, W.R.; Li, J.Z.; Chen, R.S.; Pan, H.Y.; Yu, X.Q.; Liu, Y.J.; Li, H.; Chen, L.Q.; Huang, X.J. Adv Func. Mater., 2022, 32(23), 2200096.1-2200096.9.
[16]
Yang, D.; Od, D.G.; Ramu, A.G.; Choi, D. Mater. Lett., 2022, 315, 131898-131898.
[http://dx.doi.org/10.1016/j.matlet.2022.131898]
[17]
Pearson, S.; Allen, N.; Stenzel, M.H. J. Polym. Sci. A Polym. Chem., 2009, 47(6), 1706-1723.
[http://dx.doi.org/10.1002/pola.23275]
[18]
Kratz, K.; Breitenkamp, K.; Hule, R.; Pochan, D.; Emrick, T. Macromolecules, 2009, 42(9), 3227-3229.
[http://dx.doi.org/10.1021/ma900653h]
[19]
Chen, C.; Cai, G.; Zhang, H.; Jiang, H.; Wang, L. J. Biomed. Mater. Res. A, 2011, 96A(1), 116-124.
[http://dx.doi.org/10.1002/jbm.a.32965] [PMID: 21105159]
[20]
Zhang, X.Y.; Tong, B.B.; Wu, T.; Wang, Y.D. Des. Monomers Polym., 2016, 19, 661-668.
[http://dx.doi.org/10.1080/15685551.2016.1198882]
[21]
Gao, K.W.; Balsara, N.P. Solid State Ion., 2021, 364, 115609.
[http://dx.doi.org/10.1016/j.ssi.2021.115609]
[22]
Kim, B.S.; Oh, J.M.; Cho, J.S.; Lee, S.H.; Lee, B.; Khang, G.; Lee, H.B.; Kim, M.S. J. Appl. Polym. Sci., 2009, 111(4), 1706-1712.
[http://dx.doi.org/10.1002/app.29179]
[23]
Samanta, P.; Thangapandian, V.; Srivastava, R.; Nandan, B. Fibers Polym., 2021, 22(10), 2750-2761.
[http://dx.doi.org/10.1007/s12221-021-1221-5]
[24]
Chen, D.P.; Wang, J. Macromolecules, 2006, 39(2), 473-475.
[http://dx.doi.org/10.1021/ma0517852]
[25]
Kai, D.; Prabhakaran, M.P.; Yu, Chan B.Q.; Liow, S.S.; Ramakrishna, S.; Xu, F.; Loh, X.J. Biomed. Mater., 2016, 11(1), 015007.
[http://dx.doi.org/10.1088/1748-6041/11/1/015007] [PMID: 26836757]
[26]
Ungurenasu, C.; Pinteala, M. J. Polym. Sci. A Polym. Chem., 2007, 45(14), 3124-3128.
[http://dx.doi.org/10.1002/pola.22010]
[27]
Müller, A. J. Polym., 2021, 13(18), 3133.
[http://dx.doi.org/10.3390/polym13183133] [PMID: 34578032]
[28]
Choi, C.; Chae, S.Y.; Nah, J.W. Polymer, 2006, 47(13), 4571-4580.
[http://dx.doi.org/10.1016/j.polymer.2006.05.011]
[29]
Zhang, Y.; Guo, S.; Lu, C.; Liu, L.; Li, Z.; Gu, J. J. Polym. Sci. A Polym. Chem., 2007, 45(4), 605-613.
[http://dx.doi.org/10.1002/pola.21739]
[30]
Han, W.; Liao, X.; Yang, Q.; Li, G.; He, B.; Zhu, W.; Hao, Z. RSC Advances, 2017, 7(36), 22515-22523.
[http://dx.doi.org/10.1039/C7RA03496B]
[31]
Gao, H.; Matyjaszewski, K. Macromolecules, 2008, 41(4), 1118-1125.
[http://dx.doi.org/10.1021/ma702560f]
[32]
Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Polymer, 2014, 55(10), 2552-2561.
[http://dx.doi.org/10.1016/j.polymer.2014.03.049]
[33]
Pahl, P.; Schwarzenböck, C.; Herz, F.A.D.; Soller, B.S.; Jandl, C.; Rieger, B. Macromolecules, 2017, 50(17), 6569-6576.
[http://dx.doi.org/10.1021/acs.macromol.7b01007]
[34]
Gao, H.; Matyjaszewski, K. Macromolecules, 2006, 39(9), 3154-3160.
[http://dx.doi.org/10.1021/ma060223v]
[35]
Knischka, R.; Lutz, P.J.; Sunder, A.; Mülhaupt, R.; Frey, H. Macromolecules, 2000, 33(2), 315-320.
[http://dx.doi.org/10.1021/ma991192p]
[36]
Xia, J.; Zhang, X.; Matyjaszewski, K. Macromolecules, 1999, 32(13), 4482-4484.
[http://dx.doi.org/10.1021/ma9900378]
[37]
Ge, X.S.; He, C.; He, W.D.; Chen, S.Q. Polym. Chem., 2014, 5(16), 4649-4657.
[http://dx.doi.org/10.1039/C4PY00425F]
[38]
Rickman, C.; Hu, K.; Carroll, J.; Davletov, B. Biochem. J., 2005, 388(1), 75-79.
[http://dx.doi.org/10.1042/BJ20041818] [PMID: 15877547]
[39]
Normant, H.; Angelo, B. Bull. Soc. Chim. Fr., 1960, 354.
[40]
Lu, C.; Liu, L.; Guo, S.R.; Zhang, Y.; Li, Z. Gu. J. Eur. Polym. J., 2007, 43(5), 1857-1865.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.02.039]
[41]
Dong, P.W.; Wang, X.H.; Gu, Y.C.; Wang, Y.J.; Wang, Y.J.; Gong, C.Y.; Luo, F.; Guo, G.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Colloid Surface A, 2010, 358, 128-134.
[42]
Lu, C.; Guo, S.; Zhang, Y.; Yin, M. Polym. Int., 2006, 55(6), 694-700.
[http://dx.doi.org/10.1002/pi.2034]
[43]
Chen, J.; Liu, M.; Gao, C.; Lü, S.; Zhang, X.; Liu, Z. RSC Advances, 2013, 3(35), 15085-15093.
[http://dx.doi.org/10.1039/c3ra41832d]
[44]
Cao, X.; Chen, Y.X.; Chai, W.C.; Zhang, W.J.; Wang, Y.D.; Fu, P.F. J. Appl. Polym. Sci., 2015, 132, 41361.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy