Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine

Author(s): Daljeet Singh Dhanjal, Reena Singh, Varun Sharma, Eugenie Nepovimova, Vojtech Adam*, Kamil Kuca* and Chirag Chopra*

Volume 31, Issue 13, 2024

Published on: 27 June, 2023

Page: [1646 - 1690] Pages: 45

DOI: 10.2174/0929867330666230503144619

Price: $65

Abstract

The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.

Keywords: Genetic engineering, induced pluripotency, nuclear reprogramming, regenerative medicine, somatic cell nuclear transfer, stem cells.

[1]
Ryall, J.G.; Cliff, T.; Dalton, S.; Sartorelli, V. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell, 2015, 17(6), 651-662.
[http://dx.doi.org/10.1016/j.stem.2015.11.012] [PMID: 26637942]
[2]
Mall, M.; Wernig, M. The novel tool of cell reprogramming for applications in molecular medicine. J. Mol. Med., 2017, 95(7), 695-703.
[http://dx.doi.org/10.1007/s00109-017-1550-4] [PMID: 28597071]
[3]
Spemann, H.; Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int. J. Dev. Biol., 2001, 45(1), 13-38.
[PMID: 11291841]
[4]
Hemmi, J.J.; Mishra, A.; Hornsby, P.J. Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells. Primate Biol., 2017, 4(2), 153-162.
[http://dx.doi.org/10.5194/pb-4-153-2017] [PMID: 32110703]
[5]
Nizzardo, M.; Simone, C.; Falcone, M.; Riboldi, G.; Comi, G.P.; Bresolin, N.; Corti, S. Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant., 2013, 22(6), 921-944.
[http://dx.doi.org/10.3727/096368912X657477] [PMID: 23044010]
[6]
Ilic, D.; Polak, J.M. Stem cells in regenerative medicine: introduction. Br. Med. Bull., 2011, 98(1), 117-126.
[http://dx.doi.org/10.1093/bmb/ldr012] [PMID: 21565803]
[7]
Santos, A.R.; Nascimento, V.A.; Genari, S.C.; Lombello, C.B. Mechanisms of Cell Regeneration - From Differentiation to Maintenance of Cell Phenotype. In: Cells and Biomaterials in Regenerative Medicine, 2014.
[8]
Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep., 2015, 35(2), e00191.
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[9]
Sisakhtnezhad, S.; Matin, M.M. Transdifferentiation: A cell and molecular reprogramming process. Cell Tissue Res., 2012, 348(3), 379-396.
[http://dx.doi.org/10.1007/s00441-012-1403-y] [PMID: 22526624]
[10]
Le Magnen, C.; Shen, M.M.; Abate-Shen, C. Lineage plasticity in cancer progression and treatment. Annu. Rev. Cancer Biol., 2018, 2(1), 271-289.
[http://dx.doi.org/10.1146/annurev-cancerbio-030617-050224] [PMID: 29756093]
[11]
Nakagawa, H.; Whelan, K.; Lynch, J.P. Mechanisms of Barrett’s oesophagus: Intestinal differentiation, stem cells, and tissue models. Best Pract. Res. Clin. Gastroenterol., 2015, 29(1), 3-16.
[http://dx.doi.org/10.1016/j.bpg.2014.11.001] [PMID: 25743452]
[12]
Ye, L.; Robertson, M.A.; Mastracci, T.L.; Anderson, R.M. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev. Biol., 2016, 409(2), 354-369.
[http://dx.doi.org/10.1016/j.ydbio.2015.12.003] [PMID: 26658317]
[13]
Yamamizu, K.; Piao, Y.; Sharov, A.A.; Zsiros, V.; Yu, H.; Nakazawa, K.; Schlessinger, D.; Ko, M.S.H. Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports, 2013, 1(6), 545-559.
[http://dx.doi.org/10.1016/j.stemcr.2013.10.006] [PMID: 24371809]
[14]
Palomo, A.; Lucas, M.; Dilley, R.; McLenachan, S.; Chen, F.; Requena, J.; Sal, M.; Lucas, A.; Alvarez, I.; Jaraquemada, D.; Edel, M. The power and the promise of cell reprogramming: Personalized autologous body organ and cell transplantation. J. Clin. Med., 2014, 3(2), 373-387.
[http://dx.doi.org/10.3390/jcm3020373] [PMID: 26237380]
[15]
Bhartiya, D.; Hinduja, I.; Patel, H.; Bhilawadikar, R. Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reprod. Biol. Endocrinol., 2014, 12(1), 114.
[http://dx.doi.org/10.1186/1477-7827-12-114] [PMID: 25421462]
[16]
Son, M.Y.; Lee, M.O.; Jeon, H.; Seol, B.; Kim, J.H.; Chang, J.S.; Cho, Y.S. Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp. Mol. Med., 2016, 48(5), e232.
[http://dx.doi.org/10.1038/emm.2016.27] [PMID: 27174201]
[17]
Li, M.; Cascino, P.; Ummarino, S.; Di Ruscio, A. Application of induced pluripotent stem cell technology to the study of hematological diseases. Cells, 2017, 6(1), 7.
[http://dx.doi.org/10.3390/cells6010007] [PMID: 28282903]
[18]
Halley-Stott, R.P.; Pasque, V.; Gurdon, J.B. Nuclear reprogramming. Development, 2013, 140(12), 2468-2471.
[http://dx.doi.org/10.1242/dev.092049] [PMID: 23715540]
[19]
Tahmasebi, S.; Jafarnejad, S.M.; Tam, I.S.; Gonatopoulos-Pournatzis, T.; Matta-Camacho, E.; Tsukumo, Y.; Yanagiya, A.; Li, W.; Atlasi, Y.; Caron, M.; Braunschweig, U.; Pearl, D.; Khoutorsky, A.; Gkogkas, C.G.; Nadon, R.; Bourque, G.; Yang, X.J.; Tian, B.; Stunnenberg, H.G.; Yamanaka, Y.; Blencowe, B.J.; Giguère, V.; Sonenberg, N. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc. Natl. Acad. Sci., 2016, 113(44), 12360-12367.
[http://dx.doi.org/10.1073/pnas.1615540113] [PMID: 27791185]
[20]
Singh, V.K.; Saini, A.; Kalsan, M.; Kumar, N.; Chandra, R. Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front. Cell Dev. Biol., 2016, 4, 134.
[http://dx.doi.org/10.3389/fcell.2016.00134] [PMID: 27921030]
[21]
Xiao, J.; Yang, R.; Biswas, S.; Qin, X.; Zhang, M.; Deng, W. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int. J. Mol. Sci., 2015, 16(12), 9283-9302.
[http://dx.doi.org/10.3390/ijms16059283] [PMID: 25918935]
[22]
Földes, A.; Kádár, K.; Kerémi, B.; Zsembery, Á.; Gyires, K.; S Zádori, Z.; Varga, G. Mesenchymal stem cells of dental origin-their potential for antiinflammatory and regenerative actions in brain and gut damage. Curr. Neuropharmacol., 2016, 14(8), 914-934.
[http://dx.doi.org/10.2174/1570159X14666160121115210] [PMID: 26791480]
[23]
Alvarez, C.V.; Garcia-Lavandeira, M.; Garcia-Rendueles, M.E.R.; Diaz-Rodriguez, E.; Garcia-Rendueles, A.R.; Perez-Romero, S.; Vila, T.V.; Rodrigues, J.S.; Lear, P.V.; Bravo, S.B. Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J. Mol. Endocrinol., 2012, 49(2), R89-R111.
[http://dx.doi.org/10.1530/JME-12-0072] [PMID: 22822049]
[24]
Ravasio, R.; Ceccacci, E.; Minucci, S. Self-renewal of tumor cells: Epigenetic determinants of the cancer stem cell phenotype. Curr. Opin. Genet. Dev., 2016, 36, 92-99.
[http://dx.doi.org/10.1016/j.gde.2016.04.002] [PMID: 27153353]
[25]
Hossini, A.M.; Quast, A.S.; Plötz, M.; Grauel, K.; Exner, T.; Küchler, J.; Stachelscheid, H.; Eberle, J.; Rabien, A.; Makrantonaki, E.; Zouboulis, C.C. PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS One, 2016, 11(5), e0154770.
[http://dx.doi.org/10.1371/journal.pone.0154770] [PMID: 27138223]
[26]
Pekovic, V.; Hutchison, C.J. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J. Anat., 2008, 213(1), 5-25.
[http://dx.doi.org/10.1111/j.1469-7580.2008.00928.x] [PMID: 18638067]
[27]
Marques-Mari, A.I.; Lacham-Kaplan, O.; Medrano, J.V.; Pellicer, A.; Simón, C. Differentiation of germ cells and gametes from stem cells. Hum. Reprod. Update, 2009, 15(3), 379-390.
[http://dx.doi.org/10.1093/humupd/dmp001] [PMID: 19179344]
[28]
NIH Types of Stem Cell | Stem Cells | University of Nebraska Medical Center. Available from: https://www.unmc.edu/stemcells/educational-resources/types.html (Accessed on: Mar 29, 2021).
[29]
Stoltz, J.F.; de Isla, N.; Li, Y.P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y. Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells Int., 2015, 2015, 1-19.
[http://dx.doi.org/10.1155/2015/734731] [PMID: 26300923]
[30]
Bhattacharyya, S.; Kumar, A.; Lal Khanduja, K. The voyage of stem cell toward terminal differentiation: A brief overview. Acta Biochim. Biophys. Sin., 2012, 44(6), 463-475.
[http://dx.doi.org/10.1093/abbs/gms027] [PMID: 22562866]
[31]
Crane, G.M.; Jeffery, E.; Morrison, S.J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol., 2017, 17(9), 573-590.
[http://dx.doi.org/10.1038/nri.2017.53] [PMID: 28604734]
[32]
Bao, B.; Ahmad, A.; Azmi, A.S.; Ali, S.; Sarkar, F.H. Overview of Cancer Stem Cells (CSCS) and mechanisms of their regulation: Implications for cancer therapy. Curr. Protoc. Pharmacol., 2013, 14, 14-25.
[33]
Li, S.; Li, Q. Cancer stem cells and tumor metastasis. Int. J. Oncol., 2014, 44(6), 1806-1812.
[http://dx.doi.org/10.3892/ijo.2014.2362] [PMID: 24691919]
[34]
Eun, K.; Ham, S.W.; Kim, H. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep., 2017, 50(3), 117-125.
[http://dx.doi.org/10.5483/BMBRep.2017.50.3.222] [PMID: 27998397]
[35]
Conley, S.J.; Gheordunescu, E.; Kakarala, P.; Newman, B.; Korkaya, H.; Heath, A.N.; Clouthier, S.G.; Wicha, M.S. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci., 2012, 109(8), 2784-2789.
[http://dx.doi.org/10.1073/pnas.1018866109] [PMID: 22308314]
[36]
Deng, S.; Yang, X.; Lassus, H.; Liang, S.; Kaur, S.; Ye, Q.; Li, C.; Wang, L.P.; Roby, K.F.; Orsulic, S.; Connolly, D.C.; Zhang, Y.; Montone, K.; Bützow, R.; Coukos, G.; Zhang, L. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One, 2010, 5(4), e10277.
[http://dx.doi.org/10.1371/journal.pone.0010277] [PMID: 20422001]
[37]
Jaworska, D.; Król, W.; Szliszka, E. Prostate cancer stem cells: Research advances. Int. J. Mol. Sci., 2015, 16(11), 27433-27449.
[http://dx.doi.org/10.3390/ijms161126036] [PMID: 26593898]
[38]
Chen, K.; Huang, Y.; Chen, J. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin., 2013, 34(6), 732-740.
[http://dx.doi.org/10.1038/aps.2013.27] [PMID: 23685952]
[39]
Wang, Q.E. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J. Biol. Chem., 2015, 6(3), 57-64.
[http://dx.doi.org/10.4331/wjbc.v6.i3.57] [PMID: 26322164]
[40]
Kasai, T.; Chen, L.; Mizutani, A.; Kudoh, T.; Murakami, H.; Fu, L.; Seno, M. Cancer stem cells converted from pluripotent stem cells and the cancerous niche. J. Stem Cells Regen. Med., 2014, 10(1), 2-7.
[http://dx.doi.org/10.46582/jsrm.1001002] [PMID: 25075155]
[41]
Chagastelles, P.C.; Nardi, N.B. Biology of stem cells: An overview. Kidney Int. Suppl., 2011, 1(3), 63-67.
[http://dx.doi.org/10.1038/kisup.2011.15] [PMID: 25028627]
[42]
Mummery, C.L.; Zhang, J.; Ng, E.S.; Elliott, D.A.; Elefanty, A.G.; Kamp, T.J. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ. Res., 2012, 111(3), 344-358.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.227512] [PMID: 22821908]
[43]
Ohnuki, M.; Takahashi, K. Present and future challenges of induced pluripotent stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1680), 20140367.
[http://dx.doi.org/10.1098/rstb.2014.0367] [PMID: 26416678]
[44]
Martello, G.; Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 647-675.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013116] [PMID: 25288119]
[45]
Yee, J. Turning somatic cells into pluripotent stem cells. New Educator, 2010, 3, 25.
[46]
Tucak, A.; Vrabac, D.; Smajić, A.; Sažić, A. Future trends and possibilities of using induced pluripotent stem cells (iPSC) in regenerative medicine. IFMBE Proc., 2017, 62, 459-464.
[http://dx.doi.org/10.1007/978-981-10-4166-2_71]
[47]
Han, J.W.; Yoon, Y. Induced pluripotent stem cells: Emerging techniques for nuclear reprogramming. Antioxid. Redox Signal., 2011, 15(7), 1799-1820.
[http://dx.doi.org/10.1089/ars.2010.3814] [PMID: 21194386]
[48]
Wong, W.T.; Sayed, N.; Cooke, J.P. Induced pluripotent stem cells: How they will change the practice of cardiovascular medicine. Methodist DeBakey Cardiovasc. J., 2013, 9(4), 206-209.
[http://dx.doi.org/10.14797/mdcj-9-4-206] [PMID: 24298311]
[49]
Yamanaka, S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 2012, 10(6), 678-684.
[http://dx.doi.org/10.1016/j.stem.2012.05.005] [PMID: 22704507]
[50]
Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol., 2016, 17(3), 170-182.
[http://dx.doi.org/10.1038/nrm.2015.27] [PMID: 26818440]
[51]
Roberts, R.M.; Fisher, S.J. Trophoblast stem cells. Biol. Reprod., 2011, 84(3), 412-421.
[http://dx.doi.org/10.1095/biolreprod.110.088724] [PMID: 21106963]
[52]
Vićovac, L.; Aplin, J.D. Epithelial-mesenchymal transition during trophoblast differentiation. Cells Tissues Organs, 1996, 156(3), 202-216.
[http://dx.doi.org/10.1159/000147847] [PMID: 9124037]
[53]
Telugu, B.P.; Adachi, K.; Schlitt, J.M.; Ezashi, T.; Schust, D.J.; Roberts, R.M.; Schulz, L.C. Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas. Placenta, 2013, 34(7), 536-543.
[http://dx.doi.org/10.1016/j.placenta.2013.03.016] [PMID: 23631809]
[54]
Velicky, P.; Knöfler, M.; Pollheimer, J. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adhes. Migr., 2016, 10(1-2), 154-162.
[http://dx.doi.org/10.1080/19336918.2015.1089376] [PMID: 26418186]
[55]
Horii, M.; Li, Y.; Wakeland, A.K.; Pizzo, D.P.; Nelson, K.K.; Sabatini, K.; Laurent, L.C.; Liu, Y.; Parast, M.M. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc. Natl. Acad. Sci. USA, 2016, 113(27), E3882-E3891.
[http://dx.doi.org/10.1073/pnas.1604747113] [PMID: 27325764]
[56]
Erlebacher, A.; Price, K.A.; Glimcher, L.H. Maintenance of mouse trophoblast stem cell proliferation by TGF-β/activin. Dev. Biol., 2004, 275(1), 158-169.
[http://dx.doi.org/10.1016/j.ydbio.2004.07.032] [PMID: 15464579]
[57]
Rielland, M.; Hue, I.; Renard, J.P.; Alice, J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: New tools to study trophoblast growth and differentiation. Dev. Biol., 2008, 322(1), 1-10.
[http://dx.doi.org/10.1016/j.ydbio.2008.07.017] [PMID: 18680738]
[58]
M, M.; P, Z.; K, P.; i, K.; S, L.; L, Y.; R, M.; K, Z.; M, M. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy. J. Cancer Res. Ther., 2014, 2(1), 22-33.
[http://dx.doi.org/10.14312/2052-4994.2014-4]
[59]
Daley, G.Q. Stem cells and the evolving notion of cellular identity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1680), 20140376.
[http://dx.doi.org/10.1098/rstb.2014.0376] [PMID: 26416685]
[60]
Yamanaka, S.; Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010, 465(7299), 704-712.
[http://dx.doi.org/10.1038/nature09229] [PMID: 20535199]
[61]
Kim, S.H.; Moon, H.H.; Kim, H.A.; Hwang, K.C.; Lee, M.; Choi, D. Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Mol. Ther., 2011, 19(4), 741-750.
[http://dx.doi.org/10.1038/mt.2010.301] [PMID: 21245851]
[62]
Kim, J.S.; Choi, H.W.; Choi, S.; Do, J.T. Reprogrammed pluripotent stem cells from somatic cells. Int. J. Stem Cells, 2011, 4(1), 1-8.
[http://dx.doi.org/10.15283/ijsc.2011.4.1.1] [PMID: 24298328]
[63]
Jalali Tehrani, H.; Parivar, K.; Ai, J.; Kajbafzadeh, A.; Rahbarghazi, R.; Hashemi, M.; Sadeghizadeh, M. Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. Iran. J. Pharm. Res., 2014, 13(2), 659-664.
[PMID: 25237362]
[64]
Műzes, G.; Sipos, F. Heterogeneity of stem cells: A brief overview. Methods Mol. Biol., 2016, 1516, 1-12.
[http://dx.doi.org/10.1007/7651_2016_345] [PMID: 27044045]
[65]
Lluis, F.; Cosma, M.P. Cell-fusion-mediated somatic-cell reprogramming: A mechanism for tissue regeneration. J. Cell. Physiol., 2010, 223(1), 6-13.
[PMID: 20049847]
[66]
Serov, O.L.; Matveeva, N.M.; Khabarova, A.A. Reprogramming mediated by cell fusion technology. Int. Rev. Cell Mol. Biol., 2011, 291, 155-190.
[http://dx.doi.org/10.1016/B978-0-12-386035-4.00005-7] [PMID: 22017976]
[67]
Pomerantz, J.; Blau, H.M. Nuclear reprogramming: A key to stem cell function in regenerative medicine. Nat. Cell Biol., 2004, 6(9), 810-816.
[http://dx.doi.org/10.1038/ncb0904-810] [PMID: 15340448]
[68]
Colman, A. Profile of John Gurdon and Shinya Yamanaka, 2012 nobel laureates in medicine or physiology. Proc. Natl. Acad. Sci., 2013, 110(15), 5740-5741.
[http://dx.doi.org/10.1073/pnas.1221823110] [PMID: 23538305]
[69]
Blau, H.M. Sir John Gurdon: Father of nuclear reprogramming. Differentiation, 2014, 88(1), 10-12.
[http://dx.doi.org/10.1016/j.diff.2014.05.002] [PMID: 24954777]
[70]
Plath, K.; Lowry, W.E. Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet., 2011, 12(4), 253-265.
[http://dx.doi.org/10.1038/nrg2955] [PMID: 21415849]
[71]
Sampogna, G.; Guraya, S.Y.; Forgione, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct., 2015, 3(3), 101-107.
[http://dx.doi.org/10.1016/j.jmau.2015.05.002] [PMID: 30023189]
[72]
Dey, D.; Evans, G.R.D. Generation of Induced Pluripotent Stem (iPS) cells by nuclear reprogramming. Stem Cells Int., 2011, 2011, 1-11.
[http://dx.doi.org/10.4061/2011/619583] [PMID: 22007240]
[73]
Halley-Stott, R.P.; Gurdon, J.B. Epigenetic memory in the context of nuclear reprogramming and cancer. Brief. Funct. Genomics, 2013, 12(3), 164-173.
[http://dx.doi.org/10.1093/bfgp/elt011] [PMID: 23585580]
[74]
Loi, P.; Iuso, D.; Toschi, P.; Palazzese, L.; Czernik, M. Alternative strategies for nuclear reprogramming in Somatic Cell Nuclear transfer (SCNT). Anim. Reprod., 2017, 14(2), 377-382.
[http://dx.doi.org/10.21451/1984-3143-AR915]
[75]
Matoba, S.; Liu, Y.; Lu, F.; Iwabuchi, K.A.; Shen, L.; Inoue, A.; Zhang, Y. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 2014, 159(4), 884-895.
[http://dx.doi.org/10.1016/j.cell.2014.09.055] [PMID: 25417163]
[76]
Chung, Y.G.; Matoba, S.; Liu, Y.; Eum, J.H.; Lu, F.; Jiang, W.; Lee, J.E.; Sepilian, V.; Cha, K.Y.; Lee, D.R.; Zhang, Y. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell, 2015, 17(6), 758-766.
[http://dx.doi.org/10.1016/j.stem.2015.10.001] [PMID: 26526725]
[77]
Liu, D.; Li, J.; Zhu, K.; Wang, C. 1432 Direct in-situ GMT lentivirus-induced cell reprogramming for cardiac repair by ultrasound-targeted microbubble destruction. Eur. Heart J., 2018, 39(S1), 39.
[http://dx.doi.org/10.1093/eurheartj/ehy565.1432]
[78]
Federation, A.J.; Bradner, J.E.; Meissner, A. The use of small molecules in somatic-cell reprogramming. Trends Cell Biol., 2014, 24(3), 179-187.
[http://dx.doi.org/10.1016/j.tcb.2013.09.011] [PMID: 24183602]
[79]
Soufi, A.; Donahue, G.; Zaret, K.S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell, 2012, 151(5), 994-1004.
[http://dx.doi.org/10.1016/j.cell.2012.09.045] [PMID: 23159369]
[80]
Taberlay, P.C.; Kelly, T.K.; Liu, C.C.; You, J.S.; De Carvalho, D.D.; Miranda, T.B.; Zhou, X.J.; Liang, G.; Jones, P.A. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell, 2011, 147(6), 1283-1294.
[http://dx.doi.org/10.1016/j.cell.2011.10.040] [PMID: 22153073]
[81]
Vierbuchen, T.; Wernig, M. Molecular roadblocks for cellular reprogramming. Mol. Cell, 2012, 47(6), 827-838.
[http://dx.doi.org/10.1016/j.molcel.2012.09.008] [PMID: 23020854]
[82]
Li, R.; Liang, J.; Ni, S.; Zhou, T.; Qing, X.; Li, H.; He, W.; Chen, J.; Li, F.; Zhuang, Q.; Qin, B.; Xu, J.; Li, W.; Yang, J.; Gan, Y.; Qin, D.; Feng, S.; Song, H.; Yang, D.; Zhang, B.; Zeng, L.; Lai, L.; Esteban, M.A.; Pei, D. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 2010, 7(1), 51-63.
[http://dx.doi.org/10.1016/j.stem.2010.04.014] [PMID: 20621050]
[83]
Buganim, Y.; Faddah, D.A.; Cheng, A.W.; Itskovich, E.; Markoulaki, S.; Ganz, K.; Klemm, S.L.; van Oudenaarden, A.; Jaenisch, R. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 2012, 150(6), 1209-1222.
[http://dx.doi.org/10.1016/j.cell.2012.08.023] [PMID: 22980981]
[84]
Polo, J.M.; Anderssen, E.; Walsh, R.M.; Schwarz, B.A.; Nefzger, C.M.; Lim, S.M.; Borkent, M.; Apostolou, E.; Alaei, S.; Cloutier, J.; Bar-Nur, O.; Cheloufi, S.; Stadtfeld, M.; Figueroa, M.E.; Robinton, D.; Natesan, S.; Melnick, A.; Zhu, J.; Ramaswamy, S.; Hochedlinger, K. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell, 2012, 151(7), 1617-1632.
[http://dx.doi.org/10.1016/j.cell.2012.11.039] [PMID: 23260147]
[85]
Cantone, I.; Fisher, A.G. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol., 2013, 20(3), 282-289.
[http://dx.doi.org/10.1038/nsmb.2489] [PMID: 23463313]
[86]
Radzisheuskaya, A.; Silva, J.C.R. Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends Cell Biol., 2014, 24(5), 275-284.
[http://dx.doi.org/10.1016/j.tcb.2013.11.010] [PMID: 24370212]
[87]
Kelaini, S.; Cochrane, A.; Margariti, A. Direct reprogramming of adult cells: Avoiding the pluripotent state. Stem Cells Cloning, 2014, 7, 19-29.
[PMID: 24627642]
[88]
Cai, Y.; Dai, X.; Zhang, Q.; Dai, Z. Gene expression of OCT4, SOX2, KLF4 and MYC (OSKM) induced pluripotent stem cells: Identification for potential mechanisms. Diagn. Pathol., 2015, 10(1), 35.
[http://dx.doi.org/10.1186/s13000-015-0263-7] [PMID: 25907774]
[89]
Wong, R.C.B.; Smith, E.L.; Donovan, P.J. New Techniques in the Generation of Induced Pluripotent Stem Cells. In: Embryonic Stem Cells - Differentiation and Pluripotent Alternatives, 2011.
[90]
González, F.; Huangfu, D. Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip. Rev. Dev. Biol., 2016, 5(1), 39-65.
[http://dx.doi.org/10.1002/wdev.206] [PMID: 26383234]
[91]
Anokye-Danso, F.; Snitow, M.; Morrisey, E.E. How microRNAs facilitate reprogramming to pluripotency. J. Cell Sci., 2012, 125(Pt 18), 4179-4187.
[PMID: 23077173]
[92]
Tan, G.C.; Dibb, N.J. MicroRNA-induced pluripotent stem cells. Malays. J. Pathol., 2012, 34(2), 167-168.
[PMID: 23424782]
[93]
Miyoshi, N.; Ishii, H.; Nagano, H.; Haraguchi, N.; Dewi, D.L.; Kano, Y.; Nishikawa, S.; Tanemura, M.; Mimori, K.; Tanaka, F.; Saito, T.; Nishimura, J.; Takemasa, I.; Mizushima, T.; Ikeda, M.; Yamamoto, H.; Sekimoto, M.; Doki, Y.; Mori, M. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 2011, 8(6), 633-638.
[http://dx.doi.org/10.1016/j.stem.2011.05.001] [PMID: 21620789]
[94]
Lin, C.; Yu, C.; Ding, S. Toward directed reprogramming through exogenous factors. Curr. Opin. Genet. Dev., 2013, 23(5), 519-525.
[http://dx.doi.org/10.1016/j.gde.2013.06.002] [PMID: 23932127]
[95]
Liao, Q.; Wang, B.; Li, X.; Jiang, G. miRNAs in acute myeloid leukemia. Oncotarget, 2017, 8(2), 3666-3682.
[http://dx.doi.org/10.18632/oncotarget.12343] [PMID: 27705921]
[96]
Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov., 2016, 6(3), 235-246.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0893] [PMID: 26865249]
[97]
Hatziapostolou, M.; Polytarchou, C.; Iliopoulos, D. miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol. Metab., 2013, 24(7), 361-373.
[http://dx.doi.org/10.1016/j.tem.2013.03.002] [PMID: 23602813]
[98]
Muraoka, N.; Yamakawa, H.; Miyamoto, K.; Sadahiro, T.; Umei, T.; Isomi, M.; Nakashima, H.; Akiyama, M.; Wada, R.; Inagawa, K.; Nishiyama, T.; Kaneda, R.; Fukuda, T.; Takeda, S.; Tohyama, S.; Hashimoto, H.; Kawamura, Y.; Goshima, N.; Aeba, R.; Yamagishi, H.; Fukuda, K.; Ieda, M. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J., 2014, 33(14), 1565-1581.
[http://dx.doi.org/10.15252/embj.201387605] [PMID: 24920580]
[99]
Wang, M.; Gao, Y.; Qu, P.; Qing, S.; Qiao, F.; Zhang, Y.; Mager, J.; Wang, Y. Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep., 2017, 7(1), 13403.
[http://dx.doi.org/10.1038/s41598-017-13899-8] [PMID: 29042680]
[100]
Zhang, J.; Qu, P.; Zhou, C.; Liu, X.; Ma, X.; Wang, M.; Wang, Y.; Su, J.; Liu, J.; Zhang, Y. MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J. Biol. Chem., 2017, 292(38), 15916-15926.
[http://dx.doi.org/10.1074/jbc.M117.796771] [PMID: 28794155]
[101]
Bernal, J.A. RNA-based tools for nuclear reprogramming and lineage-conversion: Towards clinical applications. J. Cardiovasc. Transl. Res., 2013, 6(6), 956-968.
[http://dx.doi.org/10.1007/s12265-013-9494-8] [PMID: 23852582]
[102]
Moutsatsos, I.K.; Turgeman, G.; Zhou, S.; Kurkalli, B.G.; Pelled, G.; Tzur, L.; Kelley, P.; Stumm, N.; Mi, S.; Müller, R.; Zilberman, Y.; Gazit, D. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol. Ther., 2001, 3(4), 449-461.
[http://dx.doi.org/10.1006/mthe.2001.0291] [PMID: 11319905]
[103]
Hoffmann, A.; Czichos, S.; Kaps, C.; Bächner, D.; Mayer, H.; Zilberman, Y.; Turgeman, G.; Pelled, G.; Gross, G.; Gazit, D.; Gazit, D. The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J. Cell Sci., 2002, 115(4), 769-781.
[http://dx.doi.org/10.1242/jcs.115.4.769] [PMID: 11865033]
[104]
Martinek, V.; Latterman, C.; Usas, A.; Abramowitch, S.; Woo, S.L.Y.; Fu, F.H.; Huard, J. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J. Bone Joint Surg. Am., 2002, 84(7), 1123-1131.
[http://dx.doi.org/10.2106/00004623-200207000-00005] [PMID: 12107310]
[105]
Choy, L.; Derynck, R. Transforming growth factor-β inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J. Biol. Chem., 2003, 278(11), 9609-9619.
[http://dx.doi.org/10.1074/jbc.M212259200] [PMID: 12524424]
[106]
Tiraby, C.; Tavernier, G.; Lefort, C.; Larrouy, D.; Bouillaud, F.; Ricquier, D.; Langin, D. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem., 2003, 278(35), 33370-33376.
[http://dx.doi.org/10.1074/jbc.M305235200] [PMID: 12807871]
[107]
Braudeau, C.; Bouchet, D.; Tesson, L.; Iyer, S.; Rémy, S.; Buelow, R.; Anegon, I.; Chauveau, C. Induction of long-term cardiac allograft survival by heme oxygenase-1 gene transfer. Gene Ther., 2004, 11(8), 701-710.
[http://dx.doi.org/10.1038/sj.gt.3302208] [PMID: 14973545]
[108]
Peng, H.; Usas, A.; Olshanski, A.; Ho, A.M.; Gearhart, B.; Cooper, G.M.; Huard, J. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res., 2005, 20(11), 2017-2027.
[http://dx.doi.org/10.1359/JBMR.050708] [PMID: 16234975]
[109]
Sugiyama, O.; Sung An, D.; Kung, S.P.K.; Feeley, B.T.; Gamradt, S.; Liu, N.Q.; Chen, I.S.Y.; Lieberman, J.R. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol. Ther., 2005, 11(3), 390-398.
[http://dx.doi.org/10.1016/j.ymthe.2004.10.019] [PMID: 15727935]
[110]
Hasharoni, A.; Zilberman, Y.; Turgeman, G.; Helm, G.A.; Liebergall, M.; Gazit, D. Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J. Neurosurg. Spine, 2005, 3(1), 47-52.
[http://dx.doi.org/10.3171/spi.2005.3.1.0047] [PMID: 16122022]
[111]
Zhang, X.; Xie, C.; Lin, A.S.P.; Ito, H.; Awad, H.; Lieberman, J.R.; Rubery, P.T.; Schwarz, E.M.; O’Keefe, R.J.; Guldberg, R.E. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering. J. Bone Miner. Res., 2005, 20(12), 2124-2137.
[http://dx.doi.org/10.1359/JBMR.050806] [PMID: 16294266]
[112]
Chen, Z.; Torrens, J.I.; Anand, A.; Spiegelman, B.M.; Friedman, J.M. Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms. Cell Metab., 2005, 1(2), 93-106.
[http://dx.doi.org/10.1016/j.cmet.2004.12.009] [PMID: 16054051]
[113]
Hu, Y.; Leaver, S.G.; Plant, G.W.; Hendriks, W.T.J.; Niclou, S.P.; Verhaagen, J.; Harvey, A.R.; Cui, Q. Lentiviral- mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol. Ther., 2005, 11(6), 906-915.
[http://dx.doi.org/10.1016/j.ymthe.2005.01.016] [PMID: 15922961]
[114]
Kuwaki, K.; Tseng, Y.L.; Dor, F.J.M.F.; Shimizu, A.; Houser, S.L.; Sanderson, T.M.; Lancos, C.J.; Prabharasuth, D.D.; Cheng, J.; Moran, K.; Hisashi, Y.; Mueller, N.; Yamada, K.; Greenstein, J.L.; Hawley, R.J.; Patience, C.; Awwad, M.; Fishman, J.A.; Robson, S.C.; Schuurman, H.J.; Sachs, D.H.; Cooper, D.K.C. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: Initial experience. Nat. Med., 2005, 11(1), 29-31.
[http://dx.doi.org/10.1038/nm1171] [PMID: 15619628]
[115]
Furukawa, H.; Oshima, K.; Tung, T.; Cui, G.; Laks, H.; Sen, L. Liposome-mediated combinatorial cytokine gene therapy induces localized synergistic immunosuppression and promotes long-term survival of cardiac allografts. J. Immunol., 2005, 174(11), 6983-6992.
[http://dx.doi.org/10.4049/jimmunol.174.11.6983] [PMID: 15905541]
[116]
Aslan, H.; Zilberman, Y.; Arbeli, V.; Sheyn, D.; Matan, Y.; Liebergall, M.; Li, J.Z.; Helm, G.A.; Gazit, D.; Gazit, Z. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng., 2006, 12(4), 877-889.
[http://dx.doi.org/10.1089/ten.2006.12.877] [PMID: 16674300]
[117]
Aslan, H.; Zilberman, Y.; Kandel, L.; Liebergall, M.; Oskouian, R.J.; Gazit, D.; Gazit, Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells, 2006, 24(7), 1728-1737.
[http://dx.doi.org/10.1634/stemcells.2005-0546] [PMID: 16601078]
[118]
Hoffmann, A.; Pelled, G.; Turgeman, G.; Eberle, P.; Zilberman, Y.; Shinar, H.; Keinan-Adamsky, K.; Winkel, A.; Shahab, S.; Navon, G.; Gross, G.; Gazit, D. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J. Clin. Invest., 2006, 116(4), 940-952.
[http://dx.doi.org/10.1172/JCI22689] [PMID: 16585960]
[119]
Kamochi, H.; Kurokawa, M.S.; Yoshikawa, H.; Ueda, Y.; Masuda, C.; Takada, E.; Watanabe, K.; Sakakibara, M.; Natuki, Y.; Kimura, K.; Beppu, M.; Aoki, H.; Suzuki, N. Transplantation of myocyte precursors derived from embryonic stem cells transfected with IGFII gene in a mouse model of muscle injury. Transplantation, 2006, 82(4), 516-526.
[http://dx.doi.org/10.1097/01.tp.0000229388.97549.55] [PMID: 16926596]
[120]
Mathe, Z.; Dupraz, P.; Rinsch, C.; Thorens, B.; Bosco, D.; Zbinden, M.; Morel, P.; Berney, T.; Pepper, M.S. Tetracycline-regulated expression of VEGF-A in beta cells induces angiogenesis: Improvement of engraftment following transplantation. Cell Transplant., 2006, 15(7), 621-636.
[http://dx.doi.org/10.3727/000000006783981675] [PMID: 17176614]
[121]
Park, K.I.; Himes, B.T.; Stieg, P.E.; Tessler, A.; Fischer, I.; Snyder, E.Y. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic–ischemic brain injury. Exp. Neurol., 2006, 199(1), 179-190.
[http://dx.doi.org/10.1016/j.expneurol.2006.03.016] [PMID: 16714016]
[122]
Vassalli, G.; Simeoni, E.; Li, J.P.; Fleury, S. Lentiviral gene transfer of the chemokine antagonist RANTES 9-68 prolongs heart graft survival. Transplantation, 2006, 81(2), 240-246.
[http://dx.doi.org/10.1097/01.tp.0000194859.98504.9e] [PMID: 16436968]
[123]
Capito, R.M.; Spector, M. Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther., 2007, 14(9), 721-732.
[http://dx.doi.org/10.1038/sj.gt.3302918] [PMID: 17315042]
[124]
Chuang, C-K.; Sung, L-Y.; Hwang, S-M.; Lo, W-H.; Chen, H-C.; Hu, Y-C. Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Ther., 2007, 14(19), 1417-1424.
[http://dx.doi.org/10.1038/sj.gt.3302996] [PMID: 17637796]
[125]
Luu, H.H.; Song, W.X.; Luo, X.; Manning, D.; Luo, J.; Deng, Z.L.; Sharff, K.A.; Montag, A.G.; Haydon, R.C.; He, T.C. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res., 2007, 25(5), 665-677.
[http://dx.doi.org/10.1002/jor.20359] [PMID: 17290432]
[126]
Pagnotto, M.R.; Wang, Z.; Karpie, J.C.; Ferretti, M.; Xiao, X.; Chu, C.R. Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair. Gene Ther., 2007, 14(10), 804-813.
[http://dx.doi.org/10.1038/sj.gt.3302938] [PMID: 17344902]
[127]
Yokoi, T.; Saito, M.; Kiyono, T.; Iseki, S.; Kosaka, K.; Nishida, E.; Tsubakimoto, T.; Harada, H.; Eto, K.; Noguchi, T.; Teranaka, T. Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res., 2006, 327(2), 301-311.
[http://dx.doi.org/10.1007/s00441-006-0257-6] [PMID: 17013589]
[128]
Li, Y.; Li, J.; Zhu, J.; Sun, B.; Branca, M.; Tang, Y.; Foster, W.; Xiao, X.; Huard, J. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol. Ther., 2007, 15(9), 1616-1622.
[http://dx.doi.org/10.1038/sj.mt.6300250] [PMID: 17609657]
[129]
Qin, R.; Mao, T.; Gu, X.; Hu, K.; Liu, Y.; Chen, J.; Nie, X. Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene in vitro and in vivo. Mol. Cell. Biochem., 2007, 302(1-2), 233-239.
[http://dx.doi.org/10.1007/s11010-007-9446-1] [PMID: 17415623]
[130]
Benchaouir, R.; Meregalli, M.; Farini, A.; D’Antona, G.; Belicchi, M.; Goyenvalle, A.; Battistelli, M.; Bresolin, N.; Bottinelli, R.; Garcia, L.; Torrente, Y. Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell, 2007, 1(6), 646-657.
[http://dx.doi.org/10.1016/j.stem.2007.09.016] [PMID: 18371406]
[131]
Quenneville, S.P.; Chapdelaine, P.; Skuk, D.; Paradis, M.; Goulet, M.; Rousseau, J.; Xiao, X.; Garcia, L.; Tremblay, J.P. Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: Human cells and primate models. Mol. Ther., 2007, 15(2), 431-438.
[http://dx.doi.org/10.1038/sj.mt.6300047] [PMID: 17235323]
[132]
Jo, J.; Nagaya, N.; Miyahara, Y.; Kataoka, M.; Harada-Shiba, M.; Kangawa, K.; Tabata, Y. Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng., 2007, 13(2), 313-322.
[http://dx.doi.org/10.1089/ten.2006.0133] [PMID: 17518565]
[133]
Li, W.; Ma, N.; Ong, L.L.; Nesselmann, C.; Klopsch, C.; Ladilov, Y.; Furlani, D.; Piechaczek, C.; Moebius, J.M.; Lützow, K.; Lendlein, A.; Stamm, C.; Li, R.K.; Steinhoff, G. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 2007, 25(8), 2118-2127.
[http://dx.doi.org/10.1634/stemcells.2006-0771] [PMID: 17478584]
[134]
Elmadbouh, I.; Haider, H.K.; Jiang, S.; Idris, N.M.; Lu, G.; Ashraf, M. Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol., 2007, 42(4), 792-803.
[http://dx.doi.org/10.1016/j.yjmcc.2007.02.001] [PMID: 17350033]
[135]
Kameda, M.; Shingo, T.; Takahashi, K.; Muraoka, K.; Kurozumi, K.; Yasuhara, T.; Maruo, T.; Tsuboi, T.; Uozumi, T.; Matsui, T.; Miyoshi, Y.; Hamada, H.; Date, I. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur. J. Neurosci., 2007, 26(6), 1462-1478.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05776.x] [PMID: 17880388]
[136]
Karnieli, O.; Izhar-Prato, Y.; Bulvik, S.; Efrat, S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 2007, 25(11), 2837-2844.
[http://dx.doi.org/10.1634/stemcells.2007-0164] [PMID: 17615265]
[137]
Muniappan, L.; Özcan, S. Induction of insulin secretion in engineered liver cells by nitric oxide. BMC Physiol., 2007, 7(1), 11.
[http://dx.doi.org/10.1186/1472-6793-7-11] [PMID: 17941991]
[138]
Tian, C.; Ansari, M.J.I.; Paez-Cortez, J.; Bagley, J.; Godwin, J.; Donnarumma, M.; Sayegh, M.H.; Iacomini, J. Induction of robust diabetes resistance and prevention of recurrent type 1 diabetes following islet transplantation by gene therapy. J. Immunol., 2007, 179(10), 6762-6769.
[http://dx.doi.org/10.4049/jimmunol.179.10.6762] [PMID: 17982066]
[139]
Tatake, R.J.; O’Neill, M.M.; Kennedy, C.A.; Reale, V.D.; Runyan, J.D.; Monaco, K.A.D.; Yu, K.; Osborne, W.R.; Barton, R.W.; Schneiderman, R.D. Glucose-regulated insulin production from genetically engineered human non- beta cells. Life Sci., 2007, 81(17-18), 1346-1354.
[http://dx.doi.org/10.1016/j.lfs.2007.08.032] [PMID: 17920636]
[140]
Papeta, N.; Chen, T.; Vianello, F.; Gererty, L.; Malik, A.; Mok, Y.T.; Tharp, W.G.; Bagley, J.; Zhao, G.; Stevceva, L.; Yoon, V.; Sykes, M.; Sachs, D.; Iacomini, J.; Poznansky, M.C. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation, 2007, 83(2), 174-183.
[http://dx.doi.org/10.1097/01.tp.0000250658.00925.c8] [PMID: 17264814]
[141]
Dudler, J.; Simeoni, E.; Fleury, S.; Li, J.; Pagnotta, M.; Pascual, M.; von Segesser, L.K.; Vassalli, G. Gene transfer of interleukin-18-binding protein attenuates cardiac allograft rejection. Transpl. Int., 2007, 20(5), 460-466.
[http://dx.doi.org/10.1111/j.1432-2277.2007.00457.x] [PMID: 17313449]
[142]
Babister, J.C.; Tare, R.S.; Green, D.W.; Inglis, S.; Mann, S.; Oreffo, R.O.C. Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using “bead-in-bead” polysaccharide capsules. Biomaterials, 2008, 29(1), 58-65.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.006] [PMID: 17897711]
[143]
Chen, Y-L.; Chen, P.K-T.; Jeng, L-B.; Huang, C-S.; Yang, L-C.; Chung, H-Y.; Chang, S.C-N. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: An alternative to alveolaplasty. Gene Ther., 2008, 15(22), 1469-1477.
[http://dx.doi.org/10.1038/gt.2008.131] [PMID: 18701911]
[144]
Sheyn, D.; Pelled, G.; Zilberman, Y.; Talasazan, F.; Frank, J.M.; Gazit, D.; Gazit, Z. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells, 2008, 26(4), 1056-1064.
[http://dx.doi.org/10.1634/stemcells.2007-0858] [PMID: 18218819]
[145]
Steinhardt, Y.; Aslan, H.; Regev, E.; Zilberman, Y.; Kallai, I.; Gazit, D.; Gazit, Z. Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng. Part A, 2008, 14(11), 1763-1773.
[http://dx.doi.org/10.1089/ten.tea.2008.0007] [PMID: 18636943]
[146]
Steinert, A.; Weber, M.; Kunz, M.; Palmer, G.; Nöth, U.; Evans, C.; Murray, M. In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament. Biomaterials, 2008, 29(7), 904-916.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.054] [PMID: 18045683]
[147]
Steinert, A.F.; Palmer, G.D.; Pilapil, C.; Nöth, U.; Evans, C.H.; Ghivizzani, S.C. Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng. Part A, 2009, 15(5), 1127-1139.
[http://dx.doi.org/10.1089/ten.tea.2007.0252] [PMID: 18826340]
[148]
Majewski, M.; Betz, O.; Ochsner, P.E.; Liu, F.; Porter, R.M.; Evans, C.H. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther., 2008, 15(16), 1139-1146.
[http://dx.doi.org/10.1038/gt.2008.48] [PMID: 18432278]
[149]
Xie, G.H.; Wang, S.J.; Wang, Y.; Zhang, Y.; Zhang, H.Z.; Jin, S.; Wang, Q.F.; Liu, Z.C.; Ge, H.L. Fas Ligand gene transfer enhances the survival of tissue-engineered chondrocyte allografts in mini-pigs. Transpl. Immunol., 2008, 19(2), 145-151.
[http://dx.doi.org/10.1016/j.trim.2008.02.001] [PMID: 18503890]
[150]
Gonçalves, M.A.F.V.; Swildens, J.; Holkers, M.; Narain, A.; van Nierop, G.P.; van de Watering, M.J.M.; Knaän-Shanzer, S.; de Vries, A.A.F. Genetic complementation of human muscle cells via directed stem cell fusion. Mol. Ther., 2008, 16(4), 741-748.
[http://dx.doi.org/10.1038/mt.2008.16] [PMID: 18334989]
[151]
Laumonier, T.; Yang, S.; Konig, S.; Chauveau, C.; Anegon, I.; Hoffmeyer, P.; Menetrey, J. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Mol. Ther., 2008, 16(2), 404-410.
[http://dx.doi.org/10.1038/sj.mt.6300354] [PMID: 18026170]
[152]
Kimura, E.; Han, J.J.; Li, S.; Fall, B.; Ra, J.; Haraguchi, M.; Tapscott, S.J.; Chamberlain, J.S. Cell-lineage regulated myogenesis for dystrophin replacement: A novel therapeutic approach for treatment of muscular dystrophy. Hum. Mol. Genet., 2008, 17(16), 2507-2517.
[http://dx.doi.org/10.1093/hmg/ddn151] [PMID: 18511457]
[153]
Tseng, Y.H.; Kokkotou, E.; Schulz, T.J.; Huang, T.L.; Winnay, J.N.; Taniguchi, C.M.; Tran, T.T.; Suzuki, R.; Espinoza, D.O.; Yamamoto, Y.; Ahrens, M.J.; Dudley, A.T.; Norris, A.W.; Kulkarni, R.N.; Kahn, C.R. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 2008, 454(7207), 1000-1004.
[http://dx.doi.org/10.1038/nature07221] [PMID: 18719589]
[154]
Copland, I.B.; Jolicoeur, E.M.; Gillis, M.A.; Cuerquis, J.; Eliopoulos, N.; Annabi, B.; Calderone, A.; Tanguay, J.F.; Ducharme, A.; Galipeau, J. Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc. Res., 2008, 79(3), 405-415.
[http://dx.doi.org/10.1093/cvr/cvn090] [PMID: 18397963]
[155]
Zhang, D.; Fan, G.C.; Zhou, X.; Zhao, T.; Pasha, Z.; Xu, M.; Zhu, Y.; Ashraf, M.; Wang, Y. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol., 2008, 44(2), 281-292.
[http://dx.doi.org/10.1016/j.yjmcc.2007.11.010] [PMID: 18201717]
[156]
Haider, H.K.; Jiang, S.; Idris, N.M.; Ashraf, M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ. Res., 2008, 103(11), 1300-1308.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.186742] [PMID: 18948617]
[157]
Cheng, Z.; Ou, L.; Zhou, X.; Li, F.; Jia, X.; Zhang, Y.; Liu, X.; Li, Y.; Ward, C.A.; Melo, L.G.; Kong, D. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol. Ther., 2008, 16(3), 571-579.
[http://dx.doi.org/10.1038/sj.mt.6300374] [PMID: 18253156]
[158]
Chen, N.K.F.; Wong, J.S.; Kee, I.H.C.; Lai, S.H.; Thng, C.H.; Ng, W.H.; Ng, R.T.H.; Tan, S.Y.; Lee, S.Y.; Tan, M.E.H.; Sivalingam, J.; Chow, P.K.H.; Kon, O.L. Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model. PLoS One, 2008, 3(3), e1734.
[http://dx.doi.org/10.1371/journal.pone.0001734] [PMID: 18320053]
[159]
Kim, Y.H.; Lim, D.G.; Wee, Y.M.; Kim, J.H.; Yun, C.O.; Choi, M.Y.; Park, Y.H.; Kim, S.C.; Han, D.J. Viral IL-10 gene transfer prolongs rat islet allograft survival. Cell Transplant., 2008, 17(6), 609-618.
[http://dx.doi.org/10.3727/096368908786092694] [PMID: 18819249]
[160]
May, F.; Matiasek, K.; Vroemen, M.; Caspers, C.; Mrva, T.; Arndt, C.; Schlenker, B.; Gais, P.; Brill, T.; Buchner, A.; Blesch, A.; Hartung, R.; Stief, C.; Gansbacher, B.; Weidner, N. GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves. Eur. Urol., 2008, 54(5), 1179-1187.
[http://dx.doi.org/10.1016/j.eururo.2008.02.003] [PMID: 18313832]
[161]
Planchamp, V.; Bermel, C.; Tönges, L.; Ostendorf, T.; Kügler, S.; Reed, J.C.; Kermer, P.; Bähr, M.; Lingor, P. BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain, 2008, 131(10), 2606-2619.
[http://dx.doi.org/10.1093/brain/awn196] [PMID: 18757464]
[162]
Matsumoto, T.; Cooper, G.M.; Gharaibeh, B.; Meszaros, L.B.; Li, G.; Usas, A.; Fu, F.H.; Huard, J. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble flt-1. Arthritis Rheum., 2009, 60(5), 1390-1405.
[http://dx.doi.org/10.1002/art.24443] [PMID: 19404941]
[163]
Kang, Q.; Song, W.X.; Luo, Q.; Tang, N.; Luo, J.; Luo, X.; Chen, J.; Bi, Y.; He, B.C.; Park, J.K.; Jiang, W.; Tang, Y.; Huang, J.; Su, Y.; Zhu, G.H.; He, Y.; Yin, H.; Hu, Z.; Wang, Y.; Chen, L.; Zuo, G.W.; Pan, X.; Shen, J.; Vokes, T.; Reid, R.R.; Haydon, R.C.; Luu, H.H.; He, T.C. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev., 2009, 18(4), 545-558.
[http://dx.doi.org/10.1089/scd.2008.0130] [PMID: 18616389]
[164]
Salzmann, G.M.; Nuernberger, B.; Schmitz, P.; Anton, M.; Stoddart, M.J.; Grad, S.; Milz, S.; Tischer, T.; Vogt, S.; Gansbacher, B.; Imhoff, A.B.; Alini, M. Physicobiochemical synergism through gene therapy and functional tissue engineering for in vitro chondrogenesis. Tissue Eng. Part A, 2009, 15(9), 2513-2524.
[http://dx.doi.org/10.1089/ten.tea.2008.0479] [PMID: 19292668]
[165]
Xia, W.; Jin, Y.Q.; Kretlow, J.D.; Liu, W.; Ding, W.; Sun, H.; Zhou, G.; Zhang, W.; Cao, Y. Adenoviral transduction of hTGF-β1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol. Lett., 2009, 31(5), 639-646.
[http://dx.doi.org/10.1007/s10529-009-9930-7] [PMID: 19169885]
[166]
Chen, H.C.; Chang, Y.H.; Chuang, C.K.; Lin, C.Y.; Sung, L.Y.; Wang, Y.H.; Hu, Y.C. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials, 2009, 30(4), 674-681.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.017] [PMID: 19012961]
[167]
Goudenege, S.; Pisani, D.F.; Wdziekonski, B.; Di Santo, J.P.; Bagnis, C.; Dani, C.; Dechesne, C.A. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol. Ther., 2009, 17(6), 1064-1072.
[http://dx.doi.org/10.1038/mt.2009.67] [PMID: 19352326]
[168]
Kajimura, S.; Seale, P.; Kubota, K.; Lunsford, E.; Frangioni, J.V.; Gygi, S.P.; Spiegelman, B.M. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 2009, 460(7259), 1154-1158.
[http://dx.doi.org/10.1038/nature08262] [PMID: 19641492]
[169]
Xiao, Q.; Luo, Z.; Pepe, A.E.; Margariti, A.; Zeng, L.; Xu, Q. Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am. J. Physiol. Cell Physiol., 2009, 296(4), C711-C723.
[http://dx.doi.org/10.1152/ajpcell.00442.2008] [PMID: 19036941]
[170]
Ravassard, P.; Emilie Bricout-Neveu; Hazhouz, Y.; Pechberty, S.; Mallet, J.; Czernichow, P.; Scharfmann, R. A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One, 2009, 4(3), e4731.
[http://dx.doi.org/10.1371/journal.pone.0004731] [PMID: 19266046]
[171]
Kim, H.M.; Hwang, D.H.; Lee, J.E.; Kim, S.U.; Kim, B.G. Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One, 2009, 4(3), e4987.
[http://dx.doi.org/10.1371/journal.pone.0004987] [PMID: 19319198]
[172]
Liu, H.; Liu, L.; Liu, K.; Bizargity, P.; Hancock, W.W.; Visner, G.A. Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J. Immunol., 2009, 183(2), 1022-1031.
[http://dx.doi.org/10.4049/jimmunol.0900408] [PMID: 19564344]
[173]
Kojaoghlanian, T.; Joseph, A.; Follenzi, A.; Zheng, J.H.; Leiser, M.; Fleischer, N.; Horwitz, M.S.; DiLorenzo, T.P.; Goldstein, H. Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic β-cells to correct diabetes in allogeneic mice. Gene Ther., 2009, 16(3), 340-348.
[http://dx.doi.org/10.1038/gt.2008.172] [PMID: 19112449]
[174]
Kajiyama, H.; Hamazaki, T.S.; Tokuhara, M.; Masui, S.; Okabayashi, K.; Ohnuma, K.; Yabe, S.; Yasuda, K.; Ishiura, S.; Okochi, H.; Asashima, M. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol., 2010, 54(4), 699-705.
[http://dx.doi.org/10.1387/ijdb.092953hk] [PMID: 19757377]
[175]
Krebs, M.D.; Salter, E.; Chen, E.; Sutter, K.A.; Alsberg, E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J. Biomed. Mater. Res. A, 2010, 92(3), 1131-1138.
[PMID: 19322877]
[176]
Yang, F.; Cho, S.W.; Son, S.M.; Bogatyrev, S.R.; Singh, D.; Green, J.J.; Mei, Y.; Park, S.; Bhang, S.H.; Kim, B.S.; Langer, R.; Anderson, D.G. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci., 2010, 107(8), 3317-3322.
[http://dx.doi.org/10.1073/pnas.0905432106] [PMID: 19805054]
[177]
Cheng, F.C.; Tai, M.H.; Sheu, M.L.; Chen, C.J.; Yang, D.Y.; Su, H.L.; Ho, S.P.; Lai, S.Z.; Pan, H.C. Enhancement of regeneration with glia cell line–derived neurotrophic factor–transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury [RETRACTED]. J. Neurosurg., 2010, 112(4), 868-879.
[http://dx.doi.org/10.3171/2009.8.JNS09850] [PMID: 19817545]
[178]
Lee, S.J.; Kang, S.W.; Do, H.J.; Han, I.; Shin, D.A.; Kim, J.H.; Lee, S.H. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials, 2010, 31(21), 5652-5659.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.019] [PMID: 20413153]
[179]
Luther, G.; Wagner, E.R.; Zhu, G.; Kang, Q.; Luo, Q.; Lamplot, J.; Bi, Y.; Luo, X.; Luo, J.; Teven, C.; Shi, Q.; Kim, S.H.; Gao, J.L.; Huang, E.; Yang, K.; Rames, R.; Liu, X.; Li, M.; Hu, N.; Liu, H.; Su, Y.; Chen, L.; He, B.C.; Zuo, G.W.; Deng, Z.L.; Reid, R.R.; Luu, H.H.; Haydon, R.C.; He, T.C. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: Molecular mechanism and therapeutic potential. Curr. Gene Ther., 2011, 11(3), 229-240.
[http://dx.doi.org/10.2174/156652311795684777] [PMID: 21453282]
[180]
Xiong, N.; Zhang, Z.; Huang, J.; Chen, C.; Zhang, Z.; Jia, M.; Xiong, J.; Liu, X.; Wang, F.; Cao, X.; Liang, Z.; Sun, S.; Lin, Z.; Wang, T. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther., 2011, 18(4), 394-402.
[http://dx.doi.org/10.1038/gt.2010.152] [PMID: 21107440]
[181]
Zhang, S.; Chen, S.; Li, W.; Guo, X.; Zhao, P.; Xu, J.; Chen, Y.; Pan, Q.; Liu, X.; Zychlinski, D.; Lu, H.; Tortorella, M.D.; Schambach, A.; Wang, Y.; Pei, D.; Esteban, M.A. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum. Mol. Genet., 2011, 20(16), 3176-3187.
[http://dx.doi.org/10.1093/hmg/ddr223] [PMID: 21593220]
[182]
Lee, E.X.; Lam, D.H.; Wu, C.; Yang, J.; Tham, C.K.; Ng, W.H.; Wang, S. Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol. Pharm., 2011, 8(5), 1515-1524.
[http://dx.doi.org/10.1021/mp200127u] [PMID: 21755959]
[183]
Neri, M.; Ricca, A.; di Girolamo, I.; Alcala’-Franco, B.; Cavazzin, C.; Orlacchio, A.; Martino, S.; Naldini, L.; Gritti, A. Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells, 2011, 29(10), 1559-1571.
[http://dx.doi.org/10.1002/stem.701] [PMID: 21809420]
[184]
Liu, H.; Liu, S.; Li, Y.; Wang, X.; Xue, W.; Ge, G.; Luo, X. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One, 2012, 7(4), e34608.
[http://dx.doi.org/10.1371/journal.pone.0034608] [PMID: 22511954]
[185]
Takayama, K.; Inamura, M.; Kawabata, K.; Katayama, K.; Higuchi, M.; Tashiro, K.; Nonaka, A.; Sakurai, F.; Hayakawa, T.; Kusuda Furue, M.; Mizuguchi, H. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol. Ther., 2012, 20(1), 127-137.
[http://dx.doi.org/10.1038/mt.2011.234] [PMID: 22068426]
[186]
Hoke, N.N.; Salloum, F.N.; Kass, D.A.; Das, A.; Kukreja, R.C. Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells, 2012, 30(2), 326-335.
[http://dx.doi.org/10.1002/stem.789] [PMID: 22102597]
[187]
Fei, S.; Qi, X.; Kedong, S.; Guangchun, J.; Jian, L.; Wei, Q. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J. Cancer Res. Clin. Oncol., 2012, 138(2), 347-357.
[http://dx.doi.org/10.1007/s00432-011-1104-z] [PMID: 22139383]
[188]
Meng, X.; Neises, A.; Su, R.J.; Payne, K.J.; Ritter, L.; Gridley, D.S.; Wang, J.; Sheng, M.; William Lau, K-H.; Baylink, D.J.; Zhang, X.B. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol. Ther., 2012, 20(2), 408-416.
[http://dx.doi.org/10.1038/mt.2011.258] [PMID: 22108860]
[189]
Lee, J.M.; Im, G.I. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials, 2012, 33(7), 2016-2024.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.050] [PMID: 22189147]
[190]
Cho, J.W.; Lee, C.Y.; Ko, Y. Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J. Gastroenterol. Hepatol., 2012, 27(8), 1362-1370.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07137.x] [PMID: 22432472]
[191]
Biffi, A.; Montini, E.; Lorioli, L.; Cesani, M.; Fumagalli, F.; Plati, T.; Baldoli, C.; Martino, S.; Calabria, A.; Canale, S.; Benedicenti, F.; Vallanti, G.; Biasco, L.; Leo, S.; Kabbara, N.; Zanetti, G.; Rizzo, W.B.; Mehta, N.A.L.; Cicalese, M.P.; Casiraghi, M.; Boelens, J.J.; Del Carro, U.; Dow, D.J.; Schmidt, M.; Assanelli, A.; Neduva, V.; Di Serio, C.; Stupka, E.; Gardner, J.; Von Kalle, C.; Bordignon, C.; Ciceri, F.; Rovelli, A.; Roncarolo, M.G.; Aiuti, A.; Sessa, M.; Naldini, L. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science, 2013, 341(6148), 1233158.
[192]
Filareto, A.; Parker, S.; Darabi, R.; Borges, L.; Iacovino, M.; Schaaf, T.; Mayerhofer, T.; Chamberlain, J.S.; Ervasti, J.M.; McIvor, R.S.; Kyba, M.; Perlingeiro, R.C.R. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat. Commun., 2013, 4(1), 1549.
[http://dx.doi.org/10.1038/ncomms2550] [PMID: 23462992]
[193]
Okita, K.; Yamakawa, T.; Matsumura, Y.; Sato, Y.; Amano, N.; Watanabe, A.; Goshima, N.; Yamanaka, S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 2013, 31(3), 458-466.
[http://dx.doi.org/10.1002/stem.1293] [PMID: 23193063]
[194]
Eggenschwiler, R.; Loya, K.; Wu, G.; Sharma, A.D.; Sgodda, M.; Zychlinski, D.; Herr, C.; Steinemann, D.; Teckman, J.; Bals, R.; Ott, M.; Schambach, A.; Schöler, H.R.; Cantz, T. Sustained knockdown of a disease-causing gene in patient-specific induced pluripotent stem cells using lentiviral vector-based gene therapy. Stem Cells Transl. Med., 2013, 2(9), 641-654.
[http://dx.doi.org/10.5966/sctm.2013-0017] [PMID: 23926210]
[195]
Lee, H.K.; Finniss, S.; Cazacu, S.; Bucris, E.; Ziv-Av, A.; Xiang, C.; Bobbitt, K.; Rempel, S.A.; Hasselbach, L.; Mikkelsen, T.; Slavin, S.; Brodie, C. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget, 2013, 4(2), 346-361.
[http://dx.doi.org/10.18632/oncotarget.868] [PMID: 23548312]
[196]
McGinley, L.M.; McMahon, J.; Stocca, A.; Duffy, A.; Flynn, A.; O’Toole, D.; O’Brien, T. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum. Gene Ther., 2013, 24(10), 840-851.
[http://dx.doi.org/10.1089/hum.2011.009] [PMID: 23987185]
[197]
Ye, L.; Muench, M.O.; Fusaki, N.; Beyer, A.I.; Wang, J.; Qi, Z.; Yu, J.; Kan, Y.W. Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl. Med., 2013, 2(8), 558-566.
[http://dx.doi.org/10.5966/sctm.2013-0006] [PMID: 23847002]
[198]
Sebastiano, V.; Zhen, H.H.; Haddad, B.; Bashkirova, E.; Melo, S.P.; Wang, P.; Leung, T.L.; Siprashvili, Z.; Tichy, A.; Li, J.; Ameen, M.; Hawkins, J.; Lee, S.; Li, L.; Schwertschkow, A.; Bauer, G.; Lisowski, L.; Kay, M.A.; Kim, S.K.; Lane, A.T.; Wernig, M.; Oro, A.E. Human COL7A1 -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med., 2014, 6(264), 264ra163.
[http://dx.doi.org/10.1126/scitranslmed.3009540] [PMID: 25429056]
[199]
Seo, K.W.; Sohn, S.Y.; Bhang, D.H.; Nam, M.J.; Lee, H.W.; Youn, H.Y. Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood- derived mesenchymal stem cells on liver fibrosis in rats. Cell Biol. Int., 2014, 38(1), 106-116.
[http://dx.doi.org/10.1002/cbin.10186] [PMID: 24115681]
[200]
Frisch, J.; Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Madry, H.; Cucchiarini, M. Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Hum. Gene Ther., 2014, 25(12), 1050-1060.
[http://dx.doi.org/10.1089/hum.2014.091] [PMID: 25333854]
[201]
Liao, Y.H.; Chang, Y.H.; Sung, L.Y.; Li, K.C.; Yeh, C.L.; Yen, T.C.; Hwang, S.M.; Lin, K.J.; Hu, Y.C. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials, 2014, 35(18), 4901-4910.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.055] [PMID: 24674465]
[202]
Umegaki-Arao, N.; Pasmooij, A.M.G.; Itoh, M.; Cerise, J.E.; Guo, Z.; Levy, B.; Gostyñski, A.; Rothman, L.R.; Jonkman, M.F.; Christiano, A.M. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci. Transl. Med., 2014, 6, 264ra164-264ra164.
[http://dx.doi.org/10.1126/scitranslmed.3009342]
[203]
Frisch, J.; Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Madry, H.; Cucchiarini, M. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther., 2014, 5(4), 103.
[http://dx.doi.org/10.1186/scrt491] [PMID: 25163769]
[204]
Sahara, M.; Hansson, E.M.; Wernet, O.; Lui, K.O.; Später, D.; Chien, K.R. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res., 2014, 24(7), 820-841.
[http://dx.doi.org/10.1038/cr.2014.59] [PMID: 24810299]
[205]
Castiello, M.C.; Scaramuzza, S.; Pala, F.; Ferrua, F.; Uva, P.; Brigida, I.; Sereni, L.; van der Burg, M.; Ottaviano, G.; Albert, M.H.; Grazia Roncarolo, M.; Naldini, L.; Aiuti, A.; Villa, A.; Bosticardo, M. B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol., 2015, 136(3), 692-702.e2.
[http://dx.doi.org/10.1016/j.jaci.2015.01.035] [PMID: 25792466]
[206]
Zhuang, W.; Ge, X.; Yang, S.; Huang, M.; Zhuang, W.; Chen, P.; Zhang, X.; Fu, J.; Qu, J.; Li, B. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells, 2015, 33(6), 1985-1997.
[http://dx.doi.org/10.1002/stem.1989] [PMID: 25753650]
[207]
Negre, O.; Bartholomae, C.; Beuzard, Y.; Cavazzana, M.; Christiansen, L.; Courne, C.; Deichmann, A.; Denaro, M.; Dreuzy, E.; Finer, M.; Fronza, R.; Gillet-Legrand, B.; Joubert, C.; Kutner, R.; Leboulch, P.; Maouche, L.; Paulard, A.; Pierciey, F.; Rothe, M.; Ryu, B.; Schmidt, M.; Kalle, C.; Payen, E.; Veres, G. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr. Gene Ther., 2014, 15(1), 64-81.
[http://dx.doi.org/10.2174/1566523214666141127095336] [PMID: 25429463]
[208]
Liu, H.; Zhang, C.; Zhu, S.; Lu, P.; Zhu, T.; Gong, X.; Zhang, Z.; Hu, J.; Yin, Z.; Heng, B.C.; Chen, X.; Wei Ouyang, H. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells, 2015, 33(2), 443-455.
[http://dx.doi.org/10.1002/stem.1866] [PMID: 25332192]
[209]
Talluri, T.R.; Kumar, D.; Glage, S.; Garrels, W.; Ivics, Z.; Debowski, K.; Behr, R.; Niemann, H.; Kues, W.A. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell. Reprogram., 2015, 17(2), 131-140.
[http://dx.doi.org/10.1089/cell.2014.0080] [PMID: 25826726]
[210]
Xue, X.; Liu, Y.; Zhang, J.; Liu, T.; Yang, Z.; Wang, H. Bcl-xL genetic modification enhanced the therapeutic efficacy of mesenchymal stem cell transplantation in the treatment of heart infarction. Stem Cells Int., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/176409] [PMID: 26074971]
[211]
Rey-Rico, A.; Venkatesan, J.K.; Frisch, J.; Rial-Hermida, I.; Schmitt, G.; Concheiro, A.; Madry, H.; Alvarez-Lorenzo, C.; Cucchiarini, M. PEO–PPO–PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater., 2015, 27, 42-52.
[http://dx.doi.org/10.1016/j.actbio.2015.08.046] [PMID: 26320543]
[212]
Yin, T.; He, S.; Su, C.; Chen, X.; Zhang, D.; Wan, Y.; Ye, T.; Shen, G.; Wang, Y.; Shi, H.; Yang, L.; Wei, Y. Genetically modified human placenta-derived mesenchymal stem cells with FGF-2 and PDGF-BB enhance neovascularization in a model of hindlimb ischemia. Mol. Med. Rep., 2015, 12(4), 5093-5099.
[http://dx.doi.org/10.3892/mmr.2015.4089] [PMID: 26239842]
[213]
Rezvani, M.; Español-Suñer, R.; Malato, Y.; Dumont, L.; Grimm, A.A.; Kienle, E.; Bindman, J.G.; Wiedtke, E.; Hsu, B.Y.; Naqvi, S.J.; Schwabe, R.F.; Corvera, C.U.; Grimm, D.; Willenbring, H. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell, 2016, 18(6), 809-816.
[http://dx.doi.org/10.1016/j.stem.2016.05.005] [PMID: 27257763]
[214]
Pollock, K.; Dahlenburg, H.; Nelson, H.; Fink, K.D.; Cary, W.; Hendrix, K.; Annett, G.; Torrest, A.; Deng, P.; Gutierrez, J.; Nacey, C.; Pepper, K.; Kalomoiris, S.; Anderson, J.D.; McGee, J.; Gruenloh, W.; Fury, B.; Bauer, G.; Duffy, A.; Tempkin, T.; Wheelock, V.; Nolta, J.A. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol. Ther., 2016, 24(5), 965-977.
[http://dx.doi.org/10.1038/mt.2016.12] [PMID: 26765769]
[215]
Tao, K.; Frisch, J.; Rey-Rico, A.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Lin, J.; Cucchiarini, M. Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther., 2016, 7(1), 20.
[http://dx.doi.org/10.1186/s13287-016-0280-9] [PMID: 26830674]
[216]
Fang, S.; Xu, C.; Zhang, Y.; Xue, C.; Yang, C.; Bi, H.; Qian, X.; Wu, M.; Ji, K.; Zhao, Y.; Wang, Y.; Liu, H.; Xing, X. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl. Med., 2016, 5(10), 1425-1439.
[http://dx.doi.org/10.5966/sctm.2015-0367] [PMID: 27388239]
[217]
Jacków, J.; Titeux, M.; Portier, S.; Charbonnier, S.; Ganier, C.; Gaucher, S.; Hovnanian, A. Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector. J. Invest. Dermatol., 2016, 136(7), 1346-1354.
[http://dx.doi.org/10.1016/j.jid.2016.02.811] [PMID: 26994967]
[218]
Bagno, L.L.; Carvalho, D.; Mesquita, F.; Louzada, R.A.; Andrade, B.; Kasai-Brunswick, T.H.; Lago, V.M.; Suhet, G.; Cipitelli, D.; Werneck-De-Castro, J.P.; Campos-De- Carvalho, A.C. Sustained IGF-1 secretion by adipose-derived stem cells improves infarcted heart function. Cell Transplant., 2016, 25(9), 1609-1622.
[http://dx.doi.org/10.3727/096368915X690215] [PMID: 26624235]
[219]
Cai, M.; Shen, R.; Song, L.; Lu, M.; Wang, J.; Zhao, S.; Tang, Y.; Meng, X.; Li, Z.; He, Z.X. Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci. Rep., 2016, 6(1), 28250.
[http://dx.doi.org/10.1038/srep28250] [PMID: 27321050]
[220]
Meneghini, V.; Frati, G.; Sala, D.; De Cicco, S.; Luciani, M.; Cavazzin, C.; Paulis, M.; Mentzen, W.; Morena, F.; Giannelli, S.; Sanvito, F.; Villa, A.; Bulfone, A.; Broccoli, V.; Martino, S.; Gritti, A. Generation of human induced pluripotent stem cell-derived bona fide neural stem cells for ex vivo gene therapy of metachromatic leukodystrophy. Stem Cells Transl. Med., 2017, 6(2), 352-368.
[http://dx.doi.org/10.5966/sctm.2015-0414] [PMID: 28191778]
[221]
Kargozar, S.; Hashemian, S.J.; Soleimani, M.; Milan, P.B.; Askari, M.; Khalaj, V.; Samadikuchaksaraie, A.; Hamzehlou, S.; Katebi, A.R.; Latifi, N.; Mozafari, M.; Baino, F. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Mater. Sci. Eng. C, 2017, 75, 688-698.
[http://dx.doi.org/10.1016/j.msec.2017.02.097] [PMID: 28415516]
[222]
Tao, S.C.; Yuan, T.; Zhang, Y.L.; Yin, W.J.; Guo, S.C.; Zhang, C.Q. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7(1), 180-195.
[http://dx.doi.org/10.7150/thno.17133] [PMID: 28042326]
[223]
Nakajima, M.; Nito, C.; Sowa, K.; Suda, S.; Nishiyama, Y.; Nakamura-Takahashi, A.; Nitahara-Kasahara, Y.; Imagawa, K.; Hirato, T.; Ueda, M.; Kimura, K.; Okada, T. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol. Ther. Methods Clin. Dev., 2017, 6, 102-111.
[http://dx.doi.org/10.1016/j.omtm.2017.06.005] [PMID: 28725658]
[224]
Liu, T.; Zhang, Y.; Shen, Z.; Zou, X.; Chen, X.; Chen, L.; Wang, Y. Immunomodulatory effects of OX40Ig gene- modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int. J. Mol. Med., 2017, 39(1), 144-152.
[http://dx.doi.org/10.3892/ijmm.2016.2808] [PMID: 27878248]
[225]
Cho, H.M.; Kim, P.H.; Chang, H.K.; Shen, Y.; Bonsra, K.; Kang, B.J.; Yum, S.Y.; Kim, J.H.; Lee, S.Y.; Choi, M.; Kim, H.H.; Jang, G.; Cho, J.Y. Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: Potential implications for the treatment of myocardial infarction. Stem Cells Transl. Med., 2017, 6(3), 1040-1051.
[http://dx.doi.org/10.1002/sctm.16-0114] [PMID: 28186692]
[226]
Wang, H.; Xie, Z.; Hou, T.; Li, Z.; Huang, K.; Gong, J.; Zhou, W.; Tang, K.; Xu, J.; Dong, S. MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b. Cell. Physiol. Biochem., 2017, 41(2), 530-542.
[http://dx.doi.org/10.1159/000457013] [PMID: 28214897]
[227]
Bougioukli, S.; Sugiyama, O.; Pannell, W.; Ortega, B.; Tan, M.H.; Tang, A.H.; Yoho, R.; Oakes, D.A.; Lieberman, J.R. Gene therapy for bone repair using human cells: Superior osteogenic potential of bone morphogenetic protein 2 - transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum. Gene Ther., 2018, 29(4), 507-519.
[http://dx.doi.org/10.1089/hum.2017.097] [PMID: 29212377]
[228]
Sharma, A.; Mücke, M.; Seidman, C.E. Human induced pluripotent stem cell production and expansion from blood using a non-integrating viral reprogramming vector. Curr. Protoc. Mol. Biol., 2018, 122(1), e58.
[http://dx.doi.org/10.1002/cpmb.58] [PMID: 29851250]
[229]
Mirzaei, H.; Salehi, H.; Oskuee, R.K.; Mohammadpour, A.; Mirzaei, H.R.; Sharifi, M.R.; Salarinia, R.; Darani, H.Y.; Mokhtari, M.; Masoudifar, A.; Sahebkar, A.; Salehi, R.; Jaafari, M.R. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett., 2018, 419, 30-39.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[230]
Brendel, C.; Rothe, M.; Santilli, G.; Charrier, S.; Stein, S.; Kunkel, H.; Abriss, D.; Müller-Kuller, U.; Gaspar, B.; Modlich, U.; Galy, A.; Schambach, A.; Thrasher, A.J.; Grez, M. Non-clinical efficacy and safety studies on G1XCGD, a lentiviral vector for ex vivo gene therapy of x-linked chronic granulomatous disease. Hum. Gene Ther. Clin. Dev., 2018, 29(2), 69-79.
[http://dx.doi.org/10.1089/humc.2017.245] [PMID: 29664709]
[231]
Zhang, J.; Liu, X.; Zhang, Y.; Luan, Z.; Yang, Y.; Wang, Z.; Zhang, C. Human Neural Stem Cells with GDNF site-specific integration at AAVS1 by using AAV vectors retained their stemness. Neurochem. Res., 2018, 43(4), 930-937.
[http://dx.doi.org/10.1007/s11064-018-2498-7] [PMID: 29435804]
[232]
Lu, X.; Chen, X.; Xing, J.; Lian, M.; Huang, D.; Lu, Y.; Feng, G.; Feng, X. miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β- catenin signaling pathway. Stem Cell Res. Ther., 2019, 10(1), 226.
[http://dx.doi.org/10.1186/s13287-019-1344-4] [PMID: 31358066]
[233]
Löfvall, H.; Rothe, M.; Schambach, A.; Henriksen, K.; Richter, J.; Moscatelli, I. Hematopoietic stem cell-targeted neonatal gene therapy with a clinically applicable lentiviral vector corrects osteopetrosis in oc/oc mice. Hum. Gene Ther., 2019, 30(11), 1395-1404.
[http://dx.doi.org/10.1089/hum.2019.047] [PMID: 31179768]
[234]
Fang, Q.; Zhai, M.; Wu, S.; Hu, X.; Hua, Z.; Sun, H.; Guo, J.; Zhang, W.; Wang, Z. Adipocyte-derived stem cell-based gene therapy upon adipogenic differentiation on microcarriers attenuates type 1 diabetes in mice. Stem Cell Res. Ther., 2019, 10(1), 36.
[http://dx.doi.org/10.1186/s13287-019-1135-y] [PMID: 30670068]
[235]
Xu, Y.; Huang, Y.; Guo, Y.; Xiong, Y.; Zhu, S.; Xu, L.; Lu, J.; Li, X.; Wan, J.; Lu, Y.; Wang, Z. microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9. Stem Cell Res. Ther., 2019, 10(1), 59.
[http://dx.doi.org/10.1186/s13287-019-1154-8] [PMID: 30767782]
[236]
Wang, T.; Zhang, C.; Wu, C.; Liu, J.; Yu, H.; Zhou, X.; Zhang, J.; Wang, X.; He, S.; Xu, X.; Ma, B.; Che, X.; Li, W. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res. Ther., 2020, 11(1), 62.
[http://dx.doi.org/10.1186/s13287-020-1579-0] [PMID: 32059748]
[237]
Dhoke, N.R.; Kaushik, K.; Das, A. Cxcr6-based mesenchymal stem cell gene therapy potentiates skin regeneration in murine diabetic wounds. Mol. Ther., 2020, 28(5), 1314-1326.
[http://dx.doi.org/10.1016/j.ymthe.2020.02.014] [PMID: 32112713]
[238]
Ji, F.; Pan, J.; Shen, Z.; Yang, Z.; Wang, J.; Bai, X.; Tao, J. The Circular RNA circRNA124534 promotes osteogenic differentiation of human dental pulp stem cells through modulation of the mir-496/β-catenin pathway. Front. Cell Dev. Biol., 2020, 8, 230.
[http://dx.doi.org/10.3389/fcell.2020.00230] [PMID: 32318572]
[239]
Capo, V.; Penna, S.; Merelli, I.; Barcella, M.; Scala, S.; Basso-Ricci, L.; Draghici, E.; Palagano, E.; Zonari, E.; Desantis, G.; Uva, P.; Cusano, R.; Sergi Sergi, L.; Crisafulli, L.; Moshous, D.; Stepensky, P.; Drabko, K.; Kaya, Z.; Unal, E.; Gezdirici, A.; Menna, G.; Serafini, M.; Aiuti, A.; Locatelli, S.L.; Carlo-Stella, C.; Schulz, A.S.; Ficara, F.; Sobacchi, C.; Gentner, B.; Villa, A. Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica, 2020, 106(1), 74-86.
[http://dx.doi.org/10.3324/haematol.2019.238261] [PMID: 31949009]
[240]
Li, J.; Lin, Q.; Lin, Y.; Lai, R.; Zhang, W. Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Mol. Med. Rep., 2021, 23(4), 232.
[http://dx.doi.org/10.3892/mmr.2021.11871] [PMID: 33655330]
[241]
Hotta, A.; Ellis, J. Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem., 2008, 105(4), 940-948.
[http://dx.doi.org/10.1002/jcb.21912] [PMID: 18773452]
[242]
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5), 861-872.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[243]
González, F.; Boué, S.; Belmonte, J.C.I. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat. Rev. Genet., 2011, 12(4), 231-242.
[http://dx.doi.org/10.1038/nrg2937] [PMID: 21339765]
[244]
Lowry, W.E.; Richter, L.; Yachechko, R.; Pyle, A.D.; Tchieu, J.; Sridharan, R.; Clark, A.T.; Plath, K. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci., 2008, 105(8), 2883-2888.
[http://dx.doi.org/10.1073/pnas.0711983105] [PMID: 18287077]
[245]
Bao, L.; He, L.; Chen, J.; Wu, Z.; Liao, J.; Rao, L.; Ren, J.; Li, H.; Zhu, H.; Qian, L.; Gu, Y.; Dai, H.; Xu, X.; Zhou, J.; Wang, W.; Cui, C.; Xiao, L. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res., 2011, 21(4), 600-608.
[http://dx.doi.org/10.1038/cr.2011.6] [PMID: 21221129]
[246]
Cieślar-Pobuda, A.; Knoflach, V.; Ringh, M.V.; Stark, J.; Likus, W.; Siemianowicz, K.; Ghavami, S.; Hudecki, A.; Green, J.L.; Łos, M.J. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1359-1369.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.017] [PMID: 28460880]
[247]
Cooray, S.; Howe, S.J.; Thrasher, A.J. Retrovirus and Lentivirus Vector Design and Methods of Cell Conditioning. In: Methods in Enzymology; Academic Press Inc., 2012; 507, pp. 29-57.
[248]
Chou, B.K.; Mali, P.; Huang, X.; Ye, Z.; Dowey, S.N.; Resar, L.M.S.; Zou, C.; Zhang, Y.A.; Tong, J.; Cheng, L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res., 2011, 21(3), 518-529.
[http://dx.doi.org/10.1038/cr.2011.12] [PMID: 21243013]
[249]
Hu, K. All roads lead to induced pluripotent stem cells: The technologies of iPSC generation. Stem Cells Dev., 2014, 23(12), 1285-1300.
[http://dx.doi.org/10.1089/scd.2013.0620] [PMID: 24524728]
[250]
Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318, 1917-1920.
[251]
Maherali, N.; Ahfeldt, T.; Rigamonti, A.; Utikal, J.; Cowan, C.; Hochedlinger, K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008, 3(3), 340-345.
[http://dx.doi.org/10.1016/j.stem.2008.08.003] [PMID: 18786420]
[252]
Liu, Q.; Hill, P.J.; Karamitri, A.; Ryan, K.J.P.; Chen, H.Y.; Lomax, M.A. Construction of a doxycycline inducible adipogenic lentiviral expression system. Plasmid, 2013, 69(1), 96-103.
[http://dx.doi.org/10.1016/j.plasmid.2012.10.001] [PMID: 23099229]
[253]
Berdien, B.; Mock, U.; Atanackovic, D.; Fehse, B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther., 2014, 21(6), 539-548.
[http://dx.doi.org/10.1038/gt.2014.26] [PMID: 24670996]
[254]
Fukuda, T.; Ishizawa, Y.; Donai, K.; Sugano, E.; Tomita, H. The poly-cistronic expression of four transcriptional factors (CRX, RAX, NEURO-D, OTX2) in fibroblasts via retro- or lentivirus causes partial reprogramming into photoreceptor cells. Cell Biol. Int., 2018, 42(5), 608-614.
[http://dx.doi.org/10.1002/cbin.10942] [PMID: 29377330]
[255]
Heldt, S.; Ressler, K.J. The use of lentiviral vectors combined with Cre/loxP to investigate the function of genes in complex behaviors. Front. Mol. Neurosci., 2009, 2, 22.
[http://dx.doi.org/10.3389/neuro.02.022.2009] [PMID: 20011219]
[256]
Chang, C.W.; Lai, Y.S.; Pawlik, K.M.; Liu, K.; Sun, C.W.; Li, C.; Schoeb, T.R.; Townes, T.M. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells, 2009, 27(5), 1042-1049.
[http://dx.doi.org/10.1002/stem.39] [PMID: 19415770]
[257]
Cochrane, R.L.; Clark, S.H.; Harris, A.; Kream, B.E. Rearrangement of a conditional allele regardless of inheritance of a Cre recombinase transgene. Genesis, 2007, 45(1), 17-20.
[http://dx.doi.org/10.1002/dvg.20259] [PMID: 17211878]
[258]
Michel, G.; Yu, Y.; Chang, T.; Yee, J.K. Site-specific gene insertion mediated by a Cre-loxP-carrying lentiviral vector. Mol. Ther., 2010, 18(10), 1814-1821.
[http://dx.doi.org/10.1038/mt.2010.150] [PMID: 20628360]
[259]
Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol., 2013, 997, 23-33.
[http://dx.doi.org/10.1007/978-1-62703-348-0_3] [PMID: 23546745]
[260]
Somers, A.; Jean, J.C.; Sommer, C.A.; Omari, A.; Ford, C.C.; Mills, J.A.; Ying, L.; Sommer, A.G.; Jean, J.M.; Smith, B.W.; Lafyatis, R.; Demierre, M.F.; Weiss, D.J.; French, D.L.; Gadue, P.; Murphy, G.J.; Mostoslavsky, G.; Kotton, D.N. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 2010, 28(10), 1728-1740.
[http://dx.doi.org/10.1002/stem.495] [PMID: 20715179]
[261]
Tipanee, J.; Chai, Y.C.; VandenDriessche, T.; Chuah, M.K. Preclinical and clinical advances in transposon-based gene therapy. Biosci. Rep., 2017, 37(6), BSR20160614.
[http://dx.doi.org/10.1042/BSR20160614] [PMID: 29089466]
[262]
Hutchins, A.P.; Pei, D. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci. Bull., 2015, 60(20), 1722-1733.
[http://dx.doi.org/10.1007/s11434-015-0905-x] [PMID: 26543668]
[263]
Kapitonov, V.V.; Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol., 2005, 3(6), e181.
[http://dx.doi.org/10.1371/journal.pbio.0030181] [PMID: 15898832]
[264]
Rebollo, R.; Romanish, M.T.; Mager, D.L. Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet., 2012, 46(1), 21-42.
[http://dx.doi.org/10.1146/annurev-genet-110711-155621] [PMID: 22905872]
[265]
Schlesinger, S.; Goff, S.P. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol. Cell. Biol., 2015, 35(5), 770-777.
[http://dx.doi.org/10.1128/MCB.01293-14] [PMID: 25547290]
[266]
Robbez-Masson, L.; Rowe, H.M. Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology, 2015, 12(1), 45.
[http://dx.doi.org/10.1186/s12977-015-0173-5] [PMID: 26021318]
[267]
Muñoz-López, M.; García-Pérez, J. DNA transposons: Nature and applications in genomics. Curr. Genomics, 2010, 11(2), 115-128.
[http://dx.doi.org/10.2174/138920210790886871] [PMID: 20885819]
[268]
Aronovich, E.L.; McIvor, R.S.; Hackett, P.B. The Sleeping Beauty transposon system: A non-viral vector for gene therapy. Hum. Mol. Genet., 2011, 20(R1), R14-R20.
[http://dx.doi.org/10.1093/hmg/ddr140] [PMID: 21459777]
[269]
Grabundzija, I.; Wang, J.; Sebe, A.; Erdei, Z.; Kajdi, R.; Devaraj, A.; Steinemann, D.; Szuhai, K.; Stein, U.; Cantz, T.; Schambach, A.; Baum, C.; Izsvák, Z.; Sarkadi, B.; Ivics, Z. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res., 2013, 41(3), 1829-1847.
[http://dx.doi.org/10.1093/nar/gks1305] [PMID: 23275558]
[270]
Menon, S.; Shailendra, S.; Renda, A.; Longaker, M.; Quarto, N. An overview of direct somatic reprogramming: The ins and outs of iPSCs. Int. J. Mol. Sci., 2016, 17(1), 141.
[http://dx.doi.org/10.3390/ijms17010141] [PMID: 26805822]
[271]
Haridhasapavalan, K.K.; Borgohain, M.P.; Dey, C.; Saha, B.; Narayan, G.; Kumar, S.; Thummer, R.P. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 2019, 686, 146-159.
[http://dx.doi.org/10.1016/j.gene.2018.11.069] [PMID: 30472380]
[272]
Lukashev, A.N.; Zamyatnin, A.A., Jr Viral vectors for gene therapy: Current state and clinical perspectives. Biochemistry, 2016, 81(7), 700-708.
[http://dx.doi.org/10.1134/S0006297916070063] [PMID: 27449616]
[273]
Zhou, W.; Freed, C.R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 2009, 27(11), 2667-2674.
[http://dx.doi.org/10.1002/stem.201] [PMID: 19697349]
[274]
Kotterman, M.A.; Chalberg, T.W.; Schaffer, D.V. Viral vectors for gene therapy: Translational and clinical outlook. Annu. Rev. Biomed. Eng., 2015, 17(1), 63-89.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-104938] [PMID: 26643018]
[275]
Tessadori, F.; Zeng, K.; Manders, E.; Riool, M.; Jackson, D.; van Driel, R. Stable S/MAR-based episomal vectors are regulated at the chromatin level. Chromosome Res., 2010, 18(7), 757-775.
[http://dx.doi.org/10.1007/s10577-010-9165-4] [PMID: 21080054]
[276]
Slamecka, J.; Salimova, L.; McClellan, S.; van Kelle, M.; Kehl, D.; Laurini, J.; Cinelli, P.; Owen, L.; Hoerstrup, S.P.; Weber, B. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle, 2016, 15(2), 234-249.
[http://dx.doi.org/10.1080/15384101.2015.1121332] [PMID: 26654216]
[277]
Humme, S.; Reisbach, G.; Feederle, R.; Delecluse, H.J.; Bousset, K.; Hammerschmidt, W.; Schepers, A. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc. Natl. Acad. Sci., 2003, 100(19), 10989-10994.
[http://dx.doi.org/10.1073/pnas.1832776100] [PMID: 12947043]
[278]
Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.; Shibata, T.; Kunisada, T.; Takahashi, M.; Takahashi, J.; Saji, H.; Yamanaka, S. A more efficient method to generate integration-free human iPS cells. Nat. Methods, 2011, 8(5), 409-412.
[http://dx.doi.org/10.1038/nmeth.1591] [PMID: 21460823]
[279]
Su, R.J.; Baylink, D.J.; Neises, A.; Kiroyan, J.B.; Meng, X.; Payne, K.J.; Tschudy-Seney, B.; Duan, Y.; Appleby, N.; Kearns-Jonker, M.; Gridley, D.S.; Wang, J.; Lau, K.H.W.; Zhang, X.B. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors. PLoS One, 2013, 8(5), e64496.
[http://dx.doi.org/10.1371/journal.pone.0064496] [PMID: 23704989]
[280]
Manzini, S.; Vargiolu, A.; Stehle, I.M.; Bacci, M.L.; Cerrito, M.G.; Giovannoni, R.; Zannoni, A.; Bianco, M.R.; Forni, M.; Donini, P.; Papa, M.; Lipps, H.J.; Lavitrano, M. Genetically modified pigs produced with a nonviral episomal vector. Proc. Natl. Acad. Sci., 2006, 103(47), 17672-17677.
[http://dx.doi.org/10.1073/pnas.0604938103] [PMID: 17101993]
[281]
Hagedorn, C.; Antoniou, M.N.; Lipps, H.J. Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol. Ther. Nucleic Acids, 2013, 2(8), e118.
[http://dx.doi.org/10.1038/mtna.2013.47] [PMID: 24002728]
[282]
Kay, M.A.; He, C.Y.; Chen, Z.Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol., 2010, 28(12), 1287-1289.
[http://dx.doi.org/10.1038/nbt.1708] [PMID: 21102455]
[283]
Narsinh, K.H.; Jia, F.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protoc., 2011, 6(1), 78-88.
[http://dx.doi.org/10.1038/nprot.2010.173] [PMID: 21212777]
[284]
Kaji, K.; Norrby, K.; Paca, A.; Mileikovsky, M.; Mohseni, P.; Woltjen, K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009, 458(7239), 771-775.
[http://dx.doi.org/10.1038/nature07864] [PMID: 19252477]
[285]
Jia, F.; Wilson, K.D.; Sun, N.; Gupta, D.M.; Huang, M.; Li, Z.; Panetta, N.J.; Chen, Z.Y.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods, 2010, 7(3), 197-199.
[http://dx.doi.org/10.1038/nmeth.1426] [PMID: 20139967]
[286]
Deng, X.Y.; Wang, H.; Wang, T.; Fang, X.T.; Zou, L.L.; Li, Z.Y.; Liu, C.B. Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr. Stem Cell Res. Ther., 2015, 10(2), 153-158.
[http://dx.doi.org/10.2174/1574888X09666140923101914] [PMID: 25248676]
[287]
Li, X.; Zhang, P.; Wei, C.; Zhang, Y. Generation of pluripotent stem cells via protein transduction. Int. J. Dev. Biol., 2014, 58(1), 21-27.
[http://dx.doi.org/10.1387/ijdb.140007XL] [PMID: 24860991]
[288]
Zahid, M.; Robbins, P.D.; Protein Transduction Domains, P. Protein transduction domains: Applications for molecular medicine. Curr. Gene Ther., 2012, 12(5), 374-380.
[http://dx.doi.org/10.2174/156652312802762527] [PMID: 22920684]
[289]
Nordin, F.; Ahmad, R.N.R.; Farzaneh, F. Transactivator protein: An alternative for delivery of recombinant proteins for safer reprogramming of induced Pluripotent Stem Cell. Virus Res., 2017, 235, 106-114.
[http://dx.doi.org/10.1016/j.virusres.2017.04.007] [PMID: 28408207]
[290]
Iida, A.; Hasegawa, M. Cytoplasmic RNA vector derived from nontransmissible sendai virus. Gene Therapy Protocols, 2002, 361-370.
[291]
Nagai, Y.; Kato, A. Accessory genes of the paramyxoviridae, a large family of nonsegmented negative-strand RNA viruses, as a focus of active investigation by reverse genetics. Curr. Top. Microbiol. Immunol., 2004, 283, 197-248.
[http://dx.doi.org/10.1007/978-3-662-06099-5_6] [PMID: 15298171]
[292]
Shioda, T.; Iwasaki, K.; Shibuta, H. Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins. Nucleic Acids Res., 1986, 14(4), 1545-1563.
[http://dx.doi.org/10.1093/nar/14.4.1545] [PMID: 3005975]
[293]
Takimoto, T.; Taylor, G.L.; Connaris, H.C.; Crennell, S.J.; Portner, A. Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J. Virol., 2002, 76(24), 13028-13033.
[http://dx.doi.org/10.1128/JVI.76.24.13028-13033.2002] [PMID: 12438628]
[294]
Park, A.; Hong, P.; Won, S.T.; Thibault, P.A.; Vigant, F.; Oguntuyo, K.Y.; Taft, J.D.; Lee, B. Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol. Ther. Methods Clin. Dev., 2016, 3, 16057.
[http://dx.doi.org/10.1038/mtm.2016.57] [PMID: 27606350]
[295]
Bitzer, M.; Lauer, U.; Baumann, C.; Spiegel, M.; Gregor, M.; Neubert, W.J. Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J. Virol., 1997, 71(7), 5481-5486.
[http://dx.doi.org/10.1128/jvi.71.7.5481-5486.1997] [PMID: 9188621]
[296]
Scheid, A.; Hsu, M.; Choppin, P.W. Role of paramyxovirus glycoproteins in the interactions between viral and cell membranes. Soc. Gen. Physiol. Ser., 1980, 34, 119-130.
[PMID: 7384831]
[297]
Ogino, T.; Kobayashi, M.; Iwama, M.; Mizumoto, K. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J. Biol. Chem., 2005, 280(6), 4429-4435.
[http://dx.doi.org/10.1074/jbc.M411167200] [PMID: 15574411]
[298]
Garcin, D.; Pelet, T.; Calain, P.; Roux, L.; Curran, J.; Kolakofsky, D. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: Generation of a novel copy-back nondefective interfering virus. EMBO J., 1995, 14(24), 6087-6094.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb00299.x] [PMID: 8557028]
[299]
Hasan, M.K.; Nagai, Y.; Yu, D.; Sakai, Y.; Kato, A.; Shioda, T. Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3′ proximal first locus. J. Gen. Virol., 1997, 78(11), 2813-2820.
[http://dx.doi.org/10.1099/0022-1317-78-11-2813] [PMID: 9367367]
[300]
Inoue, M.; Tokusumi, Y.; Ban, H.; Kanaya, T.; Tokusumi, T.; Nagai, Y.; Iida, A.; Hasegawa, M. Nontransmissible virus-like particle formation by F-deficient sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J. Virol., 2003, 77(5), 3238-3246.
[http://dx.doi.org/10.1128/JVI.77.5.3238-3246.2003] [PMID: 12584347]
[301]
Li, H.O.; Zhu, Y.F.; Asakawa, M.; Kuma, H.; Hirata, T.; Ueda, Y.; Lee, Y.S.; Fukumura, M.; Iida, A.; Kato, A.; Nagai, Y.; Hasegawa, M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J. Virol., 2000, 74(14), 6564-6569.
[http://dx.doi.org/10.1128/JVI.74.14.6564-6569.2000] [PMID: 10864670]
[302]
Fujii, Y.; Sakaguchi, T.; Kiyotani, K.; Huang, C.; Fukuhara, N.; Egi, Y.; Yoshida, T. Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA. J. Virol., 2002, 76(17), 8540-8547.
[http://dx.doi.org/10.1128/JVI.76.17.8540-8547.2002] [PMID: 12163573]
[303]
Fusaki, N.; Ban, H.; Nishiyama, A.; Saeki, K.; Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2009, 85(8), 348-362.
[http://dx.doi.org/10.2183/pjab.85.348] [PMID: 19838014]
[304]
Seki, T.; Yuasa, S.; Fukuda, K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat. Protoc., 2012, 7(4), 718-728.
[http://dx.doi.org/10.1038/nprot.2012.015] [PMID: 22422317]
[305]
Seki, T.; Yuasa, S.; Oda, M.; Egashira, T.; Yae, K.; Kusumoto, D.; Nakata, H.; Tohyama, S.; Hashimoto, H.; Kodaira, M.; Okada, Y.; Seimiya, H.; Fusaki, N.; Hasegawa, M.; Fukuda, K. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 2010, 7(1), 11-14.
[http://dx.doi.org/10.1016/j.stem.2010.06.003] [PMID: 20621043]
[306]
Nishishita, N.; Takenaka, C.; Fusaki, N.; Kawamata, S. Generation of human induced pluripotent stem cells from cord blood cells. J. Stem Cells, 2011, 6(3), 101-108.
[PMID: 23264996]
[307]
Nakanishi, M.; Otsu, M. Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr. Gene Ther., 2012, 12(5), 410-416.
[http://dx.doi.org/10.2174/156652312802762518] [PMID: 22920683]
[308]
Nishimura, K.; Sano, M.; Ohtaka, M.; Furuta, B.; Umemura, Y.; Nakajima, Y.; Ikehara, Y.; Kobayashi, T.; Segawa, H.; Takayasu, S.; Sato, H.; Motomura, K.; Uchida, E.; Kanayasu-Toyoda, T.; Asashima, M.; Nakauchi, H.; Yamaguchi, T.; Nakanishi, M. Development of defective and persistent Sendai virus vector: A unique gene delivery/expression system ideal for cell reprogramming. J. Biol. Chem., 2011, 286(6), 4760-4771.
[http://dx.doi.org/10.1074/jbc.M110.183780] [PMID: 21138846]
[309]
Brouwer, M.; Zhou, H.; Nadif Kasri, N. Choices for induction of pluripotency: Recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev., 2016, 12(1), 54-72.
[http://dx.doi.org/10.1007/s12015-015-9622-8] [PMID: 26424535]
[310]
Yonemitsu, Y.; Kitson, C.; Ferrari, S.; Farley, R.; Griesenbach, U.; Judd, D.; Steel, R.; Scheid, P.; Zhu, J.; Jeffery, P.K.; Kato, A.; Hasan, M.K.; Nagai, Y.; Masaki, I.; Fukumura, M.; Hasegawa, M.; Geddes, D.M.; Alton, E.W.F.W. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat. Biotechnol., 2000, 18(9), 970-973.
[http://dx.doi.org/10.1038/79463] [PMID: 10973218]
[311]
Kano, M.; Matano, T.; Nakamura, H.; Takeda, A.; Kato, A.; Ariyoshi, K.; Mori, K.; Sata, T.; Nagai, Y. Elicitation of protective immunity against simian immunodeficiency virus infection by a recombinant Sendai virus expressing the Gag protein. AIDS, 2000, 14(9), 1281-1282.
[http://dx.doi.org/10.1097/00002030-200006160-00030] [PMID: 10894297]
[312]
Masaki, I.; Yonemitsu, Y.; Yamashita, A.; Sata, S.; Tanii, M.; Komori, K.; Nakagawa, K.; Hou, X.; Nagai, Y.; Hasegawa, M.; Sugimachi, K.; Sueishi, K. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ. Res., 2002, 90(9), 966-973.
[http://dx.doi.org/10.1161/01.RES.0000019540.41697.60] [PMID: 12016262]
[313]
Griesenbach, U.; Inoue, M.; Meng, C.; Farley, R.; Chan, M.; Newman, N.K.; Brum, A.; You, J.; Kerton, A.; Shoemark, A.; Boyd, A.C.; Davies, J.C.; Higgins, T.E.; Gill, D.R.; Hyde, S.C.; Innes, J.A.; Porteous, D.J.; Hasegawa, M.; Alton, E.W.F.W. Assessment of F/HN-pseudotyped lentivirus as a clinically relevant vector for lung gene therapy. Am. J. Respir. Crit. Care Med., 2012, 186(9), 846-856.
[http://dx.doi.org/10.1164/rccm.201206-1056OC] [PMID: 22955314]
[314]
Griesenbach, U.; Inoue, M.; Hasegawa, M.; Alton, E.W.F.W. Sendai virus for gene therapy and vaccination. Curr. Opin. Mol. Ther., 2005, 7(4), 346-352.
[PMID: 16121700]
[315]
Zangi, L.; Lui, K.O.; von Gise, A.; Ma, Q.; Ebina, W.; Ptaszek, L.M.; Später, D.; Xu, H.; Tabebordbar, M.; Gorbatov, R.; Sena, B.; Nahrendorf, M.; Briscoe, D.M.; Li, R.A.; Wagers, A.J.; Rossi, D.J.; Pu, W.T.; Chien, K.R. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol., 2013, 31(10), 898-907.
[http://dx.doi.org/10.1038/nbt.2682] [PMID: 24013197]
[316]
Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005, 23(2), 165-175.
[http://dx.doi.org/10.1016/j.immuni.2005.06.008] [PMID: 16111635]
[317]
Hornung, V.; Ellegast, J.; Kim, S.; Brzózka, K.; Jung, A.; Kato, H.; Poeck, H.; Akira, S.; Conzelmann, K.K.; Schlee, M.; Endres, S.; Hartmann, G. 5′-triphosphate RNA is the ligand for RIG-I. Science, 2006, 314, 994-997.
[318]
Grudzien-Nogalska, E.; Kowalska, J.; Su, W.; Kuhn, A.N.; Slepenkov, S.V.; Darzynkiewicz, E.; Sahin, U.; Jemielity, J.; Rhoads, R.E. Synthetic mRNAs with superior translation and stability properties. Methods Mol. Biol., 2013, 969, 55-72.
[http://dx.doi.org/10.1007/978-1-62703-260-5_4] [PMID: 23296927]
[319]
Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res., 2010, 38(17), 5884-5892.
[http://dx.doi.org/10.1093/nar/gkq347] [PMID: 20457754]
[320]
Rosa, A.; Brivanlou, A.H. Synthetic mRNAs: Powerful tools for reprogramming and differentiation of human cells. Cell Stem Cell, 2010, 7(5), 549-550.
[http://dx.doi.org/10.1016/j.stem.2010.10.002] [PMID: 21040893]
[321]
Ramanathan, A.; Robb, G.B.; Chan, S.H. mRNA capping: Biological functions and applications. Nucleic Acids Res., 2016, 44(16), 7511-7526.
[http://dx.doi.org/10.1093/nar/gkw551] [PMID: 27317694]
[322]
Kuhn, A.N.; Beiβert, T.; Simon, P.; Vallazza, B.; Buck, J.; Davies, B.P.; Tureci, O.; Sahin, U. mRNA as a versatile tool for exogenous protein expression. Curr. Gene Ther., 2012, 12(5), 347-361.
[http://dx.doi.org/10.2174/156652312802762536] [PMID: 22827224]
[323]
Kogut, I.; McCarthy, S.M.; Pavlova, M.; Astling, D.P.; Chen, X.; Jakimenko, A.; Jones, K.L.; Getahun, A.; Cambier, J.C.; Pasmooij, A.M.G.; Jonkman, M.F.; Roop, D.R.; Bilousova, G. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat. Commun., 2018, 9(1), 745.
[http://dx.doi.org/10.1038/s41467-018-03190-3] [PMID: 29467427]
[324]
Pichlmair, A.; Schulz, O.; Tan, C.P.; Näslund, T.I.; Liljeström, P.; Weber, F.; Reis, E RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science, 2006, 314, 997-1001.
[325]
Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; Daley, G.Q.; Brack, A.S.; Collins, J.J.; Cowan, C.; Schlaeger, T.M.; Rossi, D.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010, 7(5), 618-630.
[http://dx.doi.org/10.1016/j.stem.2010.08.012] [PMID: 20888316]
[326]
Karikó, K.; Muramatsu, H.; Keller, J.M.; Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther., 2012, 20(5), 948-953.
[http://dx.doi.org/10.1038/mt.2012.7] [PMID: 22334017]
[327]
Motorin, Y.; Helm, M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA, 2011, 2(5), 611-631.
[http://dx.doi.org/10.1002/wrna.79] [PMID: 21823225]
[328]
Mandal, P.K.; Rossi, D.J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc., 2013, 8(3), 568-582.
[http://dx.doi.org/10.1038/nprot.2013.019] [PMID: 23429718]
[329]
Kormann, M.S.D.; Hasenpusch, G.; Aneja, M.K.; Nica, G.; Flemmer, A.W.; Herber-Jonat, S.; Huppmann, M.; Mays, L.E.; Illenyi, M.; Schams, A.; Griese, M.; Bittmann, I.; Handgretinger, R.; Hartl, D.; Rosenecker, J.; Rudolph, C. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol., 2011, 29(2), 154-157.
[http://dx.doi.org/10.1038/nbt.1733] [PMID: 21217696]
[330]
Gerardo, H.; Lima, A.; Carvalho, J.; Ramos, J.R.D.; Couceiro, S.; Travasso, R.D.M.; Pires das Neves, R.; Grãos, M. Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci. Rep., 2019, 9(1), 9086.
[http://dx.doi.org/10.1038/s41598-019-45352-3]
[331]
Zhao, R.; Li, R.; An, T.; Liu, X. Conditional cell reprogramming in modeling digestive system diseases. Front. Cell Dev. Biol., 2021, 9, 669756.
[http://dx.doi.org/10.3389/fcell.2021.669756] [PMID: 34150763]
[332]
Wu, X.; Wang, S.; Li, M.; Li, J.; Shen, J.; Zhao, Y.; Pang, J.; Wen, Q.; Chen, M.; Wei, B.; Kaboli, P.J.; Du, F.; Zhao, Q.; Cho, C.H.; Wang, Y.; Xiao, Z.; Wu, X. Conditional reprogramming: Next generation cell culture. Acta Pharm. Sin. B, 2020, 10(8), 1360-1381.
[http://dx.doi.org/10.1016/j.apsb.2020.01.011] [PMID: 32963937]
[333]
Yoshioka, N.; Gros, E.; Li, H.R.; Kumar, S.; Deacon, D.C.; Maron, C.; Muotri, A.R.; Chi, N.C.; Fu, X.D.; Yu, B.D.; Dowdy, S.F. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell, 2013, 13(2), 246-254.
[http://dx.doi.org/10.1016/j.stem.2013.06.001] [PMID: 23910086]
[334]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[335]
Takahashi, K.; Okita, K.; Nakagawa, M.; Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc., 2007, 2(12), 3081-3089.
[http://dx.doi.org/10.1038/nprot.2007.418] [PMID: 18079707]
[336]
Zhao, T.; Zhang, Z.N.; Rong, Z.; Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474(7350), 212-215.
[http://dx.doi.org/10.1038/nature10135] [PMID: 21572395]
[337]
Lister, R.; Pelizzola, M.; Kida, Y.S.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; Downes, M.; Yu, R.; Stewart, R.; Ren, B.; Thomson, J.A.; Evans, R.M.; Ecker, J.R. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471(7336), 68-73.
[http://dx.doi.org/10.1038/nature09798] [PMID: 21289626]
[338]
Lee, S.B.; Seo, D.; Choi, D.; Park, K.Y.; Holczbauer, A.; Marquardt, J.U.; Conner, E.A.; Factor, V.M.; Thorgeirsson, S.S. Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells. Stem Cells, 2012, 30(5), 997-1007.
[http://dx.doi.org/10.1002/stem.1074] [PMID: 22378611]
[339]
Bar-Nur, O.; Russ, H.A.; Efrat, S.; Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 2011, 9(1), 17-23.
[http://dx.doi.org/10.1016/j.stem.2011.06.007] [PMID: 21726830]
[340]
Xu, H.; Yi, B.A.; Wu, H.; Bock, C.; Gu, H.; Lui, K.O.; Park, J.H.C.; Shao, Y.; Riley, A.K.; Domian, I.J.; Hu, E.; Willette, R.; Lepore, J.; Meissner, A.; Wang, Z.; Chien, K.R. Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res., 2012, 22(1), 142-154.
[http://dx.doi.org/10.1038/cr.2011.171] [PMID: 22064699]
[341]
Ohi, Y.; Qin, H.; Hong, C.; Blouin, L.; Polo, J.M.; Guo, T.; Qi, Z.; Downey, S.L.; Manos, P.D.; Rossi, D.J.; Yu, J.; Hebrok, M.; Hochedlinger, K.; Costello, J.F.; Song, J.S.; Ramalho-Santos, M. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol., 2011, 13(5), 541-549.
[http://dx.doi.org/10.1038/ncb2239] [PMID: 21499256]
[342]
Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151), 313-317.
[http://dx.doi.org/10.1038/nature05934] [PMID: 17554338]
[343]
Lin, T.; Wu, S. Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/794632] [PMID: 25922608]
[344]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[345]
Kim, Y.; Jeong, J.; Choi, D. Small-molecule-mediated reprogramming: A silver lining for regenerative medicine. Exp. Mol. Med., 2020, 52(2), 213-226.
[http://dx.doi.org/10.1038/s12276-020-0383-3] [PMID: 32080339]
[346]
Hou, P.; Li, Y.; Zhang, X.; Liu, C.; Guan, J.; Li, H.; Zhao, T.; Ye, J.; Yang, W.; Liu, K.; Ge, J.; Xu, J.; Zhang, Q.; Zhao, Y.; Deng, H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146), 651-654.
[http://dx.doi.org/10.1126/science.1239278] [PMID: 23868920]
[347]
Ye, J.; Ge, J.; Zhang, X.; Cheng, L.; Zhang, Z.; He, S.; Wang, Y.; Lin, H.; Yang, W.; Liu, J.; Zhao, Y.; Deng, H. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res., 2016, 26(1), 34-45.
[http://dx.doi.org/10.1038/cr.2015.142] [PMID: 26704449]
[348]
Cheng, L.; Hu, W.; Qiu, B.; Zhao, J.; Yu, Y.; Guan, W.; Wang, M.; Yang, W.; Pei, G. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res., 2014, 24(6), 665-679.
[http://dx.doi.org/10.1038/cr.2014.32] [PMID: 24638034]
[349]
Zhang, M.; Lin, Y.H.; Sun, Y.J.; Zhu, S.; Zheng, J.; Liu, K.; Cao, N.; Li, K.; Huang, Y.; Ding, S. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 2016, 18(5), 653-667.
[http://dx.doi.org/10.1016/j.stem.2016.03.020] [PMID: 27133794]
[350]
Hu, W.; Qiu, B.; Guan, W.; Wang, Q.; Wang, M.; Li, W.; Gao, L.; Shen, L.; Huang, Y.; Xie, G.; Zhao, H.; Jin, Y.; Tang, B.; Yu, Y.; Zhao, J.; Pei, G. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015, 17(2), 204-212.
[http://dx.doi.org/10.1016/j.stem.2015.07.006] [PMID: 26253202]
[351]
Zhang, L.; Yin, J.C.; Yeh, H.; Ma, N.X.; Lee, G.; Chen, X.A.; Wang, Y.; Lin, L.; Chen, L.; Jin, P.; Wu, G.Y.; Chen, G. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell, 2015, 17(6), 735-747.
[http://dx.doi.org/10.1016/j.stem.2015.09.012] [PMID: 26481520]
[352]
Fu, Y.; Huang, C.; Xu, X.; Gu, H.; Ye, Y.; Jiang, C.; Qiu, Z.; Xie, X. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res., 2015, 25(9), 1013-1024.
[http://dx.doi.org/10.1038/cr.2015.99] [PMID: 26292833]
[353]
Cao, N.; Huang, Y.; Zheng, J.; Spencer, C.I.; Zhang, Y.; Fu, J.-D.; Nie, B.; Xie, M.; Zhang, M.; Wang, H. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science, 2016, 352, 1216-1220.
[354]
Katsuda, T.; Kawamata, M.; Hagiwara, K.; Takahashi, R.; Yamamoto, Y.; Camargo, F.D.; Ochiya, T. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell, 2017, 20(1), 41-55.
[http://dx.doi.org/10.1016/j.stem.2016.10.007] [PMID: 27840021]
[355]
Kim, Y.; Kang, K.; Lee, S.B.; Seo, D.; Yoon, S.; Kim, S.J.; Jang, K.; Jung, Y.K.; Lee, K.G.; Factor, V.M.; Jeong, J.; Choi, D. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol., 2019, 70(1), 97-107.
[http://dx.doi.org/10.1016/j.jhep.2018.09.007] [PMID: 30240598]
[356]
Fu, G.B.; Huang, W.J.; Zeng, M.; Zhou, X.; Wu, H.P.; Liu, C.C.; Wu, H.; Weng, J.; Zhang, H.D.; Cai, Y.C.; Ashton, C.; Ding, M.; Tang, D.; Zhang, B.H.; Gao, Y.; Yu, W.F.; Zhai, B.; He, Z.Y.; Wang, H.Y.; Yan, H.X. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res., 2019, 29(1), 8-22.
[http://dx.doi.org/10.1038/s41422-018-0103-x] [PMID: 30361550]
[357]
Zhang, K.; Zhang, L.; Liu, W.; Ma, X.; Cen, J.; Sun, Z.; Wang, C.; Feng, S.; Zhang, Z.; Yue, L.; Sun, L.; Zhu, Z.; Chen, X.; Feng, A.; Wu, J.; Jiang, Z.; Li, P.; Cheng, X.; Gao, D.; Peng, L.; Hui, L. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell, 2018, 23(6), 806-819.e4.
[http://dx.doi.org/10.1016/j.stem.2018.10.018] [PMID: 30416071]
[358]
Nie, B.; Nie, T.; Hui, X.; Gu, P.; Mao, L.; Li, K.; Yuan, R.; Zheng, J.; Wang, H.; Li, K.; Tang, S.; Zhang, Y.; Xu, T.; Xu, A.; Wu, D.; Ding, S. Brown adipogenic reprogramming induced by a small molecule. Cell Rep., 2017, 18(3), 624-635.
[http://dx.doi.org/10.1016/j.celrep.2016.12.062] [PMID: 28099842]
[359]
Liu, J.; Liu, Y.; Wang, H.; Hao, H.; Han, Q.; Shen, J.; Shi, J.; Li, C.; Mu, Y.; Han, W. Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci. Rep., 2013, 3(1), 1185.
[http://dx.doi.org/10.1038/srep01185] [PMID: 23378917]
[360]
Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol., 2016, 2016, 1-24.
[http://dx.doi.org/10.1155/2016/6940283] [PMID: 27516776]
[361]
Hanna, J.; Wernig, M.; Markoulaki, S.; Sun, C.W.; Meissner, A.; Cassady, J.P.; Beard, C.; Brambrink, T.; Wu, L.C.; Townes, T.M.; Jaenisch, R. Treatment of sickle cell anemia mouse model with IPS cells generated from autologous skin. Science, 2007, 318, 1920-1923.
[362]
Taylor, C.J.; Bolton, E.M.; Bradley, J.A. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1575), 2312-2322.
[http://dx.doi.org/10.1098/rstb.2011.0030] [PMID: 21727137]
[363]
Scheiner, Z.S.; Talib, S.; Feigal, E.G. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J. Biol. Chem., 2014, 289(8), 4571-4577.
[http://dx.doi.org/10.1074/jbc.R113.509588] [PMID: 24362036]
[364]
Hochedlinger, K.; Jaenisch, R. Induced pluripotency and epigenetic reprogramming. Cold Spring Harb. Perspect. Biol., 2015, 7(12), a019448.
[http://dx.doi.org/10.1101/cshperspect.a019448] [PMID: 26626939]
[365]
Saha, K.; Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 2009, 5(6), 584-595.
[http://dx.doi.org/10.1016/j.stem.2009.11.009] [PMID: 19951687]
[366]
Simara, P.; Motl, J.A.; Kaufman, D.S. Pluripotent stem cells and gene therapy. Transl. Res., 2013, 161(4), 284-292.
[http://dx.doi.org/10.1016/j.trsl.2013.01.001] [PMID: 23353080]
[367]
Buta, C.; David, R.; Dressel, R.; Emgård, M.; Fuchs, C.; Gross, U.; Healy, L.; Hescheler, J.; Kolar, R.; Martin, U.; Mikkers, H.; Müller, F.J.; Schneider, R.K.; Seiler, A.E.M.; Spielmann, H.; Weitzer, G. Reconsidering pluripotency tests: Do we still need teratoma assays? Stem Cell Res., 2013, 11(1), 552-562.
[http://dx.doi.org/10.1016/j.scr.2013.03.001] [PMID: 23611953]
[368]
Hong, S.G.; Winkler, T.; Wu, C.; Guo, V.; Pittaluga, S.; Nicolae, A.; Donahue, R.E.; Metzger, M.E.; Price, S.D.; Uchida, N.; Kuznetsov, S.A.; Kilts, T.; Li, L.; Robey, P.G.; Dunbar, C.E. Path to the clinic: Assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep., 2014, 7(4), 1298-1309.
[http://dx.doi.org/10.1016/j.celrep.2014.04.019] [PMID: 24835994]
[369]
Vazin, T.; Freed, W.J. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor. Neurol. Neurosci., 2010, 28(4), 589-603.
[http://dx.doi.org/10.3233/RNN-2010-0543] [PMID: 20714081]
[370]
Barrilleaux, B.; Knoepfler, P.S. Inducing iPSCs to escape the dish. Cell Stem Cell, 2011, 9(2), 103-111.
[http://dx.doi.org/10.1016/j.stem.2011.07.006] [PMID: 21816362]
[371]
Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells in medicine and biology. Development, 2013, 140(12), 2457-2461.
[http://dx.doi.org/10.1242/dev.092551] [PMID: 23715538]
[372]
Medvedev, S.P.; Shevchenko, A.I.; Zakian, S.M. Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine. Acta Nat., 2010, 2(2), 18-27.
[http://dx.doi.org/10.32607/20758251-2010-2-2-18-27] [PMID: 22649638]
[373]
Hong, S.G.; Dunbar, C.E.; Winkler, T. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol. Ther., 2013, 21(2), 272-281.
[http://dx.doi.org/10.1038/mt.2012.255] [PMID: 23207694]
[374]
Muir, B.; Nunney, L. The expression of tumour suppressors and proto-oncogenes in tissues susceptible to their hereditary cancers. Br. J. Cancer, 2015, 113(2), 345-353.
[http://dx.doi.org/10.1038/bjc.2015.205] [PMID: 26079304]
[375]
Peterson, S.E.; Loring, J.F. Genomic instability in pluripotent stem cells: Implications for clinical applications. J. Biol. Chem., 2014, 289(8), 4578-4584.
[http://dx.doi.org/10.1074/jbc.R113.516419] [PMID: 24362040]
[376]
Fu, X.; Xu, Y. Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med., 2012, 4(6), 55.
[http://dx.doi.org/10.1186/gm354] [PMID: 22741526]
[377]
Harding, J.; Mirochnitchenko, O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J. Biol. Chem., 2014, 289(8), 4585-4593.
[http://dx.doi.org/10.1074/jbc.R113.463737] [PMID: 24362021]
[378]
Li, M.; Suzuki, K.; Kim, N.Y.; Liu, G.H.; Izpisua, B.J.C. A cut above the rest: Targeted genome editing technologies in human pluripotent stem cells. J. Biol. Chem., 2014, 289(8), 4594-4599.
[http://dx.doi.org/10.1074/jbc.R113.488247] [PMID: 24362028]
[379]
Siller, R.; Greenhough, S.; Park, I-H.; Sullivan, G.J. Modelling human disease with pluripotent stem cells. Curr. Gene Ther., 2013, 13(2), 99-110.
[http://dx.doi.org/10.2174/1566523211313020004] [PMID: 23444871]
[380]
Mak, I.W.Y.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res., 2014, 6(2), 114-118.
[PMID: 24489990]
[381]
Ebert, A.D.; Liang, P.; Wu, J.C. Induced pluripotent stem cells as a disease modeling and drug screening platform. J. Cardiovasc. Pharmacol., 2012, 60(4), 408-416.
[http://dx.doi.org/10.1097/FJC.0b013e318247f642] [PMID: 22240913]
[382]
Park, I.H.; Arora, N.; Huo, H.; Maherali, N.; Ahfeldt, T.; Shimamura, A.; Lensch, M.W.; Cowan, C.; Hochedlinger, K.; Daley, G.Q. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5), 877-886.
[http://dx.doi.org/10.1016/j.cell.2008.07.041] [PMID: 18691744]
[383]
Ebert, A.D.; Yu, J.; Rose, F.F., Jr; Mattis, V.B.; Lorson, C.L.; Thomson, J.A.; Svendsen, C.N. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009, 457(7227), 277-280.
[http://dx.doi.org/10.1038/nature07677] [PMID: 19098894]
[384]
Bellin, M.; Marchetto, M.C.; Gage, F.H.; Mummery, C.L. Induced pluripotent stem cells: The new patient? Nat. Rev. Mol. Cell Biol., 2012, 13(11), 713-726.
[http://dx.doi.org/10.1038/nrm3448] [PMID: 23034453]
[385]
Merkle, F.T.; Eggan, K. Modeling human disease with pluripotent stem cells: From genome association to function. Cell Stem Cell, 2013, 12(6), 656-668.
[http://dx.doi.org/10.1016/j.stem.2013.05.016] [PMID: 23746975]
[386]
Martin, U. Pluripotent stem cells for disease modeling and drug screening: new perspectives for treatment of cystic fibrosis? Mol. Cell Pediatr., 2015, 2(1), 15.
[http://dx.doi.org/10.1186/s40348-015-0023-5] [PMID: 26666881]
[387]
Moretti, A.; Bellin, M.; Welling, A.; Jung, C.B.; Lam, J.T.; Bott-Flügel, L.; Dorn, T.; Goedel, A.; Höhnke, C.; Hofmann, F.; Seyfarth, M.; Sinnecker, D.; Schömig, A.; Laugwitz, K.L. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med., 2010, 363(15), 1397-1409.
[http://dx.doi.org/10.1056/NEJMoa0908679] [PMID: 20660394]
[388]
Mordwinkin, N.M.; Burridge, P.W.; Wu, J.C. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J. Cardiovasc. Transl. Res., 2013, 6(1), 22-30.
[http://dx.doi.org/10.1007/s12265-012-9423-2] [PMID: 23229562]
[389]
Engle, S.J.; Vincent, F. Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J. Biol. Chem., 2014, 289(8), 4562-4570.
[http://dx.doi.org/10.1074/jbc.R113.529156] [PMID: 24362033]
[390]
Kolaja, K. Stem cells and stem cell-derived tissues and their use in safety assessment. J. Biol. Chem., 2014, 289(8), 4555-4561.
[http://dx.doi.org/10.1074/jbc.R113.481028] [PMID: 24362027]
[391]
Engle, S.J.; Puppala, D. Integrating human pluripotent stem cells into drug development. Cell Stem Cell, 2013, 12(6), 669-677.
[http://dx.doi.org/10.1016/j.stem.2013.05.011] [PMID: 23746976]
[392]
Daley, G.Q. The promise and perils of stem cell therapeutics. Cell Stem Cell, 2012, 10(6), 740-749.
[http://dx.doi.org/10.1016/j.stem.2012.05.010] [PMID: 22704514]
[393]
Singh, V.K.; Kalsan, M.; Kumar, N.; Saini, A.; Chandra, R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol., 2015, 3, 2.
[http://dx.doi.org/10.3389/fcell.2015.00002] [PMID: 25699255]
[394]
Millette, K.; Georgia, S. Gene editing and human pluripotent stem cells: Tools for advancing diabetes disease modeling and beta-cell development. Curr. Diab. Rep., 2017, 17(11), 116.
[http://dx.doi.org/10.1007/s11892-017-0947-3] [PMID: 28980194]
[395]
Pini, V.; Morgan, J.E.; Muntoni, F.; O’Neill, H.C. Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr. Stem Cell Rep., 2017, 3(2), 137-148.
[http://dx.doi.org/10.1007/s40778-017-0076-6] [PMID: 28616376]
[396]
Li, H.; Chen, G. In vivo reprogramming for CNS repair: Regenerating neurons from endogenous glial cells. Neuron, 2016, 91(4), 728-738.
[http://dx.doi.org/10.1016/j.neuron.2016.08.004] [PMID: 27537482]
[397]
Cherry, A.B.C.; Daley, G.Q. Reprogramming cellular identity for regenerative medicine. Cell, 2012, 148(6), 1110-1122.
[http://dx.doi.org/10.1016/j.cell.2012.02.031] [PMID: 22424223]
[398]
Watt, F.M.; Driskell, R.R. The therapeutic potential of stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2010, 365(1537), 155-163.
[http://dx.doi.org/10.1098/rstb.2009.0149] [PMID: 20008393]
[399]
Wobus, A.M.; Boheler, K.R. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol. Rev., 2005, 85(2), 635-678.
[http://dx.doi.org/10.1152/physrev.00054.2003] [PMID: 15788707]
[400]
Klimczak, A.; Kozlowska, U. Mesenchymal stromal cells and tissue-specific progenitor cells: Their role in tissue homeostasis. Stem Cells Int., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/4285215] [PMID: 26823669]
[401]
Piccin, D.; Morshead, C.M. Potential and pitfalls of stem cell therapy in old age. Dis. Model. Mech., 2010, 3(7-8), 421-425.
[http://dx.doi.org/10.1242/dmm.003137] [PMID: 20504968]
[402]
Krampera, M.; Franchini, M.; Pizzolo, G.; Aprili, G. Mesenchymal stem cells: From biology to clinical use. Blood Transfus., 2007, 5(3), 120-129.
[PMID: 19204764]
[403]
Via, A.G.; Frizziero, A.; Oliva, F. Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J., 2012, 2(3), 154-162.
[PMID: 23738292]
[404]
Farini, A.; Sitzia, C.; Erratico, S.; Meregalli, M.; Torrente, Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/306573] [PMID: 24876848]
[405]
Maleki, M.; Ghanbarvand, F.; Behvarz, M.R.; Ejtemaei, M.; Ghadirkhomi, E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells, 2014, 7(2), 118-126.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.118] [PMID: 25473449]
[406]
Law, S.; Chaudhuri, S. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am. J. Stem Cells, 2013, 2(1), 22-38.
[PMID: 23671814]
[407]
Nagamura-Inoue, T.; He, H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells, 2014, 6(2), 195-202.
[http://dx.doi.org/10.4252/wjsc.v6.i2.195] [PMID: 24772246]
[408]
Hordyjewska, A.; Popiołek, Ł.; Horecka, A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 2015, 67(3), 387-396.
[http://dx.doi.org/10.1007/s10616-014-9796-y] [PMID: 25373337]
[409]
Rosemann, A. Why regenerative stem cell medicine progresses slower than expected. J. Cell. Biochem., 2014, 115(12), 2073-2076.
[http://dx.doi.org/10.1002/jcb.24894] [PMID: 25079695]
[410]
McKenna, D.; Sheth, J. Umbilical cord blood: Current status & promise for the future. Indian J. Med. Res., 2011, 134(3), 261-269.
[PMID: 21985808]
[411]
Ballen, K.K.; Gluckman, E.; Broxmeyer, H.E. Umbilical cord blood transplantation: The first 25 years and beyond. Blood, 2013, 122(4), 491-498.
[http://dx.doi.org/10.1182/blood-2013-02-453175] [PMID: 23673863]
[412]
Travlos, G.S. Normal structure, function, and histology of the bone marrow. Toxicol. Pathol., 2006, 34(5), 548-565.
[http://dx.doi.org/10.1080/01926230600939856] [PMID: 17067943]
[413]
Brenner, M.K. Gene-modified cells for stem cell transplantation and cancer therapy. Hum. Gene Ther., 2014, 25(7), 563-569.
[http://dx.doi.org/10.1089/hum.2014.2527] [PMID: 25029600]
[414]
Chen, F.M.; Liu, X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci., 2016, 53, 86-168.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.02.004] [PMID: 27022202]
[415]
Howard, C.A.; Fernandez-Vina, M.A.; Appelbaum, F.R.; Confer, D.L.; Devine, S.M.; Horowitz, M.M.; Mendizabal, A.; Laport, G.G.; Pasquini, M.C.; Spellman, S.R. Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: consensus opinion of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN). Biol. Blood Marrow Transplant., 2015, 21(1), 4-7.
[http://dx.doi.org/10.1016/j.bbmt.2014.09.017] [PMID: 25278457]
[416]
Acevedo-Whitehouse, K.; Duffus, A.L.J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1534), 3429-3438.
[http://dx.doi.org/10.1098/rstb.2009.0128] [PMID: 19833653]
[417]
Kasso, M.; Balakrishnan, M. Ex situ conservation of biodiversity with particular emphasis to ethiopia. ISRN Biodiversity, 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/985037]
[418]
Khan, S.; Nabi, G.; Ullah, M.W.; Yousaf, M.; Manan, S.; Siddique, R.; Hou, H. Overview on the role of advance genomics in conservation biology of endangered species. Int. J. Genomics, 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/3460416] [PMID: 28025636]
[419]
Devi, L.; Goel, S. Fertility preservation through gonadal cryopreservation. Reprod. Med. Biol., 2016, 15(4), 235-251.
[http://dx.doi.org/10.1007/s12522-016-0240-1] [PMID: 29259441]
[420]
Friedrich Ben-Nun, I.; Montague, S.C.; Houck, M.L.; Tran, H.T.; Garitaonandia, I.; Leonardo, T.R.; Wang, Y.C.; Charter, S.J.; Laurent, L.C.; Ryder, O.A.; Loring, J.F. Induced pluripotent stem cells from highly endangered species. Nat. Methods, 2011, 8(10), 829-831.
[http://dx.doi.org/10.1038/nmeth.1706] [PMID: 21892153]
[421]
Stanton, M.M.; Tzatzalos, E.; Donne, M.; Kolundzic, N.; Helgason, I.; Ilic, D. Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection. Stem Cells Transl. Med., 2019, 8(1), 7-13.
[http://dx.doi.org/10.1002/sctm.18-0047] [PMID: 30251393]
[422]
Ogorevc, J.; Orehek, S.; Dovč, P. Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species. J. Anim. Sci. Biotechnol., 2016, 7(1), 10.
[http://dx.doi.org/10.1186/s40104-016-0070-3] [PMID: 26900466]
[423]
Comizzoli, P.; Wildt, D.E. On the horizon for fertility preservation in domestic and wild carnivores. Reprod. Domest. Anim., 2012, 47(S6), 261-265.
[http://dx.doi.org/10.1111/rda.12010] [PMID: 23279514]
[424]
Ramaswamy, K.; Yik, W.Y.; Wang, X.M.; Oliphant, E.N.; Lu, W.; Shibata, D.; Ryder, O.A.; Hacia, J.G. Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res. Notes, 2015, 8(1), 577.
[http://dx.doi.org/10.1186/s13104-015-1567-0] [PMID: 26475477]
[425]
Omole, A.E.; Fakoya, A.O.J. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 2018, 6, e4370.
[http://dx.doi.org/10.7717/peerj.4370] [PMID: 29770269]
[426]
Pothana, L.; Makala, H.; Devi, L.; Varma, V.P.; Goel, S. Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice. Theriogenology, 2015, 83(4), 625-633.
[http://dx.doi.org/10.1016/j.theriogenology.2014.10.028] [PMID: 25467768]
[427]
Sayed, N.; Liu, C.; Wu, J.C. Translation of human-induced pluripotent stem cells. J. Am. Coll. Cardiol., 2016, 67(18), 2161-2176.
[http://dx.doi.org/10.1016/j.jacc.2016.01.083] [PMID: 27151349]
[428]
Seki, T.; Fukuda, K. Methods of induced pluripotent stem cells for clinical application. World J. Stem Cells, 2015, 7(1), 116-125.
[http://dx.doi.org/10.4252/wjsc.v7.i1.116] [PMID: 25621111]
[429]
Brigida, A.L.; Siniscalco, D. Induced pluripotent stem cells as a cellular model for studying down syndrome. J. Stem Cells Regen. Med., 2016, 12(2), 54-60.
[http://dx.doi.org/10.46582/jsrm.1202009] [PMID: 28096629]
[430]
Martin, U. Therapeutic application of pluripotent stem cells: Challenges and risks. Front. Med., 2017, 4, 229.
[http://dx.doi.org/10.3389/fmed.2017.00229] [PMID: 29312943]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy