Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Function of Autophagy in the Initiation, and Development of Breast Cancer

Author(s): Elmira Aboutalebi Vand Beilankouhi, Mohammad Valilo, Narges Dastmalchi, Shahram Teimourian and Reza Safaralizadeh*

Volume 31, Issue 20, 2024

Published on: 21 June, 2023

Page: [2974 - 2990] Pages: 17

DOI: 10.2174/0929867330666230503145319

Price: $65

Abstract

Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.

Keywords: Autophagy, breast cancer, metastasis, cancer therapy, anticancer techniques, damaged.

[1]
Ullah, M.F. Breast cancer: current perspectives on the disease status; Breast Cancer Metastasis and Drug Resistance, 2019, pp. 51-64.
[2]
Fattahi, M.; Sheervalilou, R.; Hoseinpour, N.; Valiloo, M.; Pedram, N.; Montazeri, V.; Nejati, K.; Abtin, M.; Seif, F.; Alivand, M-R. The correlation between Twist 1 and 2 promoter methylation status and clinicopathologic characteristics of patients with breast cancer. Gene Rep., 2020, 20, 100741.
[http://dx.doi.org/10.1016/j.genrep.2020.100741]
[3]
Maghsoodi, M.S.; Khosroshahi, N.S.; Beilankouhi, E.A.V.; Valilo, M.; Feizi, M.A.H. VEGF-634G > C (rs2010963) gene polymorphism and high risk of breast cancer in the Northwest of Iran. Ind. J. Gynecol. Oncol., 2023, 21(1), 6.
[http://dx.doi.org/10.1007/s40944-022-00648-7]
[4]
Cocco, S.; Leone, A.; Piezzo, M.; Caputo, R.; Di Lauro, V.; Di Rella, F.; Fusco, G.; Capozzi, M.; Gioia, G.; Budillon, A.; De Laurentiis, M. Targeting autophagy in breast cancer. Int. J. Mol. Sci., 2020, 21(21), 7836.
[http://dx.doi.org/10.3390/ijms21217836] [PMID: 33105796]
[5]
Khodabandeh, Z.; Valilo, M.; Velaei, K.; Pirpour Tazehkand, A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer, 2022, 29(5), 778-789.
[http://dx.doi.org/10.1007/s12282-022-01369-7] [PMID: 35583594]
[6]
Mizushima, N. Autophagy: Process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[7]
Mizushima, N. The pleiotropic role of autophagy: From protein metabolism to bactericide. Cell Death Differ., 2005, 12(S2)(Suppl. 2), 1535-1541.
[http://dx.doi.org/10.1038/sj.cdd.4401728] [PMID: 16247501]
[8]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[9]
Dong, C.; Yuan, T.; Wu, Y.; Wang, Y.; Fan, T.W.M.; Miriyala, S.; Lin, Y.; Yao, J.; Shi, J.; Kang, T.; Lorkiewicz, P.; St Clair, D.; Hung, M.C.; Evers, B.M.; Zhou, B.P. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell, 2013, 23(3), 316-331.
[http://dx.doi.org/10.1016/j.ccr.2013.01.022] [PMID: 23453623]
[10]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[11]
Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T.P.; Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol., 2008, 10(8), 935-945.
[http://dx.doi.org/10.1038/ncb1753] [PMID: 18604198]
[12]
Ameisen, J.C. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ., 2002, 9(4), 367-393.
[http://dx.doi.org/10.1038/sj.cdd.4400950] [PMID: 11965491]
[13]
Debnath, J. The multifaceted roles of autophagy in tumors-implications for breast cancer. J. Mammary Gland Biol. Neoplasia, 2011, 16(3), 173-187.
[http://dx.doi.org/10.1007/s10911-011-9223-3] [PMID: 21779879]
[14]
Maes, H.; Rubio, N.; Garg, A.D.; Agostinis, P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med., 2013, 19(7), 428-446.
[http://dx.doi.org/10.1016/j.molmed.2013.04.005] [PMID: 23714574]
[15]
Espina, V.; Wysolmerski, J.; Edmiston, K.; Liotta, L.A. Attacking breast cancer at the preinvasion stage by targeting autophagy. Womens Health, 2013, 9(2), 157-170.
[http://dx.doi.org/10.2217/WHE.13.5] [PMID: 23477322]
[16]
White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 2012, 12(6), 401-410.
[http://dx.doi.org/10.1038/nrc3262] [PMID: 22534666]
[17]
Vega-Rubín-de-Celis, S.; Zou, Z.; Fernández, Á.F.; Ci, B.; Kim, M.; Xiao, G.; Xie, Y.; Levine, B. Increased autophagy blocks HER2-mediated breast tumorigenesis. Proc. Natl. Acad. Sci. USA, 2018, 115(16), 4176-4181.
[http://dx.doi.org/10.1073/pnas.1717800115] [PMID: 29610308]
[18]
Ahn, J.S.; Ann, E.J.; Kim, M.Y.; Yoon, J.H.; Lee, H.J.; Jo, E.H.; Lee, K.; Lee, J.S.; Park, H.S. Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Oncotarget, 2016, 7(48), 79047-79063.
[http://dx.doi.org/10.18632/oncotarget.12986] [PMID: 27806347]
[19]
Niklaus, N.J.; Tokarchuk, I.; Zbinden, M.; Schläfli, A.M.; Maycotte, P.; Tschan, M.P. The multifaceted functions of autophagy in breast cancer development and treatment. Cells, 2021, 10(6), 1447.
[http://dx.doi.org/10.3390/cells10061447] [PMID: 34207792]
[20]
Maycotte, P.; Thorburn, A. Targeting autophagy in breast cancer. World J. Clin. Oncol., 2014, 5(3), 224-240.
[http://dx.doi.org/10.5306/wjco.v5.i3.224] [PMID: 25114840]
[21]
Maiuri, M.C.; Tasdemir, E.; Criollo, A.; Morselli, E.; Vicencio, J.M.; Carnuccio, R.; Kroemer, G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ., 2009, 16(1), 87-93.
[http://dx.doi.org/10.1038/cdd.2008.131] [PMID: 18806760]
[22]
Botti, J.; Djavaheri-Mergny, M.; Pilatte, Y.; Codogno, P. Autophagy signaling and the cogwheels of cancer. Autophagy, 2006, 2(2), 67-73.
[http://dx.doi.org/10.4161/auto.2.2.2458] [PMID: 16874041]
[23]
Lim, K.H.; Staudt, L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a011247.
[http://dx.doi.org/10.1101/cshperspect.a011247] [PMID: 23284045]
[24]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: Impact on the aging process. Ageing Res. Rev., 2013, 12(2), 520-534.
[http://dx.doi.org/10.1016/j.arr.2012.11.004] [PMID: 23220384]
[25]
Rosenfeldt, M.T.; Ryan, K.M. The multiple roles of autophagy in cancer. Carcinogenesis, 2011, 32(7), 955-963.
[http://dx.doi.org/10.1093/carcin/bgr031] [PMID: 21317301]
[26]
Gewirtz, D.A. The four faces of autophagy: Implications for cancer therapy. Cancer Res., 2014, 74(3), 647-651.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2966] [PMID: 24459182]
[27]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[28]
Martinet, W.; Agostinis, P.; Vanhoecke, B.; Dewaele, M.; de Meyer, G.R.Y. Autophagy in disease: A double-edged sword with therapeutic potential. Clin. Sci., 2009, 116(9), 697-712.
[http://dx.doi.org/10.1042/CS20080508] [PMID: 19323652]
[29]
Cheong, H.; Lu, C.; Lindsten, T.; Thompson, C.B. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol., 2012, 30(7), 671-678.
[http://dx.doi.org/10.1038/nbt.2285] [PMID: 22781696]
[30]
Berardi, DE; Campodónico, PB; Díaz Bessone, MI; Urtreger, AJ; Todaro, LB Autophagy: Friend or foe in breast cancer development, progression, and treatment. Int. J. Breast Cancer., 2011, 2011, 595092.
[http://dx.doi.org/10.4061/2011/595092]
[31]
Notte, A.; Leclere, L.; Michiels, C. Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem. Pharmacol., 2011, 82(5), 427-434.
[http://dx.doi.org/10.1016/j.bcp.2011.06.015] [PMID: 21704023]
[32]
Shi, W.; Xiao, D.; Wang, L.; Dong, L.; Yan, Z.; Shen, Z. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell death & disease, 2012, 3(3), e275-e.
[33]
Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.O.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435.
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
[34]
Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov., 2012, 11(9), 709-730.
[http://dx.doi.org/10.1038/nrd3802] [PMID: 22935804]
[35]
Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 931-937.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[36]
Chang, C.Y.; Huang, W.P. Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol. Biol. Cell, 2007, 18(3), 919-929.
[http://dx.doi.org/10.1091/mbc.e06-08-0683] [PMID: 17192412]
[37]
He, C.; Baba, M.; Klionsky, D.J. Double duty of Atg9 self-association in autophagosome biogenesis. Autophagy, 2009, 5(3), 385-387.
[http://dx.doi.org/10.4161/auto.5.3.7699] [PMID: 19182520]
[38]
Autophagosome formation involves cycling of ATG9. Autophagy; Legakis, J.E.; Yen, W-L.; He, C.; Monastyrska, I.; Yorimitsu, T.; Klionsky, D.J., Eds.; Landes Bioscience 810 South Church Street, Georgetown, TX 78626 USA, 2006.
[39]
Yen, W.L.; Legakis, J.E.; Nair, U.; Klionsky, D.J. Atg27 is required for autophagy-dependent cycling of Atg9. Mol. Biol. Cell, 2007, 18(2), 581-593.
[http://dx.doi.org/10.1091/mbc.e06-07-0612] [PMID: 17135291]
[40]
Klionsky, D.J.; Abeliovich, H.; Agostinis, P.; Agrawal, D.K.; Aliev, G.; Askew, D.S.; Baba, M.; Baehrecke, E.H.; Bahr, B.A.; Ballabio, A.; Bamber, B.A.; Bassham, D.C.; Bergamini, E.; Bi, X.; Biard-Piechaczyk, M.; Blum, J.S.; Bredesen, D.E.; Brodsky, J.L.; Brumell, J.H.; Brunk, U.T.; Bursch, W.; Camougrand, N.; Cebollero, E.; Cecconi, F.; Chen, Y.; Chin, L.S.; Choi, A.; Chu, C.T.; Chung, J.; Clark, R.S.B.; Clarke, P.G.H.; Clarke, S.G.; Clavé, C.; Cleveland, J.L.; Codogno, P.; Colombo, M.I.; Coto-Montes, A.; Cregg, J.M.; Cuervo, A.M.; Debnath, J.; Dennis, P.B.; Dennis, P.A.; Demarchi, F.; Deretic, V.; Devenish, R.J.; Di Sano, F.; Dice, J.F.; Distelhorst, C.W.; Dinesh-Kumar, S.P.; Eissa, N.T.; DiFiglia, M.; Djavaheri-Mergny, M.; Dorsey, F.C.; Dröge, W.; Dron, M.; Dunn, W.A., Jr; Duszenko, M.; Elazar, Z.; Esclatine, A.; Eskelinen, E.L.; Fésüs, L.; Finley, K.D.; Fuentes, J.M.; Fueyo-Margareto, J.; Fujisaki, K.; Galliot, B.; Gao, F.B.; Gewirtz, D.A.; Gibson, S.B.; Gohla, A.; Goldberg, A.L.; Gonzalez, R.; González-Estévez, C.; Gorski, S.M.; Gottlieb, R.A.; Häussinger, D.; He, Y.W.; Heidenreich, K.; Hill, J.A.; Høyer-Hansen, M.; Hu, X.; Huang, W.P.; Iwasaki, A.; Jäättelä, M.; Jackson, W.T.; Jiang, X.; Jin, S.V.; Johansen, T.; Jung, J.U.; Kadowaki, M.; Kang, C.; Kelekar, A.; Kessel, D.H.; Kiel, J.A.K.W.; Kim, H.P.; Kimchi, A.; Kinsella, T.J.; Kiselyov, K.; Kitamoto, K.; Knecht, E.; Komatsu, M.; Kominami, E.; Kondo, S.; Kovács, A.L.; Kroemer, G.; Kuan, C.Y.; Kumar, R.; Kundu, M.; Landry, J.; Laporte, M.; Le, W.; Lei, H.Y.; Levine, B.; Lieberman, A.P.; Lim, K-L.; Lin, F-C.; Liou, W.; Liu, L.F.; Lopez-Berestein, G.; López-Otín, C.; Lu, B.; Macleod, K.F.; Malorni, W.; Martinet, W.; Matsuoka, K.; Mautner, J.; Meijer, A.J.; Meléndez, A.; Michels, P.; Miotto, G.; Mistiaen, W.P.; Mizushima, N.; Mograbi, B.; Moore, M.N.; Moreira, P.I.; Moriyasu, Y.; Motyl, T.; Münz, C.; Murphy, L.O.; Naqvi, N.I.; Neufeld, T.P.; Nishino, I.; Nixon, R.A.; Noda, T.; Nürnberg, B.; Ogawa, M.; Oleinick, N.L.; Olsen, L.J.; Ozpolat, B.; Paglin, S.; Palmer, G.E.; Papassideri, I.S.; Parkes, M.; Perlmutter, D.H.; Perry, G.; Piacentini, M.; Pinkas-Kramarski, R.; Prescott, M.; Proikas-Cezanne, T.; Raben, N.; Rami, A.; Reggiori, F.; Rohrer, B.; Rubinsztein, D.C.; Ryan, K.M.; Sadoshima, J.; Sakagami, H.; Sakai, Y.; Sandri, M.; Sasakawa, C.; Sass, M.; Schneider, C.; Seglen, P.O.; Seleverstov, O.; Settleman, J.; Shacka, J.J.; Shapiro, I.M.; Sibirny, A.A.; Silva-Zacarin, E.C.M.; Simon, H-U.; Simone, C.; Simonsen, A.; Smith, M.A.; Spanel-Borowski, K.; Srinivas, V.; Steeves, M.; Stenmark, H.; Stromhaug, P.E.; Subauste, C.S.; Sugimoto, S.; Sulzer, D.; Suzuki, T.; Swanson, M.S.; Tabas, I.; Takeshita, F.; Talbot, N.J.; Tallóczy, Z.; Tanaka, K.; Tanaka, K.; Tanida, I.; Taylor, G.S.; Taylor, J.P.; Terman, A.; Tettamanti, G.; Thompson, C.B.; Thumm, M.; Tolkovsky, A.M.; Tooze, S.A.; Truant, R.; Tumanovska, L.V.; Uchiyama, Y.; Ueno, T.; Uzcátegui, N.L.; van der Klei, I.J.; Vaquero, E.C.; Vellai, T.; Vogel, M.W.; Wang, H-G.; Webster, P.; Xi, Z.; Xiao, G.; Yahalom, J.; Yang, J-M.; Yap, G.S.; Yin, X-M.; Yoshimori, T.; Yue, Z.; Yuzaki, M.; Zabirnyk, O.; Zheng, X.; Zhu, X.; Deter, R.L.; Zabirnyk, O.; Zheng, X.; Zhu, X.; Deter, R.L. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4(2), 151-175.
[http://dx.doi.org/10.4161/auto.5338] [PMID: 18188003]
[41]
Le Grand, J.N.; Chakrama, F.Z.; Seguin-Py, S.; Fraichard, A.; Delage-Mourroux, R.; Jouvenot, M.; Boyer-Guittaut, M. GABARAPL1 (GEC1): Original or copycat? Autophagy, 2011, 7(10), 1098-1107.
[http://dx.doi.org/10.4161/auto.7.10.15904] [PMID: 21597319]
[42]
Behrends, C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Network organization of the human autophagy system. Nature, 2010, 466(7302), 68-76.
[http://dx.doi.org/10.1038/nature09204] [PMID: 20562859]
[43]
Folkerts, H.; Hilgendorf, S.; Vellenga, E.; Bremer, E.; Wiersma, V.R. The multifaceted role of autophagy in cancer and the microenvironment. Med. Res. Rev., 2019, 39(2), 517-560.
[http://dx.doi.org/10.1002/med.21531] [PMID: 30302772]
[44]
Yue, Z.; Jin, S.; Yang, C.; Levine, A.J.; Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15077-15082.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[45]
Eccles, D.M.; Russell, S.E.; Haites, N.E.; Atkinson, R.; Bell, D.W.; Gruber, L.; Hickey, I.; Kelly, K.; Kitchener, H.; Leonard, R. Early loss of heterozygosity on 17q in ovarian cancer. The Abe Ovarian Cancer Genetics Group Oncogene, 1992, 7(10), 2069-2072.
[PMID: 1408149]
[46]
Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Aghanejad, A.; Zhang, Y.; Ren, J. Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing. Ageing Res. Rev., 2020, 62, 101129.
[http://dx.doi.org/10.1016/j.arr.2020.101129] [PMID: 32711157]
[47]
Ajoolabady, A.; Aghanejad, A.; Bi, Y.; Zhang, Y.; Aslkhodapasandhukmabad, H.; Abhari, A.; Ren, J. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(1), 188366.
[http://dx.doi.org/10.1016/j.bbcan.2020.188366] [PMID: 32339608]
[48]
Tang, Y; Wang, Y; Wang, C; Yu, M; Li, L; Chen, S Isoliquiritigenin attenuates LPS-induced acute kidney injury through suppression of HMGB1 pathway in renal tubular against ferritinophagy. Preprint, 2020.
[http://dx.doi.org/10.21203/rs.2.24196/v1]
[49]
Gatica, D.; Chiong, M.; Lavandero, S.; Klionsky, D.J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res., 2015, 116(3), 456-467.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303788] [PMID: 25634969]
[50]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[51]
Rostami, N.; Nikkhoo, A.; Ajjoolabady, A.; Azizi, G.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Yousefi, B.; Yousefi, M.; Jadidi-Niaragh, F. S1PR1 as a novel promising therapeutic target in cancer therapy. Mol. Diagn. Ther., 2019, 23(4), 467-487.
[http://dx.doi.org/10.1007/s40291-019-00401-5] [PMID: 31115798]
[52]
Alizadeh, L.; Zarebkohan, A.; Salehi, R.; Ajjoolabady, A.; Rahmati-Yamchi, M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J. Drug Target., 2019, 27(8), 839-852.
[http://dx.doi.org/10.1080/1061186X.2018.1564923] [PMID: 30596291]
[53]
Hashemi, V.; Farhadi, S.; Ghasemi Chaleshtari, M.; Seashore-Ludlow, B.; Masjedi, A.; Hojjat-Farsangi, M.; Namdar, A.; Ajjoolabady, A.; Mohammadi, H.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int. Immunopharmacol., 2020, 83, 106446.
[http://dx.doi.org/10.1016/j.intimp.2020.106446] [PMID: 32244048]
[54]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global cancer observatory: Cancer today. Int. Agency Res. Cancer., 2018, 3(20)
[55]
Prat, A.; Perou, C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol., 2011, 5(1), 5-23.
[http://dx.doi.org/10.1016/j.molonc.2010.11.003] [PMID: 21147047]
[56]
Bigaard, J.; Stahlberg, C.; Jensen, M.B.; Ewertz, M.; Kroman, N. Breast cancer incidence by estrogen receptor status in Denmark from 1996 to 2007. Breast Cancer Res. Treat., 2012, 136(2), 559-564.
[http://dx.doi.org/10.1007/s10549-012-2269-0] [PMID: 23053655]
[57]
Britt, K.L.; Cuzick, J.; Phillips, K.A. Key steps for effective breast cancer prevention. Nat. Rev. Cancer, 2020, 20(8), 417-436.
[http://dx.doi.org/10.1038/s41568-020-0266-x] [PMID: 32528185]
[58]
Joshi, H.; Press, M.F. Molecular oncology of breast cancer. In: The Breast; Elsevier, 2018; pp. 282-307.
[http://dx.doi.org/10.1016/B978-0-323-35955-9.00022-2]
[59]
Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; Cameron, D.; Dowsett, M.; Barrios, C.H.; Steger, G.; Huang, C.-S.; Andersson, M.; Inbar, M.; Lichinitser, M.; Láng, I.; Nitz, U.; Iwata, H.; Thomssen, C.; Lohrisch, C.; Suter, T.M.; Rüschoff, J.; Suto, T.; Greatorex, V.; Ward, C.; Straehle, C.; McFadden, E.; Dolci, M.S.; Gelber, R.D.; Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1659-1672.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[60]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet, 2017, 389(10087), 2430-2442.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0] [PMID: 27939063]
[61]
Hinck, L.; Näthke, I. Changes in cell and tissue organization in cancer of the breast and colon. Curr. Opin. Cell Biol., 2014, 26, 87-95.
[http://dx.doi.org/10.1016/j.ceb.2013.11.003] [PMID: 24529250]
[62]
Nielsen, T.O.; Hsu, F.D.; Jensen, K.; Cheang, M.; Karaca, G.; Hu, Z.; Hernandez-Boussard, T.; Livasy, C.; Cowan, D.; Dressler, L.; Akslen, L.A.; Ragaz, J.; Gown, A.M.; Gilks, C.B.; van de Rijn, M.; Perou, C.M. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res., 2004, 10(16), 5367-5374.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0220] [PMID: 15328174]
[63]
Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.A.D.A.A.; Balakrishnan, V. Triple negative breast cancer: A review of present and future diagnostic modalities. Medicina, 2021, 57(1), 62.
[http://dx.doi.org/10.3390/medicina57010062] [PMID: 33445543]
[64]
Rakha, E.A.; Elsheikh, S.E.; Aleskandarany, M.A.; Habashi, H.O.; Green, A.R.; Powe, D.G.; El-Sayed, M.E.; Benhasouna, A.; Brunet, J.S.; Akslen, L.A.; Evans, A.J.; Blamey, R.; Reis-Filho, J.S.; Foulkes, W.D.; Ellis, I.O. Triple-negative breast cancer: Distinguishing between basal and nonbasal subtypes. Clin. Cancer Res., 2009, 15(7), 2302-2310.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2132] [PMID: 19318481]
[65]
Nounou, MI; ElAmrawy, F; Ahmed, N; Abdelraouf, K; Goda, S; Syed-Sha-Qhattal, H Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast cancer: Basic and clinical research, 2015, 9, S29420.
[http://dx.doi.org/10.4137/BCBCR.S29420]
[66]
Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; Backlund, M.G.; Yin, Y.; Khramtsov, A.I.; Bastein, R.; Quackenbush, J.; Glazer, R.I.; Brown, P.H.; Green, J.E.; Kopelovich, L.; Furth, P.A.; Palazzo, J.P.; Olopade, O.I.; Bernard, P.S.; Churchill, G.A.; Van Dyke, T.; Perou, C.M. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol., 2007, 8(5), R76.
[http://dx.doi.org/10.1186/gb-2007-8-5-r76] [PMID: 17493263]
[67]
Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[68]
Hennessy, B.T.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Gilcrease, M.Z.; Krishnamurthy, S.; Lee, J.S.; Fridlyand, J.; Sahin, A.; Agarwal, R.; Joy, C.; Liu, W.; Stivers, D.; Baggerly, K.; Carey, M.; Lluch, A.; Monteagudo, C.; He, X.; Weigman, V.; Fan, C.; Palazzo, J.; Hortobagyi, G.N.; Nolden, L.K.; Wang, N.J.; Valero, V.; Gray, J.W.; Perou, C.M.; Mills, G.B. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res., 2009, 69(10), 4116-4124.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3441] [PMID: 19435916]
[69]
Creighton, C.J.; Li, X.; Landis, M.; Dixon, J.M.; Neumeister, V.M.; Sjolund, A.; Rimm, D.L.; Wong, H.; Rodriguez, A.; Herschkowitz, J.I.; Fan, C.; Zhang, X.; He, X.; Pavlick, A.; Gutierrez, M.C.; Renshaw, L.; Larionov, A.A.; Faratian, D.; Hilsenbeck, S.G.; Perou, C.M.; Lewis, M.T.; Rosen, J.M.; Chang, J.C. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13820-13825.
[http://dx.doi.org/10.1073/pnas.0905718106] [PMID: 19666588]
[70]
Schmadeka, R.; Harmon, B.E.; Singh, M. Triple-negative breast carcinoma: Current and emerging concepts. Am. J. Clin. Pathol., 2014, 141(4), 462-477.
[http://dx.doi.org/10.1309/AJCPQN8GZ8SILKGN] [PMID: 24619745]
[71]
Austreid, E.; Lonning, P.E.; Eikesdal, H.P. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin. Pharmacother., 2014, 15(5), 681-700.
[http://dx.doi.org/10.1517/14656566.2014.885952] [PMID: 24579888]
[72]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[73]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[74]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[75]
Mathew, R.; Khor, S.; Hackett, S.R.; Rabinowitz, J.D.; Perlman, D.H.; White, E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell, 2014, 55(6), 916-930.
[http://dx.doi.org/10.1016/j.molcel.2014.07.019] [PMID: 25175026]
[76]
Karsli-Uzunbas, G.; Guo, J.Y.; Price, S.; Teng, X.; Laddha, S.V.; Khor, S.; Kalaany, N.Y.; Jacks, T.; Chan, C.S.; Rabinowitz, J.D.; White, E. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov., 2014, 4(8), 914-927.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0363] [PMID: 24875857]
[77]
Sun, R.; Shen, S.; Zhang, Y.J.; Xu, C.F.; Cao, Z.T.; Wen, L.P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.038] [PMID: 27376558]
[78]
Autophagosome formation—the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Seminars in cancer biology; Wirth, M.; Joachim, J.; Tooze, S.A., Eds.; Elsevier, 2013.
[79]
Zhang, L.; Fu, L.; Zhang, S.; Zhang, J.; Zhao, Y.; Zheng, Y.; He, G.; Yang, S.; Ouyang, L.; Liu, B. Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem. Sci., 2017, 8(4), 2687-2701.
[http://dx.doi.org/10.1039/C6SC05368H] [PMID: 28553505]
[80]
Jain, M.V.; Paczulla, A.M.; Klonisch, T.; Dimgba, F.N.; Rao, S.B.; Roberg, K.; Schweizer, F.; Lengerke, C.; Davoodpour, P.; Palicharla, V.R.; Maddika, S.; Łos, M. Interconnections between apoptotic, autophagic and necrotic pathways: Implications for cancer therapy development. J. Cell. Mol. Med., 2013, 17(1), 12-29.
[http://dx.doi.org/10.1111/jcmm.12001] [PMID: 23301705]
[81]
Zarzynska, JM The importance of autophagy regulation in breast cancer development and treatment. BioMed Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/710345]
[82]
Gentile, M.; Ahnström, M.; Schön, F.; Wingren, S. Candidate tumour suppressor genes at 11q23–q24 in breast cancer: Evidence of alterations in PIG8, a gene involved in p53-induced apoptosis. Oncogene, 2001, 20(53), 7753-7760.
[http://dx.doi.org/10.1038/sj.onc.1204993] [PMID: 11753653]
[83]
Tian, Y.; Li, Z.; Hu, W.; Ren, H.; Tian, E.; Zhao, Y.; Lu, Q.; Huang, X.; Yang, P.; Li, X.; Wang, X.; Kovács, A.L.; Yu, L.; Zhang, H. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell, 2010, 141(6), 1042-1055.
[http://dx.doi.org/10.1016/j.cell.2010.04.034] [PMID: 20550938]
[84]
Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci., 2019, 134, 116-137.
[http://dx.doi.org/10.1016/j.ejps.2019.04.011] [PMID: 30981885]
[85]
Bao, J.; Shi, Y.; Tao, M.; Liu, N.; Zhuang, S.; Yuan, W. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clin. Sci., 2018, 132(21), 2299-2322.
[http://dx.doi.org/10.1042/CS20180563] [PMID: 30293967]
[86]
Del Bel, M.; Abela, A.R.; Ng, J.D.; Guerrero, C.A. Enantioselective chemical syntheses of the furanosteroids (−)-viridin and (−)-viridiol. J. Am. Chem. Soc., 2017, 139(20), 6819-6822.
[http://dx.doi.org/10.1021/jacs.7b02829] [PMID: 28463562]
[87]
Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 2015, 11(8), 1437-1438.
[http://dx.doi.org/10.1080/15548627.2015.1066957] [PMID: 26156798]
[88]
Jiang, P.D.; Zhao, Y.L.; Deng, X.Q.; Mao, Y.Q.; Shi, W.; Tang, Q.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed. Pharmacother., 2010, 64(9), 609-614.
[http://dx.doi.org/10.1016/j.biopha.2010.06.004] [PMID: 20888174]
[89]
Rodenhiser, D.I.; Andrews, J.D.; Vandenberg, T.A.; Chambers, A.F. Gene signatures of breast cancer progression and metastasis. Breast Cancer Res., 2011, 13(1), 201.
[http://dx.doi.org/10.1186/bcr2791] [PMID: 21345283]
[90]
Won, K.Y.; Kim, G.Y.; Kim, Y.W.; Song, J.Y.; Lim, S.J. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum. Pathol., 2010, 41(1), 107-112.
[http://dx.doi.org/10.1016/j.humpath.2009.07.006] [PMID: 19762066]
[91]
Mauthe, M.; Langereis, M.; Jung, J.; Zhou, X.; Jones, A.; Omta, W.; Tooze, S.A.; Stork, B.; Paludan, S.R.; Ahola, T.; Egan, D.; Behrends, C.; Mokry, M.; de Haan, C.; van Kuppeveld, F.; Reggiori, F. An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. J. Cell Biol., 2016, 214(5), 619-635.
[http://dx.doi.org/10.1083/jcb.201602046] [PMID: 27573464]
[92]
Florey, O.; Gammoh, N.; Kim, S.E.; Jiang, X.; Overholtzer, M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy, 2015, 11(1), 88-99.
[http://dx.doi.org/10.4161/15548627.2014.984277] [PMID: 25484071]
[93]
Yang, W.; Jiang, C.; Xia, W.; Ju, H.; Jin, S.; Liu, S.; Zhang, L.; Ren, G.; Ma, H.; Ruan, M.; Hu, J. Blocking autophagy flux promotes interferon-alpha-mediated apoptosis in head and neck squamous cell carcinoma. Cancer Lett., 2019, 451, 34-47.
[http://dx.doi.org/10.1016/j.canlet.2019.02.052] [PMID: 30862487]
[94]
Kadkhoda, J.; Tarighatnia, A.; Tohidkia, M.R.; Nader, N.D.; Aghanejad, A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sci., 2022, 298, 120499.
[http://dx.doi.org/10.1016/j.lfs.2022.120499] [PMID: 35346674]
[95]
Tooze, S.A.; Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol., 2010, 12(9), 831-835.
[http://dx.doi.org/10.1038/ncb0910-831] [PMID: 20811355]
[96]
Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol. Pharm. Bull., 2007, 30(5), 859-864.
[http://dx.doi.org/10.1248/bpb.30.859] [PMID: 17473426]
[97]
Tanida, I.; Ueno, T.; Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 2004, 36(12), 2503-2518.
[http://dx.doi.org/10.1016/j.biocel.2004.05.009] [PMID: 15325588]
[98]
Bincoletto, C.; Bechara, A.; Pereira, G.J.S.; Santos, C.P.; Antunes, F.; Peixoto da-Silva, J.; Muler, M.; Gigli, R.D.; Monteforte, P.T.; Hirata, H.; Jurkiewicz, A.; Smaili, S.S. Interplay between apoptosis and autophagy, a challenging puzzle: New perspectives on antitumor chemotherapies. Chem. Biol. Interact., 2013, 206(2), 279-288.
[http://dx.doi.org/10.1016/j.cbi.2013.09.018] [PMID: 24121004]
[99]
An, J.; Zhou, Q.; Wu, M.; Wang, L.; Zhong, Y.; Feng, J.; Shang, Y.; Chen, Y. Interactions between oxidative stress, autophagy and apoptosis in A549 cells treated with aged black carbon. Toxicol. In Vitro, 2019, 54, 67-74.
[http://dx.doi.org/10.1016/j.tiv.2018.09.008] [PMID: 30240709]
[100]
Bauvy, C.; Gane, P.; Arico, S.; Codogno, P.; Ogier-Denis, E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp. Cell Res., 2001, 268(2), 139-149.
[http://dx.doi.org/10.1006/excr.2001.5285] [PMID: 11478840]
[101]
Lockshin, R.A.; Zakeri, Z. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 2004, 36(12), 2405-2419.
[http://dx.doi.org/10.1016/j.biocel.2004.04.011] [PMID: 15325581]
[102]
Esteve, J.M.; Knecht, E. Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells. World J. Biol. Chem., 2011, 2(10), 232-238.
[http://dx.doi.org/10.4331/wjbc.v2.i10.232] [PMID: 22031846]
[103]
Sivridis, E.; Koukourakis, M.I.; Zois, C.E.; Ledaki, I.; Ferguson, D.J.P.; Harris, A.L.; Gatter, K.C.; Giatromanolaki, A. LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am. J. Pathol., 2010, 176(5), 2477-2489.
[http://dx.doi.org/10.2353/ajpath.2010.090049] [PMID: 20382705]
[104]
Yang, Y.; Hu, L.; Zheng, H.; Mao, C.; Hu, W.; Xiong, K.; Wang, F.; Liu, C. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin., 2013, 34(5), 625-635.
[http://dx.doi.org/10.1038/aps.2013.5] [PMID: 23524572]
[105]
Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res., 2011, 17(4), 654-666.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2634] [PMID: 21325294]
[106]
Shacka, J.J.; Klocke, B.J.; Roth, K.A. Autophagy, bafilomycin and cell death: the “a-B-cs” of plecomacrolide-induced neuroprotection. Autophagy, 2006, 2(3), 228-230.
[http://dx.doi.org/10.4161/auto.2703] [PMID: 16874105]
[107]
Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther., 2011, 10(9), 1533-1541.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0047] [PMID: 21878654]
[108]
Wang, C.; Hu, Q.; Shen, H.M. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol. Res., 2016, 105, 164-175.
[http://dx.doi.org/10.1016/j.phrs.2016.01.028] [PMID: 26826398]
[109]
Kinsey, C.G.; Camolotto, S.A.; Boespflug, A.M.; Guillen, K.P.; Foth, M.; Truong, A.; Schuman, S.S.; Shea, J.E.; Seipp, M.T.; Yap, J.T.; Burrell, L.D.; Lum, D.H.; Whisenant, J.R.; Gilcrease, G.W., III; Cavalieri, C.C.; Rehbein, K.M.; Cutler, S.L.; Affolter, K.E.; Welm, A.L.; Welm, B.E.; Scaife, C.L.; Snyder, E.L.; McMahon, M. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med., 2019, 25(4), 620-627.
[http://dx.doi.org/10.1038/s41591-019-0367-9] [PMID: 30833748]
[110]
Levy, J.M.M.; Thompson, J.C.; Griesinger, A.M.; Amani, V.; Donson, A.M.; Birks, D.K.; Morgan, M.J.; Mirsky, D.M.; Handler, M.H.; Foreman, N.K.; Thorburn, A. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov., 2014, 4(7), 773-780.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0049] [PMID: 24823863]
[111]
Mulcahy Levy, J.M.; Zahedi, S.; Griesinger, A.M.; Morin, A.; Davies, K.D.; Aisner, D.L.; Kleinschmidt-DeMasters, B.K.; Fitzwalter, B.E.; Goodall, M.L.; Thorburn, J.; Amani, V.; Donson, A.M.; Birks, D.K.; Mirsky, D.M.; Hankinson, T.C.; Handler, M.H.; Green, A.L.; Vibhakar, R.; Foreman, N.K.; Thorburn, A. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife, 2017, 6, e19671.
[http://dx.doi.org/10.7554/eLife.19671] [PMID: 28094001]
[112]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[113]
Hale, A.; Ledbetter, D.; Gawriluk, T.; Rucker, E.B., III Altering autophagy: mouse models of human disease; Autophagy-A Double-Edged Sword-Cell Survival or Death, 2013, pp. 121-138.
[114]
Zhou, Y.; Rucker, E.B., III; Zhou, B.P. Autophagy regulation in the development and treatment of breast cancer. Acta Biochim. Biophys. Sin., 2016, 48(1), 60-74.
[http://dx.doi.org/10.1093/abbs/gmv119] [PMID: 26637829]
[115]
Chen, X.; Yu, X.; Chen, J.; Yang, Z.; Shao, Z.; Zhang, Z.; Guo, X.; Feng, Y. Radiotherapy can improve the disease-free survival rate in triple-negative breast cancer patients with T1-T2 disease and one to three positive lymph nodes after mastectomy. Oncologist, 2013, 18(2), 141-147.
[http://dx.doi.org/10.1634/theoncologist.2012-0233] [PMID: 23335622]
[116]
Perou, C.M. Molecular stratification of triple-negative breast cancers. Oncologist, 2011, 16(S1)(Suppl. 1), 61-70.
[http://dx.doi.org/10.1634/theoncologist.2011-S1-61] [PMID: 21278442]
[117]
Thomas, S.; Sharma, N.; Golden, E.B.; Cho, H.; Agarwal, P.; Gaffney, K.J.; Petasis, N.A.; Chen, T.C.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Lett., 2012, 325(1), 63-71.
[http://dx.doi.org/10.1016/j.canlet.2012.05.030] [PMID: 22664238]
[118]
Milani, M.; Rzymski, T.; Mellor, H.R.; Pike, L.; Bottini, A.; Generali, D.; Harris, A.L. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res., 2009, 69(10), 4415-4423.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2839] [PMID: 19417138]
[119]
Rao, R.; Balusu, R.; Fiskus, W.; Mudunuru, U.; Venkannagari, S.; Chauhan, L.; Smith, J.E.; Hembruff, S.L.; Ha, K.; Atadja, P.; Bhalla, K.N. Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol. Cancer Ther., 2012, 11(4), 973-983.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0979] [PMID: 22367781]
[120]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[121]
Xu, S.W.; Law, B.Y.K.; Qu, S.L.Q.; Hamdoun, S.; Chen, J.; Zhang, W.; Guo, J.R.; Wu, A.G.; Mok, S.W.F.; Zhang, D.W.; Xia, C.; Sugimoto, Y.; Efferth, T.; Liu, L.; Wong, V.K.W. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells. Pharmacol. Res., 2020, 153, 104660.
[http://dx.doi.org/10.1016/j.phrs.2020.104660] [PMID: 31982489]
[122]
Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 349-364.
[http://dx.doi.org/10.1038/s41580-018-0003-4] [PMID: 29618831]
[123]
Towers, C.G.; Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine, 2016, 14, 15-23.
[http://dx.doi.org/10.1016/j.ebiom.2016.10.034] [PMID: 28029600]
[124]
Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Naik, P.P.; Bhutia, S.K. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit. Rev. Clin. Lab. Sci., 2016, 53(4), 228-252.
[http://dx.doi.org/10.3109/10408363.2015.1135103] [PMID: 26743568]
[125]
Wong, VK; Li, T; Law, BY; Ma, ED; Yip, N; Michelangeli, F Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell death & disease, 2013, 4(7), e720-e.
[http://dx.doi.org/10.1038/cddis.2013.217]
[126]
Laane, E.; Tamm, K.P.; Buentke, E.; Ito, K.; Khahariza, P.; Oscarsson, J.; Corcoran, M.; Björklund, A-C.; Hultenby, K.; Lundin, J.; Heyman, M.; Söderhäll, S.; Mazur, J.; Porwit, A.; Pandolfi, P.P.; Zhivotovsky, B.; Panaretakis, T.; Grandér, D. Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death Differ., 2009, 16(7), 1018-1029.
[http://dx.doi.org/10.1038/cdd.2009.46] [PMID: 19390558]
[127]
Ouyang, L.; Zhang, L.; Fu, L.; Liu, B. A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer. Autophagy, 2017, 13(4), 777-778.
[http://dx.doi.org/10.1080/15548627.2017.1283470] [PMID: 28165887]
[128]
Negri, T.; Tarantino, E.; Orsenigo, M.; Reid, J.F.; Gariboldi, M.; Zambetti, M.; Pierotti, M.A.; Pilotti, S. Chromosome band 17q21 in breast cancer: Significant association between beclin 1 loss and HER2/NEU amplification. Genes Chromosomes Cancer, 2010, 49(10), 901-909.
[http://dx.doi.org/10.1002/gcc.20798] [PMID: 20589936]
[129]
Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[130]
Liu, F.; Lee, J.Y.; Wei, H.; Tanabe, O.; Engel, J.D.; Morrison, S.J.; Guan, J.L. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood, 2010, 116(23), 4806-4814.
[http://dx.doi.org/10.1182/blood-2010-06-288589] [PMID: 20716775]
[131]
Wei, H.; Wei, S.; Gan, B.; Peng, X.; Zou, W.; Guan, J.L. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev., 2011, 25(14), 1510-1527.
[http://dx.doi.org/10.1101/gad.2051011] [PMID: 21764854]
[132]
Chen, W.; Bai, Y.; Patel, C.; Geng, F. Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization. Biochem. Biophys. Res. Commun., 2019, 520(2), 263-268.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.133] [PMID: 31590917]
[133]
Pavel, M.; Renna, M.; Park, S.J.; Menzies, F.M.; Ricketts, T.; Füllgrabe, J.; Ashkenazi, A.; Frake, R.A.; Lombarte, A.C.; Bento, C.F.; Franze, K.; Rubinsztein, D.C. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun., 2018, 9(1), 2961.
[http://dx.doi.org/10.1038/s41467-018-05388-x] [PMID: 29317637]
[134]
Shi, Y.; Gong, W.; Lu, L.; Wang, Y.; Ren, J. Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz. J. Med. Biol. Res., 2019, 52(11), e8657.
[http://dx.doi.org/10.1590/1414-431x20198657] [PMID: 31664305]
[135]
Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Influence of autophagy on the efficacy of radiotherapy. Radiat. Oncol., 2017, 12(1), 57.
[http://dx.doi.org/10.1186/s13014-017-0795-y] [PMID: 28320471]
[136]
Mele, L.; del Vecchio, V.; Liccardo, D.; Prisco, C.; Schwerdtfeger, M.; Robinson, N.; Desiderio, V.; Tirino, V.; Papaccio, G.; La Noce, M. The role of autophagy in resistance to targeted therapies. Cancer Treat. Rev., 2020, 88, 102043.
[http://dx.doi.org/10.1016/j.ctrv.2020.102043] [PMID: 32505806]
[137]
Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med., 2013, 274(2), 113-126.
[http://dx.doi.org/10.1111/joim.12084] [PMID: 23844915]
[138]
Cardoso, F.; Costa, A.; Senkus, E.; Aapro, M.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.; Biganzoli, L.; Cardoso, M.J.; Carey, L.; Corneliussen-James, D.; Curigliano, G.; Dieras, V.; El Saghir, N.; Eniu, A.; Fallowfield, L.; Fenech, D.; Francis, P.; Gelmon, K.; Gennari, A.; Harbeck, N.; Hudis, C.; Kaufman, B.; Krop, I.; Mayer, M.; Meijer, H.; Mertz, S.; Ohno, S.; Pagani, O.; Papadopoulos, E.; Peccatori, F.; Penault-Llorca, F.; Piccart, M.J.; Pierga, J.Y.; Rugo, H.; Shockney, L.; Sledge, G.; Swain, S.; Thomssen, C.; Tutt, A.; Vorobiof, D.; Xu, B.; Norton, L.; Winer, E. 3rd ESO–ESMO international consensus guidelines for Advanced Breast Cancer (ABC 3). Breast, 2017, 31, 244-259.
[http://dx.doi.org/10.1016/j.breast.2016.10.001] [PMID: 27927580]
[139]
Chang, H.; Zou, Z. Targeting autophagy to overcome drug resistance: Further developments. J. Hematol. Oncol., 2020, 13(1), 159.
[http://dx.doi.org/10.1186/s13045-020-01000-2] [PMID: 33239065]
[140]
de Souza, A.S.C.; Gonçalves, L.B.; Lepique, A.P.; de Araujo-Souza, P.S. The role of autophagy in tumor immunology—complex mechanisms that may Be explored therapeutically. Front. Oncol., 2020, 10, 603661.
[http://dx.doi.org/10.3389/fonc.2020.603661] [PMID: 33335860]
[141]
Cirone, M.; Gilardini Montani, M.S.; Granato, M.; Garufi, A.; Faggioni, A.; D’Orazi, G. Autophagy manipulation as a strategy for efficient anticancer therapies: Possible consequences. J. Exp. Clin. Cancer Res., 2019, 38(1), 262.
[http://dx.doi.org/10.1186/s13046-019-1275-z] [PMID: 31200739]
[142]
Ladoire, S.; Enot, D.; Andre, F.; Zitvogel, L.; Kroemer, G. Immunogenic cell death-related biomarkers: Impact on the survival of breast cancer patients after adjuvant chemotherapy. OncoImmunology, 2016, 5(2), e1082706.
[http://dx.doi.org/10.1080/2162402X.2015.1082706] [PMID: 27057465]
[143]
Karamouzis, M.V.; Likaki-Karatza, E.; Ravazoula, P.; Badra, F.A.; Koukouras, D.; Tzorakoleftherakis, E.; Papavassiliou, A.G.; Kalofonos, H.P. Non-palpable breast carcinomas: Correlation of mammographically detected malignant-appearing microcalcifications and molecular prognostic factors. Int. J. Cancer, 2002, 102(1), 86-90.
[http://dx.doi.org/10.1002/ijc.10654] [PMID: 12353238]
[144]
Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[145]
Lock, R.; Roy, S.; Kenific, C.M.; Su, J.S.; Salas, E.; Ronen, S.M.; Debnath, J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell, 2011, 22(2), 165-178.
[http://dx.doi.org/10.1091/mbc.e10-06-0500] [PMID: 21119005]
[146]
van Reesema, L.L.S.; Zheleva, V.; Winston, J.S.; Jansen, R.J.; O’Connor, C.F.; Isbell, A.J.; Bian, M.; Qin, R.; Bassett, P.T.; Hinson, V.J.; Dorsch, K.A.; Kirby, B.W.; Van Sciver, R.E.; Tang-Tan, A.M.; Harden, E.A.; Chang, D.Z.; Allen, C.A.; Perry, R.R.; Hoefer, R.A.; Tang, A.H. SIAH and EGFR, two RAS pathway biomarkers, are highly prognostic in locally advanced and metastatic breast cancer. EBioMedicine, 2016, 11, 183-198.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.014] [PMID: 27569656]
[147]
Gupta, G.K.; Collier, A.L.; Lee, D.; Hoefer, R.A.; Zheleva, V.; Siewertsz van Reesema, L.L.; Tang-Tan, A.M.; Guye, M.L.; Chang, D.Z.; Winston, J.S.; Samli, B.; Jansen, R.J.; Petricoin, E.F.; Goetz, M.P.; Bear, H.D.; Tang, A.H. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers, 2020, 12(9), 2392.
[http://dx.doi.org/10.3390/cancers12092392] [PMID: 32846967]
[148]
Marsh, T; Kenific, CM; Suresh, D; Gonzalez, H; Shamir, ER; Mei, W Autophagic degradation of NBR1 restricts metastatic outgrowth during mammary tumor progression. Developmental cell, 2020, 52(5), 591-604.
[http://dx.doi.org/10.1016/j.devcel.2020.01.025]
[149]
Katsuragi, Y.; Ichimura, Y.; Komatsu, M. Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Curr. Opin. Toxicol., 2016, 1, 54-61.
[http://dx.doi.org/10.1016/j.cotox.2016.09.005]
[150]
Jiang, X.; Bao, Y.; Liu, H.; Kou, X.; Zhang, Z.; Sun, F.; Qian, Z.; Lin, Z.; Li, X.; Liu, X.; Jiang, L.; Yang, Y. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene, 2017, 36(50), 6850-6862.
[http://dx.doi.org/10.1038/onc.2017.295] [PMID: 28846113]
[151]
Thibault, B.; Ramos-Delgado, F.; Guillermet-Guibert, J. Targeting class I-II-III PI3Ks in cancer therapy: Recent advances in tumor biology and preclinical research. Cancers, 2023, 15(3), 784.
[http://dx.doi.org/10.3390/cancers15030784] [PMID: 36765741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy