Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

CD155-TIGIT Axis as a Therapeutic Target for Cancer Immunotherapy

Author(s): Yeteng Mu and Xingang Guan*

Volume 31, Issue 13, 2024

Published on: 12 May, 2023

Page: [1634 - 1645] Pages: 12

DOI: 10.2174/0929867330666230324152532

Price: $65

Abstract

Immune checkpoint inhibitors (ICIs) have shown unprecedented efficacy in treating many advanced cancers. Although FDA-approved ICIs have shown promising efficacy in treating many advanced cancers, their application is greatly limited by the low response rate, immune-related adverse events (irAE), and drug resistance. Developing novel ICIs holds great promise to improve the survival and prognosis of advanced cancer patients. T-Cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on T cells, natural killer (NK) cells, and T regulatory cells. Increasing reports have shown that the disrupting CD155-TIGIT axis could activate the immune system and restore antitumor immune response. This review briefly summarized the role of TIGIT in tumor immune escape and targeting CD155-TIGIT axis drugs in preclinical and clinical trials for cancer immunotherapy.

Keywords: TIGIT, CD155, PD-1, immune checkpoint inhibitor, cancer immunotherapy, tumor cells.

[1]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[2]
Schilsky, R.L.; Nass, S.; Le Beau, M.M.; Benz, E.J., Jr Progress in cancer research, prevention, and care. N. Engl. J. Med., 2020, 383(10), 897-900.
[http://dx.doi.org/10.1056/NEJMp2007839] [PMID: 32877579]
[3]
Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des., 2010, 16(1), 3-10.
[http://dx.doi.org/10.2174/138161210789941847] [PMID: 20214614]
[4]
Whiteside, T.L.; Demaria, S.; Rodriguez-Ruiz, M.E.; Zarour, H.M.; Melero, I. Emerging opportunities and challenges in cancer immunotherapy. Clin. Cancer Res., 2016, 22(8), 1845-1855.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0049] [PMID: 27084738]
[5]
Wang, L.; Bai, L. [Progress on tumor immune checkpoints and their inhibitors in tumor therapy]. Xibao Yu Fenzi Mianyixue Zazhi, 2021, 37(7), 663-670.
[PMID: 34140079]
[6]
Attanasio, J.; Wherry, E.J. Costimulatory and coinhibitory receptor pathways in infectious disease. Immunity, 2016, 44(5), 1052-1068.
[http://dx.doi.org/10.1016/j.immuni.2016.04.022] [PMID: 27192569]
[7]
Frebel, H.; Oxenius, A. The risks of targeting co-inhibitory pathways to modulate pathogen-directed T cell responses. Trends Immunol., 2013, 34(5), 193-199.
[http://dx.doi.org/10.1016/j.it.2012.12.002] [PMID: 23333205]
[8]
Marhelava, K.; Pilch, Z.; Bajor, M.; Graczyk-Jarzynka, A.; Zagozdzon, R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers (Basel), 2019, 11(11), 1756.
[http://dx.doi.org/10.3390/cancers11111756] [PMID: 31717326]
[9]
Blank, C.U.; Haining, W.N.; Held, W.; Hogan, P.G.; Kallies, A.; Lugli, E.; Lynn, R.C.; Philip, M.; Rao, A.; Restifo, N.P.; Schietinger, A.; Schumacher, T.N.; Schwartzberg, P.L.; Sharpe, A.H.; Speiser, D.E.; Wherry, E.J.; Youngblood, B.A.; Zehn, D. Defining ‘T cell exhaustion’. Nat. Rev. Immunol., 2019, 19(11), 665-674.
[http://dx.doi.org/10.1038/s41577-019-0221-9] [PMID: 31570879]
[10]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[11]
Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; Zhang, C.; Lunceford, J.K.; Joe, A.; Cheng, J.; Webber, A.L.; Ibrahim, N.; Plimack, E.R.; Ott, P.A.; Seiwert, T.Y.; Ribas, A.; McClanahan, T.K.; Tomassini, J.E.; Loboda, A.; Kaufman, D. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science, 2018, 362(6411), eaar3593.
[http://dx.doi.org/10.1126/science.aar3593] [PMID: 30309915]
[12]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[13]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Drilon, A.; Wolchok, J.D.; Carvajal, R.D.; McHenry, M.B.; Hosein, F.; Harbison, C.T.; Grosso, J.F.; Sznol, M. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non–small cell lung cancer treated with nivolumab. JAMA Oncol., 2019, 5(10), 1411-1420.
[http://dx.doi.org/10.1001/jamaoncol.2019.2187] [PMID: 31343665]
[14]
Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S.; Dronca, R.; Mitchell, T.C.; Patnaik, A.; Zarour, H.M.; Joshua, A.M.; Zhao, Q.; Jensen, E.; Ahsan, S.; Ibrahim, N.; Ribas, A. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol., 2019, 30(4), 582-588.
[http://dx.doi.org/10.1093/annonc/mdz011] [PMID: 30715153]
[15]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[16]
Andrews, L.P.; Yano, H.; Vignali, D.A.A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat. Immunol., 2019, 20(11), 1425-1434.
[http://dx.doi.org/10.1038/s41590-019-0512-0] [PMID: 31611702]
[17]
Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers, 2020, 6(1), 38.
[http://dx.doi.org/10.1038/s41572-020-0160-6] [PMID: 32382051]
[18]
Blidner, A.G.; Choi, J.; Cooksley, T.; Dougan, M.; Glezerman, I.; Ginex, P.; Girotra, M.; Gupta, D.; Johnson, D.; Shannon, V.R.; Suarez-Almazor, M.; Rapoport, B.L.; Anderson, R. Cancer immunotherapy–related adverse events: Causes and challenges. Support. Care Cancer, 2020, 28(12), 6111-6117.
[http://dx.doi.org/10.1007/s00520-020-05705-5] [PMID: 32857220]
[19]
Wang, M.; Wang, Y.; Mu, Y.; Yang, F.; Yang, Z.; Liu, Y.; Huang, L.; Liu, S.; Guan, X.; Xie, Z.; Gu, Z. Engineering SIRPα cellular membrane-based nanovesicles for combination immunotherapy. Nano Res., 2023.
[http://dx.doi.org/10.1007/s12274-023-5397-4]
[20]
Weiskopf, K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur. J. Cancer, 2017, 76, 100-109.
[http://dx.doi.org/10.1016/j.ejca.2017.02.013] [PMID: 28286286]
[21]
Andrews, L.P.; Marciscano, A.E.; Drake, C.G.; Vignali, D.A.A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev., 2017, 276(1), 80-96.
[http://dx.doi.org/10.1111/imr.12519] [PMID: 28258692]
[22]
Chocarro, L.; Blanco, E.; Zuazo, M.; Arasanz, H.; Bocanegra, A.; Fernández-Rubio, L.; Morente, P.; Fernández-Hinojal, G.; Echaide, M.; Garnica, M.; Ramos, P.; Vera, R.; Kochan, G.; Escors, D. Understanding LAG-3 signaling. Int. J. Mol. Sci., 2021, 22(10), 5282.
[http://dx.doi.org/10.3390/ijms22105282] [PMID: 34067904]
[23]
Monney, L.; Sabatos, C.A.; Gaglia, J.L.; Ryu, A.; Waldner, H.; Chernova, T.; Manning, S.; Greenfield, E.A.; Coyle, A.J.; Sobel, R.A.; Freeman, G.J.; Kuchroo, V.K. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415(6871), 536-541.
[http://dx.doi.org/10.1038/415536a] [PMID: 11823861]
[24]
Wang, L.; Rubinstein, R.; Lines, J.L.; Wasiuk, A.; Ahonen, C.; Guo, Y.; Lu, L.F.; Gondek, D.; Wang, Y.; Fava, R.A.; Fiser, A.; Almo, S.; Noelle, R.J. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med., 2011, 208(3), 577-592.
[http://dx.doi.org/10.1084/jem.20100619] [PMID: 21383057]
[25]
ElTanbouly, M.A.; Zhao, Y.; Schaafsma, E.; Burns, C.M.; Mabaera, R.; Cheng, C.; Noelle, R.J. VISTA: A target to manage the innate cytokine storm. Front. Immunol., 2021, 11, 595950.
[http://dx.doi.org/10.3389/fimmu.2020.595950] [PMID: 33643285]
[26]
Yu, X.; Zheng, Y.; Mao, R.; Su, Z.; Zhang, J. BTLA/HVEM signaling: Milestones in research and role in chronic hepatitis B virus infection. Front. Immunol., 2019, 10, 617.
[http://dx.doi.org/10.3389/fimmu.2019.00617] [PMID: 30984188]
[27]
Small, A.; Cole, S.; Wang, J.J.; Nagpal, S.; Hao, L.Y.; Wechalekar, M.D. Attenuation of the BTLA/HVEM regulatory network in the circulation in primary Sjögren’s syndrome. J. Clin. Med., 2022, 11(3), 535.
[http://dx.doi.org/10.3390/jcm11030535] [PMID: 35159987]
[28]
Yu, X.; Harden, K.; C Gonzalez, L.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; Eaton, D.; Grogan, J.L. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol., 2009, 10(1), 48-57.
[http://dx.doi.org/10.1038/ni.1674] [PMID: 19011627]
[29]
Freed-Pastor, W.A.; Lambert, L.J.; Ely, Z.A.; Pattada, N.B.; Bhutkar, A.; Eng, G.; Mercer, K.L.; Garcia, A.P.; Lin, L.; Rideout, W.M., III; Hwang, W.L.; Schenkel, J.M.; Jaeger, A.M.; Bronson, R.T.; Westcott, P.M.K.; Hether, T.D.; Divakar, P.; Reeves, J.W.; Deshpande, V.; Delorey, T.; Phillips, D.; Yilmaz, O.H.; Regev, A.; Jacks, T. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell, 2021, 39(10), 1342-1360.e14.
[http://dx.doi.org/10.1016/j.ccell.2021.07.007] [PMID: 34358448]
[30]
Chen, F.; Xu, Y.; Chen, Y.; Shan, S. TIGIT enhances CD4+ regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med., 2020, 9(10), 3584-3591.
[http://dx.doi.org/10.1002/cam4.2976] [PMID: 32212317]
[31]
Guillerey, C.; Harjunpää, H.; Carrié, N.; Kassem, S.; Teo, T.; Miles, K.; Krumeich, S.; Weulersse, M.; Cuisinier, M.; Stannard, K.; Yu, Y.; Minnie, S.A.; Hill, G.R.; Dougall, W.C.; Avet-Loiseau, H.; Teng, M.W.L.; Nakamura, K.; Martinet, L.; Smyth, M.J. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132(16), 1689-1694.
[http://dx.doi.org/10.1182/blood-2018-01-825265] [PMID: 29986909]
[32]
Harjunpää, H.; Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol., 2020, 200(2), 108-119.
[http://dx.doi.org/10.1111/cei.13407] [PMID: 31828774]
[33]
Stanietsky, N.; Simic, H.; Arapovic, J.; Toporik, A.; Levy, O.; Novik, A.; Levine, Z.; Beiman, M.; Dassa, L.; Achdout, H.; Stern-Ginossar, N.; Tsukerman, P.; Jonjic, S.; Mandelboim, O. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17858-17863.
[http://dx.doi.org/10.1073/pnas.0903474106] [PMID: 19815499]
[34]
Sanchez-Correa, B.; Valhondo, I.; Hassouneh, F.; Lopez-Sejas, N.; Pera, A.; Bergua, J.M.; Arcos, M.J.; Bañas, H.; Casas-Avilés, I.; Durán, E.; Alonso, C.; Solana, R.; Tarazona, R. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: Novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel), 2019, 11(6), 877.
[http://dx.doi.org/10.3390/cancers11060877] [PMID: 31234588]
[35]
Dougall, W.C.; Kurtulus, S.; Smyth, M.J.; Anderson, A.C. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol. Rev., 2017, 276(1), 112-120.
[http://dx.doi.org/10.1111/imr.12518] [PMID: 28258695]
[36]
Zeng, T.; Cao, Y.; Jin, T.; Tian, Y.; Dai, C.; Xu, F. The CD112R/CD112 axis: A breakthrough in cancer immunotherapy. J. Exp. Clin. Cancer Res., 2021, 40(1), 285.
[http://dx.doi.org/10.1186/s13046-021-02053-y] [PMID: 34507594]
[37]
Devilard, E.; Xerri, L.; Dubreuil, P.; Lopez, M.; Reymond, N. Nectin-3 (CD113) interacts with Nectin-2 (CD112) to promote lymphocyte transendothelial migration. PLoS One, 2013, 8(10), e77424.
[http://dx.doi.org/10.1371/journal.pone.0077424] [PMID: 24116228]
[38]
Fujito, T.; Ikeda, W.; Kakunaga, S.; Minami, Y.; Kajita, M.; Sakamoto, Y.; Monden, M.; Takai, Y. Inhibition of cell movement and proliferation by cell–cell contact-induced interaction of Necl-5 with nectin-3. J. Cell Biol., 2005, 171(1), 165-173.
[http://dx.doi.org/10.1083/jcb.200501090] [PMID: 16216929]
[39]
Reches, A.; Ophir, Y.; Stein, N.; Kol, I.; Isaacson, B.; Charpak Amikam, Y.; Elnekave, A.; Tsukerman, P.; Kucan Brlic, P.; Lenac, T.; Seliger, B.; Jonjic, S.; Mandelboim, O. Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity. J. Immunother. Cancer, 2020, 8(1), e000266.
[http://dx.doi.org/10.1136/jitc-2019-000266] [PMID: 32503945]
[40]
Zhang, Q.; Bi, J.; Zheng, X.; Chen, Y.; Wang, H.; Wu, W.; Wang, Z.; Wu, Q.; Peng, H.; Wei, H.; Sun, R.; Tian, Z. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol., 2018, 19(7), 723-732.
[http://dx.doi.org/10.1038/s41590-018-0132-0] [PMID: 29915296]
[41]
Chauvin, J.M.; Pagliano, O.; Fourcade, J.; Sun, Z.; Wang, H.; Sander, C.; Kirkwood, J.M.; Chen, T.T.; Maurer, M.; Korman, A.J.; Zarour, H.M. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. J. Clin. Invest., 2015, 125(5), 2046-2058.
[http://dx.doi.org/10.1172/JCI80445] [PMID: 25866972]
[42]
Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; Eaton, D.L.; Grogan, J.L. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell, 2014, 26(6), 923-937.
[http://dx.doi.org/10.1016/j.ccell.2014.10.018] [PMID: 25465800]
[43]
Joller, N.; Lozano, E.; Burkett, P.R.; Patel, B.; Xiao, S.; Zhu, C.; Xia, J.; Tan, T.G.; Sefik, E.; Yajnik, V.; Sharpe, A.H.; Quintana, F.J.; Mathis, D.; Benoist, C.; Hafler, D.A.; Kuchroo, V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity, 2014, 40(4), 569-581.
[http://dx.doi.org/10.1016/j.immuni.2014.02.012] [PMID: 24745333]
[44]
Fourcade, J.; Sun, Z.; Chauvin, J.M.; Ka, M.; Davar, D.; Pagliano, O.; Wang, H.; Saada, S.; Menna, C.; Amin, R.; Sander, C.; Kirkwood, J.M.; Korman, A.J.; Zarour, H.M. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight, 2018, 3(14), e121157.
[http://dx.doi.org/10.1172/jci.insight.121157] [PMID: 30046006]
[45]
Long, Y.; Wang, C.; Xia, C.; Li, X.; Fan, C.; Zhao, X.; Liu, C. Recovery of CD226-TIGIT+FoxP3+ and CD226-TIGIT-FoxP3+ regulatory T cells contributes to clinical remission from active stage in ulcerative colitis patients. Immunol. Lett., 2020, 218, 30-39.
[http://dx.doi.org/10.1016/j.imlet.2019.12.007] [PMID: 31883787]
[46]
Bhandaru, M.; Rotte, A. Monoclonal antibodies for the treatment of melanoma: Present and future strategies. Methods Mol. Biol., 2019, 1904, 83-108.
[http://dx.doi.org/10.1007/978-1-4939-8958-4_4] [PMID: 30539467]
[47]
Chauvin, J.M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer, 2020, 8(2), e000957.
[http://dx.doi.org/10.1136/jitc-2020-000957] [PMID: 32900861]
[48]
Kurtulus, S.; Sakuishi, K.; Ngiow, S.F.; Joller, N.; Tan, D.J.; Teng, M.W.L.; Smyth, M.J.; Kuchroo, V.K.; Anderson, A.C. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest., 2015, 125(11), 4053-4062.
[http://dx.doi.org/10.1172/JCI81187] [PMID: 26413872]
[49]
Chew, G.M.; Fujita, T.; Webb, G.M.; Burwitz, B.J.; Wu, H.L.; Reed, J.S.; Hammond, K.B.; Clayton, K.L.; Ishii, N.; Abdel-Mohsen, M.; Liegler, T.; Mitchell, B.I.; Hecht, F.M.; Ostrowski, M.; Shikuma, C.M.; Hansen, S.G.; Maurer, M.; Korman, A.J.; Deeks, S.G.; Sacha, J.B.; Ndhlovu, L.C. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog., 2016, 12(1), e1005349.
[http://dx.doi.org/10.1371/journal.ppat.1005349] [PMID: 26741490]
[50]
Inozume, T.; Yaguchi, T.; Furuta, J.; Harada, K.; Kawakami, Y.; Shimada, S. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J. Invest. Dermatol., 2016, 136(1), 255-263.
[http://dx.doi.org/10.1038/JID.2015.404] [PMID: 26763445]
[51]
Mahnke, K.; Enk, A.H. TIGIT-CD155 interactions in melanoma: A novel co-inhibitory pathway with potential for clinical intervention. J. Invest. Dermatol., 2016, 136(1), 9-11.
[http://dx.doi.org/10.1016/j.jid.2015.10.048] [PMID: 26763417]
[52]
Hu, F.; Wang, W.; Fang, C.; Bai, C. TIGIT presents earlier expression dynamic than PD-1 in activated CD8+ T cells and is upregulated in non-small cell lung cancer patients. Exp. Cell Res., 2020, 396(1), 112260.
[http://dx.doi.org/10.1016/j.yexcr.2020.112260] [PMID: 32890458]
[53]
Thommen, D.S.; Koelzer, V.H.; Herzig, P.; Roller, A.; Trefny, M.; Dimeloe, S.; Kiialainen, A.; Hanhart, J.; Schill, C.; Hess, C.; Savic Prince, S.; Wiese, M.; Lardinois, D.; Ho, P.C.; Klein, C.; Karanikas, V.; Mertz, K.D.; Schumacher, T.N.; Zippelius, A. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med., 2018, 24(7), 994-1004.
[http://dx.doi.org/10.1038/s41591-018-0057-z] [PMID: 29892065]
[54]
Ge, Z.; Zhou, G.; Campos Carrascosa, L.; Gausvik, E.; Boor, P.P.C.; Noordam, L.; Doukas, M.; Polak, W.G.; Terkivatan, T.; Pan, Q.; Takkenberg, R.B.; Verheij, J.; Erdmann, J.I.; IJzermans, J.N.M.; Peppelenbosch, M.P.; Kraan, J.; Kwekkeboom, J.; Sprengers, D. TIGIT and PD1 Co-blockade restores ex vivo functions of human tumor-infiltrating CD8+ T cells in hepatocellular carcinoma. Cell. Mol. Gastroenterol. Hepatol., 2021, 12(2), 443-464.
[http://dx.doi.org/10.1016/j.jcmgh.2021.03.003] [PMID: 33781741]
[55]
Ostroumov, D.; Duong, S.; Wingerath, J.; Woller, N.; Manns, M.P.; Timrott, K.; Kleine, M.; Ramackers, W.; Roessler, S.; Nahnsen, S.; Czemmel, S.; Dittrich-Breiholz, O.; Eggert, T.; Kühnel, F.; Wirth, T.C. Transcriptome profiling identifies TIGIT as a marker of T-cell exhaustion in liver cancer. Hepatology, 2021, 73(4), 1399-1418.
[http://dx.doi.org/10.1002/hep.31466] [PMID: 32716559]
[56]
Xu, D.; Zhao, E.; Zhu, C.; Zhao, W.; Wang, C.; Zhang, Z.; Zhao, G. TIGIT and PD-1 may serve as potential prognostic biomarkers for gastric cancer. Immunobiology, 2020, 225(3), 151915.
[http://dx.doi.org/10.1016/j.imbio.2020.151915] [PMID: 32122675]
[57]
Lucca, L.E.; Lerner, B.A.; Park, C.; DeBartolo, D.; Harnett, B.; Kumar, V.P.; Ponath, G.; Raddassi, K.; Huttner, A.; Hafler, D.A.; Pitt, D. Differential expression of the T- cell inhibitor TIGIT in glioblastoma and MS. Neurol. Neuroimmunol. Neuroinflamm., 2020, 7(3), e712.
[http://dx.doi.org/10.1212/NXI.0000000000000712] [PMID: 32269065]
[58]
Lozano, E.; Mena, M.P.; Díaz, T.; Martin-Antonio, B.; León, S.; Rodríguez-Lobato, L.G.; Oliver-Caldés, A.; Cibeira, M.T.; Bladé, J.; Prat, A.; Rosiñol, L.; Fernández de Larrea, C. Nectin-2 expression on malignant plasma cells is associated with better response to TIGIT blockade in multiple myeloma. Clin. Cancer Res., 2020, 26(17), 4688-4698.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3673] [PMID: 32513837]
[59]
Yang, Z.Z.; Kim, H.J.; Wu, H.; Jalali, S.; Tang, X.; Krull, J.E.; Ding, W.; Novak, A.J.; Ansell, S.M. TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and Anti–PD-1 response in follicular lymphoma. Clin. Cancer Res., 2020, 26(19), 5217-5231.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0558] [PMID: 32631956]
[60]
Kong, Y.; Zhu, L.; Schell, T.D.; Zhang, J.; Claxton, D.F.; Ehmann, W.C.; Rybka, W.B.; George, M.R.; Zeng, H.; Zheng, H. T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin. Cancer Res., 2016, 22(12), 3057-3066.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2626] [PMID: 26763253]
[61]
Li, W.; Blessin, N.C.; Simon, R.; Kluth, M.; Fischer, K.; Hube-Magg, C.; Makrypidi-Fraune, G.; Wellge, B.; Mandelkow, T.; Debatin, N.F.; Pott, L.; Höflmayer, D.; Lennartz, M.; Sauter, G.; Izbicki, J.R.; Minner, S.; Büscheck, F.; Uhlig, R.; Dum, D.; Krech, T.; Luebke, A.M.; Wittmer, C.; Jacobsen, F.; Burandt, E.; Steurer, S.; Wilczak, W.; Hinsch, A. Expression of the immune checkpoint receptor TIGIT in Hodgkin’s lymphoma. BMC Cancer, 2018, 18(1), 1209.
[http://dx.doi.org/10.1186/s12885-018-5111-1] [PMID: 30514251]
[62]
Blessin, N.C.; Simon, R.; Kluth, M.; Fischer, K.; Hube- Magg, C.; Li, W.; Makrypidi-Fraune, G.; Wellge, B.; Mandelkow, T.; Debatin, N.F.; Höflmayer, D.; Lennartz, M.; Sauter, G.; Izbicki, J.R.; Minner, S.; Büscheck, F.; Uhlig, R.; Dum, D.; Krech, T.; Luebke, A.M.; Wittmer, C.; Jacobsen, F.; Burandt, E.C.; Steurer, S.; Wilczak, W.; Hinsch, A. Patterns of TIGIT expression in lymphatic tissue, inflammation, and cancer. Dis. Markers, 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/5160565] [PMID: 30733837]
[63]
Josefsson, S.E.; Huse, K.; Kolstad, A.; Beiske, K.; Pende, D.; Steen, C.B.; Inderberg, E.M.; Lingjærde, O.C.; Østenstad, B.; Smeland, E.B.; Levy, R.; Irish, J.M.; Myklebust, J.H. T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin. Cancer Res., 2018, 24(4), 870-881.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2337] [PMID: 29217528]
[64]
Zhu, L.; Kong, Y.; Zhang, J.; Claxton, D.F.; Ehmann, W.C.; Rybka, W.B.; Palmisiano, N.D.; Wang, M.; Jia, B.; Bayerl, M.; Schell, T.D.; Hohl, R.J.; Zeng, H.; Zheng, H. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J. Hematol. Oncol., 2017, 10(1), 124.
[http://dx.doi.org/10.1186/s13045-017-0486-z] [PMID: 28629373]
[65]
Stålhammar, G.; Seregard, S.; Grossniklaus, H.E. Expression of immune checkpoint receptors Indoleamine 2,3- dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med., 2019, 8(6), cam4.2167.
[http://dx.doi.org/10.1002/cam4.2167] [PMID: 30993893]
[66]
Lee, W.J.; Lee, Y.J.; Choi, M.E.; Yun, K.A.; Won, C.H.; Lee, M.W.; Choi, J.H.; Chang, S.E. Expression of lymphocyte-activating gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM domains in cutaneous melanoma and their correlation with programmed cell death 1 expression in tumor-infiltrating lymphocytes. J. Am. Acad. Dermatol., 2019, 81(1), 219-227.
[http://dx.doi.org/10.1016/j.jaad.2019.03.012] [PMID: 30880064]
[67]
Degos, C.; Heinemann, M.; Barrou, J.; Boucherit, N.; Lambaudie, E.; Savina, A.; Gorvel, L.; Olive, D. Endometrial tumor microenvironment alters human NK cell recruitment, and resident NK cell phenotype and function. Front. Immunol., 2019, 10, 877.
[http://dx.doi.org/10.3389/fimmu.2019.00877] [PMID: 31105699]
[68]
Meng, F.; Li, L.; Lu, F.; Yue, J.; Liu, Z.; Zhang, W.; Fu, R. Overexpression of TIGIT in NK and T cells contributes to tumor immune escape in myelodysplastic syndromes. Front. Oncol., 2020, 10, 1595.
[http://dx.doi.org/10.3389/fonc.2020.01595] [PMID: 32903786]
[69]
Joller, N.; Hafler, J.P.; Brynedal, B.; Kassam, N.; Spoerl, S.; Levin, S.D.; Sharpe, A.H.; Kuchroo, V.K. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol., 2011, 186(3), 1338-1342.
[http://dx.doi.org/10.4049/jimmunol.1003081] [PMID: 21199897]
[70]
Kojima, H.; Kanada, H.; Shimizu, S.; Kasama, E.; Shibuya, K.; Nakauchi, H.; Nagasawa, T.; Shibuya, A. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J. Biol. Chem., 2003, 278(38), 36748-36753.
[http://dx.doi.org/10.1074/jbc.M300702200] [PMID: 12847109]
[71]
Shibuya, A.; Campbell, D.; Hannum, C.; Yssel, H.; Franz-Bacon, K.; McClanahan, T.; Kitamura, T.; Nicholl, J.; Sutherland, G.R.; Lanier, L.L.; Phillips, J.H. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity, 1996, 4(6), 573-581.
[http://dx.doi.org/10.1016/S1074-7613(00)70060-4] [PMID: 8673704]
[72]
Lakshmikanth, T.; Burke, S.; Ali, T.H.; Kimpfler, S.; Ursini, F.; Ruggeri, L.; Capanni, M.; Umansky, V.; Paschen, A.; Sucker, A.; Pende, D.; Groh, V.; Biassoni, R.; Höglund, P.; Kato, M.; Shibuya, K.; Schadendorf, D.; Anichini, A.; Ferrone, S.; Velardi, A.; Kärre, K.; Shibuya, A.; Carbone, E.; Colucci, F. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest., 2009, 119(5), 1251-1263.
[http://dx.doi.org/10.1172/JCI36022] [PMID: 19349689]
[73]
Tan, M.C.B.; Goedegebuure, P.S.; Belt, B.A.; Flaherty, B.; Sankpal, N.; Gillanders, W.E.; Eberlein, T.J.; Hsieh, C.S.; Linehan, D.C. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol., 2009, 182(3), 1746-1755.
[http://dx.doi.org/10.4049/jimmunol.182.3.1746] [PMID: 19155524]
[74]
Iellem, A.; Mariani, M.; Lang, R.; Recalde, H.; Panina-Bordignon, P.; Sinigaglia, F.; D’Ambrosio, D. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J. Exp. Med., 2001, 194(6), 847-854.
[http://dx.doi.org/10.1084/jem.194.6.847] [PMID: 11560999]
[75]
Lucca, L.E.; Axisa, P.P.; Singer, E.R.; Nolan, N.M.; Dominguez-Villar, M.; Hafler, D.A. TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight, 2019, 4(3), e124427.
[http://dx.doi.org/10.1172/jci.insight.124427] [PMID: 30728325]
[76]
Sungnak, W.; Wagner, A.; Kowalczyk, M.S.; Bod, L.; Kye, Y.C.; Sage, P.T.; Sharpe, A.H.; Sobel, R.A.; Quintana, F.J.; Rozenblatt-Rosen, O.; Regev, A.; Wang, C.; Yosef, N.; Kuchroo, V.K. T follicular regulatory cell–derived fibrinogen-like protein 2 regulates production of autoantibodies and induction of systemic autoimmunity. J. Immunol., 2020, 205(12), 3247-3262.
[http://dx.doi.org/10.4049/jimmunol.2000748] [PMID: 33168576]
[77]
Molfetta, R.; Zitti, B.; Lecce, M.; Milito, N.D.; Stabile, H.; Fionda, C.; Cippitelli, M.; Gismondi, A.; Santoni, A.; Paolini, R. CD155: A multi-functional molecule in tumor progression. Int. J. Mol. Sci., 2020, 21(3), 922.
[http://dx.doi.org/10.3390/ijms21030922] [PMID: 32019260]
[78]
Iguchi-Manaka, A.; Okumura, G.; Kojima, H.; Cho, Y.; Hirochika, R.; Bando, H.; Sato, T.; Yoshikawa, H.; Hara, H.; Shibuya, A.; Shibuya, K. Increased soluble CD155 in the serum of cancer patients. PLoS One, 2016, 11(4), e0152982.
[http://dx.doi.org/10.1371/journal.pone.0152982] [PMID: 27049654]
[79]
Wootton, S.K.; Halbert, C.L.; Miller, A.D. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature, 2005, 434(7035), 904-907.
[http://dx.doi.org/10.1038/nature03492] [PMID: 15829964]
[80]
Hirota, T.; Irie, K.; Okamoto, R.; Ikeda, W.; Takai, Y. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf–MEK–ERK–AP-1 pathway. Oncogene, 2005, 24(13), 2229-2235.
[http://dx.doi.org/10.1038/sj.onc.1208409] [PMID: 15688018]
[81]
Solecki, D.J.; Gromeier, M.; Mueller, S.; Bernhardt, G.; Wimmer, E. Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J. Biol. Chem., 2002, 277(28), 25697-25702.
[http://dx.doi.org/10.1074/jbc.M201378200] [PMID: 11983699]
[82]
Fuchs, A.; Colonna, M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin. Cancer Biol., 2006, 16(5), 359-366.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.002] [PMID: 16904340]
[83]
Sloan, K.E.; Eustace, B.K.; Stewart, J.K.; Zehetmeier, C.; Torella, C.; Simeone, M.; Roy, J.E.; Unger, C.; Louis, D.N.; Ilag, L.L.; Jay, D.G. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer, 2004, 4(1), 73.
[http://dx.doi.org/10.1186/1471-2407-4-73] [PMID: 15471548]
[84]
Pende, D.; Bottino, C.; Castriconi, R.; Cantoni, C.; Marcenaro, S.; Rivera, P.; Spaggiari, G.M.; Dondero, A.; Carnemolla, B.; Reymond, N.; Mingari, M.C.; Lopez, M.; Moretta, L.; Moretta, A. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol. Immunol., 2005, 42(4), 463-469.
[http://dx.doi.org/10.1016/j.molimm.2004.07.028] [PMID: 15607800]
[85]
Andrade, L.F.; Smyth, M.J.; Martinet, L. DNAM 1 control of natural killer cells functions through nectin and nectin- like proteins. Immunol. Cell Biol., 2014, 92(3), 237-244.
[http://dx.doi.org/10.1038/icb.2013.95] [PMID: 24343663]
[86]
Chan, C.J.; Andrews, D.M.; Smyth, M.J. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr. Opin. Immunol., 2012, 24(2), 246-251.
[http://dx.doi.org/10.1016/j.coi.2012.01.009] [PMID: 22285893]
[87]
Minnie, S.A.; Kuns, R.D.; Gartlan, K.H.; Zhang, P.; Wilkinson, A.N.; Samson, L.; Guillerey, C.; Engwerda, C.; MacDonald, K.P.A.; Smyth, M.J.; Markey, K.A.; Vuckovic, S.; Hill, G.R. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood, 2018, 132(16), 1675-1688.
[http://dx.doi.org/10.1182/blood-2018-01-825240] [PMID: 30154111]
[88]
Chihara, N.; Madi, A.; Kondo, T.; Zhang, H.; Acharya, N.; Singer, M.; Nyman, J.; Marjanovic, N.D.; Kowalczyk, M.S.; Wang, C.; Kurtulus, S.; Law, T.; Etminan, Y.; Nevin, J.; Buckley, C.D.; Burkett, P.R.; Buenrostro, J.D.; Rozenblatt-Rosen, O.; Anderson, A.C.; Regev, A.; Kuchroo, V.K. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature, 2018, 558(7710), 454-459.
[http://dx.doi.org/10.1038/s41586-018-0206-z] [PMID: 29899446]
[89]
Tang, W.; Pan, X.; Han, D.; Rong, D.; Zhang, M.; Yang, L.; Ying, J.; Guan, H.; Chen, Z.; Wang, X. Clinical significance of CD8 + T cell immunoreceptor with Ig and ITIM domains + in locally advanced gastric cancer treated with SOX regimen after D2 gastrectomy. OncoImmunology, 2019, 8(6), e1593807.
[http://dx.doi.org/10.1080/2162402X.2019.1593807] [PMID: 31069158]
[90]
Brauneck, F.; Haag, F.; Woost, R.; Wildner, N.; Tolosa, E.; Rissiek, A.; Vohwinkel, G.; Wellbrock, J.; Bokemeyer, C.; Schulze zur Wiesch, J.; Ackermann, C.; Fiedler, W. Increased frequency of TIGIT + CD73-CD8 + T cells with a TOX + TCF-1low profile in patients with newly diagnosed and relapsed AML. OncoImmunology, 2021, 10(1), 1930391.
[http://dx.doi.org/10.1080/2162402X.2021.1930391] [PMID: 34211801]
[91]
Liu, X.; Li, M.; Wang, X.; Dang, Z.; Jiang, Y.; Wang, X.; Kong, Y.; Yang, Z. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol. Immunother., 2019, 68(12), 2041-2054.
[http://dx.doi.org/10.1007/s00262-019-02426-5] [PMID: 31720814]
[92]
Liu, F.; Zeng, G.; Zhou, S.; He, X.; Sun, N.; Zhu, X.; Hu, A. Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma. Bull. Cancer, 2018, 105(5), 493-501.
[http://dx.doi.org/10.1016/j.bulcan.2018.01.018] [PMID: 29576222]
[93]
Scharf, L.; Tauriainen, J.; Buggert, M.; Hartogensis, W.; Nolan, D.J.; Deeks, S.G.; Salemi, M.; Hecht, F.M.; Karlsson, A.C. Delayed expression of PD-1 and TIGIT on HIV-Specific CD8 T cells in untreated HLA-B*57:01 individuals followed from early infection. J. Virol., 2020, 94(14), e02128-19.
[http://dx.doi.org/10.1128/JVI.02128-19] [PMID: 32350076]
[94]
Han, H.S.; Jeong, S.; Kim, H.; Kim, H.D.; Kim, A.R.; Kwon, M.; Park, S.H.; Woo, C.G.; Kim, H.K.; Lee, K.H.; Seo, S.P.; Kang, H.W.; Kim, W.T.; Kim, W.J.; Yun, S.J.; Shin, E.C. TOX-expressing terminally exhausted tumor-infiltrating CD8+ T cells are reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer. Cancer Lett., 2021, 499, 137-147.
[http://dx.doi.org/10.1016/j.canlet.2020.11.035] [PMID: 33249194]
[95]
Kim, K.; Park, S.; Park, S.Y.; Kim, G.; Park, S.M.; Cho, J.W.; Kim, D.H.; Park, Y.M.; Koh, Y.W.; Kim, H.R.; Ha, S.J.; Lee, I. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med., 2020, 12(1), 22.
[http://dx.doi.org/10.1186/s13073-020-00722-9] [PMID: 32111241]
[96]
Zhang, D.; Hu, W.; Xie, J.; Zhang, Y.; Zhou, B.; Liu, X.; Zhang, Y.; Su, Y.; Jin, B.; Guo, S.; Zhuang, R. TIGIT-Fc alleviates acute graft-versus-host disease by suppressing CTL activation via promoting the generation of immunoregulatory dendritic cells. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(9), 3085-3098.
[http://dx.doi.org/10.1016/j.bbadis.2018.06.022] [PMID: 29960041]
[97]
Sarhan, D.; Cichocki, F.; Zhang, B.; Yingst, A.; Spellman, S.R.; Cooley, S.; Verneris, M.R.; Blazar, B.R.; Miller, J.S.; Adaptive, N.K. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res., 2016, 76(19), 5696-5706.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0839] [PMID: 27503932]
[98]
Liu, S.; Zhang, H.; Li, M.; Hu, D.; Li, C.; Ge, B.; Jin, B.; Fan, Z. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ., 2013, 20(3), 456-464.
[http://dx.doi.org/10.1038/cdd.2012.141] [PMID: 23154388]
[99]
Stanietsky, N.; Rovis, T.L.; Glasner, A.; Seidel, E.; Tsukerman, P.; Yamin, R.; Enk, J.; Jonjic, S.; Mandelboim, O. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur. J. Immunol., 2013, 43(8), 2138-2150.
[http://dx.doi.org/10.1002/eji.201243072] [PMID: 23677581]
[100]
Xu, F.; Sunderland, A.; Zhou, Y.; Schulick, R.D.; Edil, B.H.; Zhu, Y. Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol. Immunother., 2017, 66(10), 1367-1375.
[http://dx.doi.org/10.1007/s00262-017-2031-x] [PMID: 28623459]
[101]
Kumagai, S.; Togashi, Y.; Kamada, T.; Sugiyama, E.; Nishinakamura, H.; Takeuchi, Y.; Vitaly, K.; Itahashi, K.; Maeda, Y.; Matsui, S.; Shibahara, T.; Yamashita, Y.; Irie, T.; Tsuge, A.; Fukuoka, S.; Kawazoe, A.; Udagawa, H.; Kirita, K.; Aokage, K.; Ishii, G.; Kuwata, T.; Nakama, K.; Kawazu, M.; Ueno, T.; Yamazaki, N.; Goto, K.; Tsuboi, M.; Mano, H.; Doi, T.; Shitara, K.; Nishikawa, H. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol., 2020, 21(11), 1346-1358.
[http://dx.doi.org/10.1038/s41590-020-0769-3] [PMID: 32868929]
[102]
Rodriguez-Abreu, D.; Johnson, M.L.; Hussein, M.A.; Cobo, M.; Patel, A.J.; Secen, N.M.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.-H. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol., 2020, 38, 9503.
[103]
Ma, L.; Gai, J.; Qiao, P.; Li, Y.; Li, X.; Zhu, M.; Li, G.; Wan, Y. A novel bispecific nanobody with PD-L1/TIGIT dual immune checkpoint blockade. Biochem. Biophys. Res. Commun., 2020, 531(2), 144-151.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.072] [PMID: 32782142]
[104]
Xiao, Y.; Chen, P.; Luo, C.; Xu, Z.; Li, X.; Liu, L.; Zhao, L. Discovery of a novel anti PD-L1 X TIGIT bispecific antibody for the treatment of solid tumors. Cancer Treat. Res. Commun., 2021, 29, 100467.
[http://dx.doi.org/10.1016/j.ctarc.2021.100467] [PMID: 34598062]
[105]
Zhou, X.; Du, J.; Wang, H.; Chen, C.; Jiao, L.; Cheng, X.; Zhou, X.; Chen, S.; Gou, S.; Zhao, W.; Zhai, W.; Chen, J.; Gao, Y. Repositioning liothyronine for cancer immunotherapy by blocking the interaction of immune checkpoint TIGIT/PVR. Cell Commun. Signal., 2020, 18(1), 142.
[http://dx.doi.org/10.1186/s12964-020-00638-2] [PMID: 32894141]
[106]
Kučan Brlić, P.; Lenac Roviš, T.; Cinamon, G.; Tsukerman, P.; Mandelboim, O.; Jonjić, S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell. Mol. Immunol., 2019, 16(1), 40-52.
[http://dx.doi.org/10.1038/s41423-018-0168-y] [PMID: 30275538]
[107]
Gao, J.; Zheng, Q.; Xin, N.; Wang, W.; Zhao, C. CD 155, an onco-immunologic molecule in human tumors. Cancer Sci., 2017, 108(10), 1934-1938.
[http://dx.doi.org/10.1111/cas.13324] [PMID: 28730595]
[108]
Kakunaga, S.; Ikeda, W.; Shingai, T.; Fujito, T.; Yamada, A.; Minami, Y.; Imai, T.; Takai, Y. Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by Necl-5/Tage4/poliovirus receptor/CD155 through the Ras-Raf-MEK-ERK signaling. J. Biol. Chem., 2004, 279(35), 36419-36425.
[http://dx.doi.org/10.1074/jbc.M406340200] [PMID: 15213219]
[109]
Zhang, C.; Wang, Y.; Xun, X.; Wang, S.; Xiang, X.; Hu, S.; Cheng, Q.; Guo, J.; Li, Z.; Zhu, J. TIGIT can exert immunosuppressive effects on CD8+ T cells by the CD155/TIGIT signaling pathway for hepatocellular carcinoma in vitro. J. Immunother., 2020, 43(8), 236-243.
[http://dx.doi.org/10.1097/CJI.0000000000000330] [PMID: 32804915]
[110]
Meng, Y.; Zhao, Z.; Zhu, W.; Yang, T.; Deng, X.; Bao, R. CD155 blockade improves survival in experimental sepsis by reversing dendritic cell dysfunction. Biochem. Biophys. Res. Commun., 2017, 490(2), 283-289.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.037] [PMID: 28610918]
[111]
Matsuzaki, J.; Gnjatic, S.; Mhawech-Fauceglia, P.; Beck, A.; Miller, A.; Tsuji, T.; Eppolito, C.; Qian, F.; Lele, S.; Shrikant, P.; Old, L.J.; Odunsi, K. Tumor-infiltrating NY-ESO-1–specific CD8 + T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(17), 7875-7880.
[http://dx.doi.org/10.1073/pnas.1003345107] [PMID: 20385810]
[112]
Attalla, K.; Farkas, A.M.; Anastos, H.; Audenet, F.; Galsky, M.D.; Bhardwaj, N.; Sfakianos, J.P. TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer. Urol. Oncol., 2020, 11, S1078-1439(20)30275-1.
[113]
Hu, Y.; Welsh, J.; Paris, S.; Bertolet, G.; Barsoumian, H.; Schuda, L.; He, K.; Sezen, D.; Wasley, M.; Mitchell, J.; Voss, T.; Masrorpour, F.; Jordan, S.I.L.V.A.; Leyton, C.K.; Yang, L.; Puebla-Osorio, N.; Gandhi, S.; Nguyen, Q.N.; Cortez, A. 575 Dual blockade of LAG3 and TIGIT improves the treatment efficacy of a nanoparticle-mediated immunoradiation in anti-PD1 resistant lung cancer in mice. J. Immunother. Cancer, 2021, 9(Suppl. 2), A604-A604.
[http://dx.doi.org/10.1136/jitc-2021-SITC2021.575]
[114]
Smyth, M.J.; Ngiow, S.F.; Ribas, A.; Teng, M.W.L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol., 2016, 13(3), 143-158.
[http://dx.doi.org/10.1038/nrclinonc.2015.209] [PMID: 26598942]
[115]
Majidpoor, J.; Mortezaee, K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin. Immunol., 2021, 226, 108707.
[http://dx.doi.org/10.1016/j.clim.2021.108707] [PMID: 33662590]
[116]
Pai, C.C.S.; Simons, D.M.; Lu, X.; Evans, M.; Wei, J.; Wang, Y.; Chen, M.; Huang, J.; Park, C.; Chang, A.; Wang, J.; Westmoreland, S.; Beam, C.; Banach, D.; Bowley, D.; Dong, F.; Seagal, J.; Ritacco, W.; Richardson, P.L.; Mitra, S.; Lynch, G.; Bousquet, P.; Mankovich, J.; Kingsbury, G.; Fong, L. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J. Clin. Invest., 2018, 129(1), 349-363.
[http://dx.doi.org/10.1172/JCI123391] [PMID: 30530991]
[117]
Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; Lee, S.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Lee, H.; Choi, M.; Talasaz, A.; Kang, P.S.; Cheng, J.; Loboda, A.; Lee, J.; Kang, W.K. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med., 2018, 24(9), 1449-1458.
[http://dx.doi.org/10.1038/s41591-018-0101-z] [PMID: 30013197]
[118]
Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; Lanoy, E.; Texier, M.; Libenciuc, C.; Eggermont, A.M.M.; Soria, J.C.; Mateus, C.; Robert, C. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol., 2016, 13(8), 473-486.
[http://dx.doi.org/10.1038/nrclinonc.2016.58] [PMID: 27141885]
[119]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[120]
Lozano, E.; Dominguez-Villar, M.; Kuchroo, V.; Hafler, D.A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol., 2012, 188(8), 3869-3875.
[http://dx.doi.org/10.4049/jimmunol.1103627] [PMID: 22427644]
[121]
Dixon, K.O.; Schorer, M.; Nevin, J.; Etminan, Y.; Amoozgar, Z.; Kondo, T.; Kurtulus, S.; Kassam, N.; Sobel, R.A.; Fukumura, D.; Jain, R.K.; Anderson, A.C.; Kuchroo, V.K.; Joller, N. Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J. Immunol., 2018, 200(8), 3000-3007.
[http://dx.doi.org/10.4049/jimmunol.1700407] [PMID: 29500245]
[122]
Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; Barlesi, F.; Lee, D.H.; Ares, L.P.; Hsieh, R.W.; Patil, N.S.; Twomey, P.; Yang, X.; Meng, R.; Johnson, M.L. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol., 2022, 23(6), 781-792.
[http://dx.doi.org/10.1016/S1470-2045(22)00226-1] [PMID: 35576957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy