Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Analysis of Ultrasound Supported Antimicrobial and Antibiofilm Activities of Disinfection By-product Bromochloroacetonitrile

Author(s): Sevda E.R.*

Volume 21, Issue 1, 2024

Published on: 18 May, 2023

Page: [174 - 179] Pages: 6

DOI: 10.2174/1570180820666230505085031

open access plus

Abstract

Introduction: Some microorganism threaten human health by forming biofilm in water systems. Because microorganism in the biofilm structure are more resistant to antimicrobials.

Methods: Water systems are disinfected with physical methods, such as ultrasonication techniques and chemical disinfectants. Bromochloroacetonitrile is produced as a by-product from algae and fulvic acid sources during water chlorination. This study aimed to investigate the antimicrobial and antibiofilm effects of bromochloroacetonitrile on some bacteria alone and with ultrasound treatment. The study used Escherichia coli ATCC 25922, Klebsiella pneumoniae MCTC 13438, and Staphylococcus aureus ATCC 25923 strains. The antimicrobial and antibiofilm activities of the test substance were analyzed alone with bromochloroacetonitrile and Ultrasound-assisted. Minimum Inhibitory Concentration values of the test substance against Escherichia coli ATCC 25922, Klebsiella pneumoniae MCTC 13438, and Staphylococcus aureus ATCC 25923 strains were 25, 25 and 50 mM, respectively, and Minimum Bactericidal Concentration values were 50, >50, and >50 mM, respectively.

Results: The obtained data show that bromochloroacetonitrile is a potential disinfection agent that can be used against biofilm formation in water systems. Besides, it was revealed that when ultrasound treatment was applied with bromochloroacetonitrile, it showed 100% antibiofilm activity on E. coli and K. pneumoniae and 79.45% antibiofilm activity on S. aureus strains. The obtained data show that bromochloroacetonitrile is a potential disinfection agent that can be used against biofilm formation in water systems. This study is preliminary and planned to reveal the cytotoxic effects of bromochloroacetonitrile on healthy human skin and liver cells in the following study.

Conclusion: These results will contribute to the literature, as no study reveals the antimicrobial and antibiofilm activities of bromochloroacetonitrile.

Keywords: Antimicrobial activity, fulvic acid, bromochloroacetonitrile, water chlorination, disinfection by-products, biofilm, dibromo acetonitrile.

[1]
Chan, S.; Pullerits, K.; Keucken, A.; Persson, K.M.; Paul, C.J.; Rådström, P. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes, 2019, 5(1), 9.
[http://dx.doi.org/10.1038/s41522-019-0082-9] [PMID: 30820334]
[2]
Mahapatra, A.; Padhi, N.; Mahapatra, D.; Bhatt, M.; Sahoo, D.; Jena, S.; Dash, D.; Chayani, N. Study of biofilm in bacteria from water pipelines. J. Clin. Diagn. Res., 2015, 9(3), DC09-DC11.
[http://dx.doi.org/10.7860/JCDR/2015/12415.5715] [PMID: 25954617]
[3]
Ibekwe, A.M.; Murinda, S.E. Linking microbial community composition in treated wastewater with water quality in distribution systems and subsequent health effects. Microorganisms, 2019, 7(12), 660.
[http://dx.doi.org/10.3390/microorganisms7120660] [PMID: 31817873]
[4]
Runyan, C.M.; Carmen, J.C.; Beckstead, B.L.; Nelson, J.L.; Robison, R.A.; Pitt, W.G. Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. J. Gen. Appl. Microbiol., 2006, 52(5), 295-301.
[http://dx.doi.org/10.2323/jgam.52.295] [PMID: 17310073]
[5]
Abbasi Montazeri, E.; Seyed-Mohammadi, S.; Asarehzadegan Dezfuli, A.; Khosravi, A.D.; Dastoorpoor, M.; Roointan, M.; Saki, M. Investigation of SCC mec types I–IV in clinical isolates of methicillin-resistant coagulase-negative staphylococci in Ahvaz, Southwest Iran. Biosci. Rep., 2020, 40(5), BSR20200847.
[http://dx.doi.org/10.1042/BSR20200847] [PMID: 32347308]
[6]
Pitt, W.G.; Ross, S.A. Ultrasound increases the rate of bacterial cell growth. Biotechnol. Prog., 2003, 19(3), 1038-1044.
[http://dx.doi.org/10.1021/bp0340685] [PMID: 12790676]
[7]
World Health Organization In: Guidelines for drinking-water quality, 4th ed; Switzerland, 2017.
[8]
World Health Orgaization In: Chemical Fact Sheets.Guidelines for Drinking-Water Quality; WHO: Switzerland, 2011.
[9]
Schug, A.R.; Bartel, A.; Meurer, M.; Scholtzek, A.D.; Brombach, J.; Hensel, V.; Fanning, S.; Schwarz, S.; Feßler, A.T. Comparison of two methods for cell count determination in the course of biocide susceptibility testing. Vet. Microbiol., 2020, 251, 108831.
[http://dx.doi.org/10.1016/j.vetmic.2020.108831] [PMID: 33202368]
[10]
Da Silva, N.; Taniwaki, M.H.; Junqueira, V.C.A.; de Arruda Silveira, N.F.; Okazaki, M.M.; Gomes, R.A.R. Microbiological Examination Methods of Food and Water: A Laboratory Manual, 2nd ed; CRC Press: London, 2018.
[http://dx.doi.org/10.1201/9781315165011]
[11]
Fayadoglu, M.; Fayadoglu, E.; Er, S.; Koparal, A.T.; Koparal, A.S. Determination of biological activities of nanoparticles containing silver and copper in water disinfection with/without ultrasound technique. J. Environ. Health Sci. Eng., 2022.
[http://dx.doi.org/10.1007/s40201-022-00839-6]
[12]
Xu, J.; Kralles, Z.T.; Hart, C.H.; Dai, N. Effects of sunlight on the formation potential of dichloroacetonitrile and bromochloroacetonitrile from wastewater effluents. Environ. Sci. Technol., 2020, 54(6), 3245-3255.
[http://dx.doi.org/10.1021/acs.est.9b06526] [PMID: 32068383]
[13]
Schaechter, M.; Medoff, G.; Eisenstein, B.I.; Schlessinger, D. Mechanisms of microbial disease; Lippincott Williams & Wilkins: Philadelphia, United States, 1993.
[14]
Schauder, S.; Bassler, B.L. The languages of bacteria. Genes Dev., 2001, 15(12), 1468-1480.
[http://dx.doi.org/10.1101/gad.899601] [PMID: 11410527]
[15]
Mathur, T.; Singhal, S.; Khan, S.; Upadhyay, D.J.; Fatma, T.; Rattan, A. Detection of biofilm formation among the clinical isolates of Staphylococci: An evaluation of three different screening methods. Indian J. Med. Microbiol., 2006, 24(1), 25-29.
[http://dx.doi.org/10.1016/S0255-0857(21)02466-X] [PMID: 16505551]
[16]
Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Biological stability of drinking water: Controlling factors, methods, and challenges. Front. Microbiol., 2016, 7, 45.
[http://dx.doi.org/10.3389/fmicb.2016.00045] [PMID: 26870010]
[17]
Douterelo, I.; Husband, S.; Loza, V.; Boxall, J. Dynamics of biofilm regrowth in drinking water distribution systems. Appl. Environ. Microbiol., 2016, 82(14), 4155-4168.
[http://dx.doi.org/10.1128/AEM.00109-16] [PMID: 27208119]
[18]
Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol., 2017, 15(12), 740-755.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[19]
Gunn, J.S.; Bakaletz, L.O.; Wozniak, D.J. What’s on the outside matters: The role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem., 2016, 291(24), 12538-12546.
[http://dx.doi.org/10.1074/jbc.R115.707547] [PMID: 27129225]
[20]
Wu, H.; Moser, C.; Wang, H.Z.; Høiby, N.; Song, Z.J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci., 2015, 7(1), 1-7.
[http://dx.doi.org/10.1038/ijos.2014.65] [PMID: 25504208]
[21]
Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1), 522-554.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]

© 2024 Bentham Science Publishers | Privacy Policy