Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

An Overview on Naturally Occurring Phytoconstituent: Lithospermic Acid

Author(s): Bhupesh Chander Semwal*, Amjad Hussain and Sonia Singh

Volume 14, Issue 1, 2024

Published on: 12 May, 2023

Article ID: e270423216291 Pages: 11

DOI: 10.2174/2210315513666230427153251

Price: $65

Abstract

Lithospermic acid is a phenylpropanoid oligomer isolated from an aqueous extract of dried roots of various Lamiaceae and Boraginaceae plants and used as a folk medicine to treat cardiovascular disease and to improve body functions. The manuscript has been written to provide valuable insights into naturally occurring phytocomponent, Lithospermic acid, and even explore its therapeutic potential. The data have been gathered from books and web sources, including Science Direct, Publons, Web of Science, and Scopus of the latest year. Lithospermic acid is a conjugate of rosmarinic and caffeic acid with a dihydro benzofuran nucleus and possesses a high antioxidant potential and prevents the production of superoxide radicals and lipid peroxidation and protects the tissue from deleterious effects of reactive oxygen species. In addition, it also possesses a wide range of pharmacological activities, including reducing atherosclerosis, anti-inflammatory, hepatoprotective, anti-viral, HIV-1 integrase, and hyaluronidase inhibition, aldose reductase inhibition and improvement in uremic symptoms guanidino succinic acid level. Due to its anti-HIV activity, LA has gained much attention among the scientific community. Moreover, it is widely distributed to all the peripheral tissue in rats, and its metabolites undergo enterohepatic circulation and are excreted through biliary excretion. In this review, we concluded LA with its phytochemistry, pharmacokinetics, and pharmacological activities.

Keywords: Salvia miltiorrhiza, lithospermic acid, alzheimer's, antioxidant, anti-HIV, salvianolic acid.

Graphical Abstract
[1]
Fischer, J.; Savage, G.P.; Coster, M.J. A concise route to dihydrobenzo[b]furans: formal total synthesis of (+)-lithospermic acid. Org. Lett., 2011, 13(13), 3376-3379.
[http://dx.doi.org/10.1021/ol201130h] [PMID: 21648396]
[2]
Ghosh, A.K.; Moon, D.K. Enantioselective total synthesis of +-jasplakinolide. Org. Lett., 2007, 9(12), 2425-2427.
[http://dx.doi.org/10.1021/ol070855h] [PMID: 17488037]
[3]
Varadaraju, T.G.; Hwu, J.R. Synthesis of anti-HIV lithospermic acid by two diverse strategies. Org. Biomol. Chem., 2012, 10(28), 5456-5465.
[http://dx.doi.org/10.1039/c2ob25575h] [PMID: 22669348]
[4]
Cao, W.; Wang, Y.; Shi, M.; Hao, X.; Zhao, W.; Wang, Y.; Ren, J.; Kai, G. Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front. Plant Sci., 2018, 9, 554.
[http://dx.doi.org/10.3389/fpls.2018.00554] [PMID: 29755494]
[5]
Watzke, A.; O’Malley, S.J.; Bergman, R.G.; Ellman, J.A. Reassignment of the configuration of salvianolic acid B and establishment of its identity with lithospermic acid B. J. Nat. Prod., 2006, 69(8), 1231-1233.
[http://dx.doi.org/10.1021/np060136w] [PMID: 16933885]
[6]
Wang, J.; Xiong, X.; Feng, B. Cardiovascular effects of salvianolic acid B. Evid. Based Complement. Alternat. Med., 2013, 2013247948
[http://dx.doi.org/10.1155/2013/247948] [PMID: 23840250]
[7]
Chemical structure search Available from:https://www.ncbi.nlm.nih.gov/pccompound(Assessed on December 30, 2022)
[8]
Ma, P.; Liu, J.; Zhang, C.; Liang, Z. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol., 2013, 170(6), 1253-1262.
[http://dx.doi.org/10.1007/s12010-013-0265-4] [PMID: 23673485]
[9]
Wang, J.; Xu, J.; Gong, X.; Yang, M.; Zhang, C.; Li, M. Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese Salvia species: A review. Molecules, 2019, 24(1), 155.
[http://dx.doi.org/10.3390/molecules24010155] [PMID: 30609767]
[10]
Pang, H.; Wu, L.; Tang, Y.; Zhou, G.; Qu, C.; Duan, J. Chemical analysis of the herbal medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen). Molecules, 2016, 21(1), 51.
[http://dx.doi.org/10.3390/molecules21010051] [PMID: 26742026]
[11]
Min-hui, L.; Jian-min, C.; Yong, P.; Pei-gen, X. Distribution of phenolic acids in chinese Salvia plants. Wood Sci. Technol., 2008, 10(5), 46-52.
[http://dx.doi.org/10.1016/S1876-3553(09)60025-9]
[12]
Lin, Y.L.; Tsai, Y.L.; Kuo, Y.H.; Liu, Y.H.; Shiao, M.S. Phenolic compounds from tournefortia sarmentosa. J. Nat. Prod., 1999, 62(11), 1500-1503.
[http://dx.doi.org/10.1021/np9901332] [PMID: 10579860]
[13]
Jiang, R.W.; Lau, K.M.; Hon, P.M.; Mak, T.; Woo, K.S.; Fung, K.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem., 2005, 12(2), 237-246.
[http://dx.doi.org/10.2174/0929867053363397] [PMID: 15638738]
[14]
Ly, T.N.; Shimoyamada, M.; Yamauchi, R. Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. J. Agric. Food Chem., 2006, 54(11), 3786-3793.
[http://dx.doi.org/10.1021/jf052743f] [PMID: 16719497]
[15]
Rao, G.V.; Mukhopadhyay, T.; Annamalai, T.; Radhakrishnan, N.; Sahoo, M.R. Chemical constituents and biological studies of Origanum vulgare Linn. Pharmacognosy Res., 2011, 3(2), 143-145.
[http://dx.doi.org/10.4103/0974-8490.81964] [PMID: 21772760]
[16]
Yazaki, K. Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnol., 2017, 34(3), 131-142.
[http://dx.doi.org/10.5511/plantbiotechnology.17.0823a] [PMID: 31275019]
[17]
Lemle, K.L. Salvia officinalis used in pharmaceutics. IOP Conference Series Materials Science and Engineering, 2018, 1, 012037.
[http://dx.doi.org/10.1088/1757-899X/294/1/012037]
[18]
Lin, Y.L.; Chang, Y.Y.; Kuo, Y.H.; Shiao, M.S. Anti-lipid-peroxidative principles from tournefortia s armentosa. J. Nat. Prod., 2002, 65(5), 745-747.
[http://dx.doi.org/10.1021/np010538y] [PMID: 12027757]
[19]
O’Malley, S.J.; Tan, K.L.; Watzke, A.; Bergman, R.G.; Ellman, J.A. Total synthesis of (+)-lithospermic acid by asymmetric intramolecular alkylation via catalytic C-H bond activation. J. Am. Chem. Soc., 2005, 127(39), 13496-13497.
[http://dx.doi.org/10.1021/ja052680h] [PMID: 16190703]
[20]
Wang, D.H.; Yu, J.Q. Highly convergent total synthesis of (+)-lithospermic acid via a late-stage intermolecular C-H olefination. J. Am. Chem. Soc., 2011, 133(15), 5767-5769.
[http://dx.doi.org/10.1021/ja2010225] [PMID: 21443224]
[21]
Wu, T.; Ni, J.; Wei, J. Danshen (Chinese medicinal herb) preparations for acute myocardial infarction. Cochrane Database Syst. Rev., 2008, 2008(2), CD004465.
[http://dx.doi.org/10.1002/14651858.CD004465.pub2] [PMID: 18425903]
[22]
Kum, K.Y.; Kirchhof, R.; Luick, R.; Heinrich, M. Danshen (Salvia miltiorrhiza) on the global market: what are the implications for products’ quality? Front. Pharmacol., 2021, 12, 621169.
[http://dx.doi.org/10.3389/fphar.2021.621169] [PMID: 33981218]
[23]
Fang, Z.; Lin, R.; Yuan, B.; Yang, G.D.; Liu, Y.; Zhang, H. Tanshinone IIA downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. J. Ethnopharmacol., 2008, 115(2), 217-222.
[http://dx.doi.org/10.1016/j.jep.2007.09.025] [PMID: 17997063]
[24]
Bao-Qing, W. Salvia miltiorrhiza: Chemical and pharmacological review of a medicinal plant. J. Med. Plants Res., 2010, 4(25), 2813-2820.
[25]
Wu, W.; Wang, Y. Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components. Acta Pharmacol. Sin., 2012, 33(9), 1119-1130.
[http://dx.doi.org/10.1038/aps.2012.126] [PMID: 22941285]
[26]
Chen, Y.L.; Yang, S.P.; Shiao, M.S.; Chen, J.W.; Lin, S.J. Salvia miltiorrhiza inhibits intimal hyperplasia and monocyte chemotactic protein-1 expression after balloon injury in cholesterol-fed rabbits. J. Cell. Biochem., 2001, 83(3), 484-493.
[http://dx.doi.org/10.1002/jcb.1233] [PMID: 11596116]
[27]
Shusheng, L.I.; Lei, W. Experimental study on the preventive mechanism of Salviae miltiorrhizae against atherosclerosis in rabbits models. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2004, 24(3), 233-235.
[http://dx.doi.org/10.1007/BF02831998] [PMID: 15315334]
[28]
Xu, Y.; Chen, T.; Li, X.; Qu, Y.; An, J.; Zheng, H.; Zhang, Z.; Lin, N. Salvia miltiorrhiza bunge increases estrogen level without side effects on reproductive tissues in immature/ovariectomized mice. Aging, 2016, 9(1), 156-172.
[http://dx.doi.org/10.18632/aging.101145] [PMID: 27997360]
[29]
Li, X.; Yu, C.; Sun, W.; Liu, G.; Jia, J.; Wang, Y. Simultaneous determination of magnesium lithospermate B, rosmarinic acid, and lithospermic acid in beagle dog serum by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2004, 18(23), 2878-2882.
[http://dx.doi.org/10.1002/rcm.1703] [PMID: 15517529]
[30]
Hyun Kim, H.; Kim, J.; Young Ji, H.; Chul Kim, Y.; Hwan Sohn, D.; Mu, Lee B.; Suk Lee, H. Pharmacokinetics of lithospermic acid B isolated from Salvia miltiorrhiza in rats. J. Toxicol. Environ. Health A, 2005, 68(23-24), 2239-2247.
[http://dx.doi.org/10.1080/15287390500182222] [PMID: 16326437]
[31]
Li, X.; Yu, C.; Wang, L.; Lu, Y.; Wang, W.; Xuan, L.; Wang, Y. Simultaneous determination of lithospermic acid B and its three metabolites by liquid chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal., 2007, 43(5), 1864-1868.
[http://dx.doi.org/10.1016/j.jpba.2007.01.004] [PMID: 17275241]
[32]
Cui, L.; Chan, W.; Wu, J.L.; Jiang, Z.H.; Chan, K.; Cai, Z. High performance liquid chromatography–mass spectrometry analysis for rat metabolism and pharmacokinetic studies of lithospermic acid B from danshen. Talanta, 2008, 75(4), 1002-1007.
[http://dx.doi.org/10.1016/j.talanta.2007.12.045] [PMID: 18585175]
[33]
Wang, L.; Zhang, Q.; Li, X.; Lu, Y.; Xue, Z.; Xuan, L.; Wang, Y. Pharmacokinetics and metabolism of lithospermic acid by LC/MS/MS in rats. Int. J. Pharm., 2008, 350(1-2), 240-246.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.001] [PMID: 17936527]
[34]
Xiao, Z.; Liu, W.; Mu, Y.; Zhang, H.; Wang, X.; Zhao, C.; Chen, J.; Liu, P. Pharmacological effects of salvianolic acid B against oxidative damage. Front. Pharmacol., 2020, 11, 572373.
[http://dx.doi.org/10.3389/fphar.2020.572373] [PMID: 33343348]
[35]
Gassner, F.X.; Hopwood, M.L.; Jochle, W.; Johnson, G.; Sunderwirth, S.G. Antifertility activity of an oxidized polyphenolic acid from lithospermum ruderale. Exp. Biol. Med., 1963, 114(1), 20-25.
[http://dx.doi.org/10.3181/00379727-114-28575] [PMID: 14076884]
[36]
Soung, D.Y.; Rhee, S.H.; Kim, J.S.; Lee, J.Y.; Yang, H.S.; Choi, J.S.; Yokozawa, T.; Han, Y.N.; Chung, H.Y. Peroxynitrite scavenging activity of lithospermate B from Salvia miltiorrhiza. J. Pharm. Pharmacol., 2010, 55(10), 1427-1432.
[http://dx.doi.org/10.1211/0022357021891] [PMID: 14607026]
[37]
Abd-Elazem, I.S.; Chen, H.S.; Bates, R.B.; Huang, R.C.C. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral Res., 2002, 55(1), 91-106.
[http://dx.doi.org/10.1016/S0166-3542(02)00011-6] [PMID: 12076754]
[38]
Chen, L.; Wang, W.; Wang, Y. Inhibitory effects of lithospermic acid on proliferation and migration of rat vascular smooth muscle cells. Acta Pharmacol. Sin., 2009, 30(9), 1245-1252.
[http://dx.doi.org/10.1038/aps.2009.122] [PMID: 19701233]
[39]
Schwartz, C.J.; Valente, A.J.; Sprague, E.A.; Kelley, J.L.; Nerem, R.M. The pathogenesis of atherosclerosis: An overview. Clin. Cardiol., 1991, 14(S1), 1-16.
[http://dx.doi.org/10.1002/clc.4960141302] [PMID: 2044253]
[40]
Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis., 2016, 109(12), 708-715.
[http://dx.doi.org/10.1016/j.acvd.2016.04.002] [PMID: 27595467]
[41]
Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res., 2019, 124(2), 315-327.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313591] [PMID: 30653442]
[42]
Hur, K.Y.; Kim, S.H.; Choi, M.A.; Williams, D.R.; Lee, Y.; Kang, S.W.; Yadav, U.C.S.; Srivastava, S.K.; Jung, M.; Cho, J.W.; Kim, S.G.; Kang, E.S.; Lee, E.J.; Lee, H.C. Protective effects of magnesium lithospermate B against diabetic atherosclerosis via Nrf2-ARE-NQO1 transcriptional pathway. Atherosclerosis, 2010, 211(1), 69-76.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.035] [PMID: 20172524]
[43]
Nagai, M.; Noguchi, M.; Iizuka, T.; Otani, K.; Kamata, K. Vasodilator effects of des(α-carboxy-3,4-dihydroxyphenethyl)lithospermic acid (8-epiblechnic acid), a derivative of lithospermic acids in salviae miltiorrhizae radix. Biol. Pharm. Bull., 1996, 19(2), 228-232.
[http://dx.doi.org/10.1248/bpb.19.228] [PMID: 8850312]
[44]
Lin, C.C.; Pan, C.S.; Wang, C.Y.; Liu, S.W.; Hsiao, L.D.; Yang, C.M. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J. Biomed. Sci., 2015, 22(1), 53.
[http://dx.doi.org/10.1186/s12929-015-0165-8] [PMID: 26173590]
[45]
Goyal, A.; Agrawal, N. Quercetin: A potential candidate for the treatment of arthritis. Curr. Mol. Med., 2022, 22(4), 325-335.
[http://dx.doi.org/10.2174/1566524021666210315125330]
[46]
England, B.R.; Mikuls, T.R. Epidemiology of, risk factors for, and possible causes of rheumatoid arthritis., 2020. Available from:https://www. Uptodate.com/contents/epidemiology-of-risk-factors-for-and-possible-causes-of-rheumatoid-arthritisUpToDate.
[47]
Xia, Z.B.; Yuan, Y.J.; Zhang, Q.H.; Li, H.; Dai, J.L.; Min, J.K. Salvianolic acid B suppresses inflammatory mediator levels by downregulating NF-κB in a rat model of rheumatoid arthritis. Med. Sci. Monit., 2018, 24, 2524-2532.
[http://dx.doi.org/10.12659/MSM.907084] [PMID: 29691361]
[48]
Liao, H.J.; Tzen, J.T.C. The potential role of phenolic acids from Salvia miltiorrhiza and Cynara scolymus and their derivatives as JAK inhibitors: An in silico study. Int. J. Mol. Sci., 2022, 23(7), 4033.
[http://dx.doi.org/10.3390/ijms23074033] [PMID: 35409393]
[49]
Yuan, Z.; Zhao, C.; Zhang, Q.; Gao, Z. Protective effect of Salvia miltiorrhiza in rheumatoid arthritis patients: A randomized, single-blind, placebocontrolled trial. Trop. J. Pharm. Res., 2020, 19(10), 2235-2241.
[http://dx.doi.org/10.4314/tjpr.v19i10.30]
[50]
Gentle, M.J. Sodium urate arthritis: Effects on the sensory properties of articular afferents in the chicken. Pain, 1997, 70(2), 245-251.
[http://dx.doi.org/10.1016/S0304-3959(97)03324-6] [PMID: 9150300]
[51]
Khanna, P.; Johnson, R.J.; Marder, B.; LaMoreaux, B.; Kumar, A. Systemic urate deposition: An unrecognized complication of gout? J. Clin. Med., 2020, 9(10), 3204.
[http://dx.doi.org/10.3390/jcm9103204] [PMID: 33023045]
[52]
Malawista, S.E.; Boisfleury, A.C.; Naccache, P.H. Inflammatory gout: Observations over a half-century. FASEB J., 2011, 25(12), 4073-4078.
[http://dx.doi.org/10.1096/fj.11-1201ufm] [PMID: 22131362]
[53]
Liu, X.; Chen, R.; Shang, Y.; Jiao, B.; Huang, C. Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats. Chem. Biol. Interact., 2008, 176(2-3), 137-142.
[http://dx.doi.org/10.1016/j.cbi.2008.07.003] [PMID: 18694741]
[54]
Phang-Lyn, S.; Llerena, V.A. Biochemistry, Biotransformation. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[55]
Kan, S.; Chen, Z.; Shao, L.; Li, J. Transformation of salvianolic acid B to salvianolic acid a in aqueous solution and the in vitro liver protective effect of the main products. J. Food Sci., 2014, 79(4), C499-C504.
[http://dx.doi.org/10.1111/1750-3841.12415] [PMID: 24689808]
[56]
Chan, K.W.K.; Ho, W.S. Anti-oxidative and hepatoprotective effects of lithospermic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo. Oncol. Rep., 2015, 34(2), 673-680.
[http://dx.doi.org/10.3892/or.2015.4068] [PMID: 26081670]
[57]
Gupta, R.; Gupta, V.P.; Prakash, H.; Agrawal, A.; Sharma, K.K.; Deedwania, P.C. 25-Year trends in hypertension prevalence, awareness, treatment, and control in an Indian urban population. Jaipur Heart Watch. Indian Heart J., 2018, 70(6), 802-807.
[http://dx.doi.org/10.1016/j.ihj.2017.11.011] [PMID: 30580848]
[58]
Kamata, K.; Noguchi, M.; Nagai, M. Hypotensive effects of lithospermic acid B isolated from the extract of Salviae miltiorrhizae Radix in the rat. Gen. Pharmacol., 1994, 25(1), 69-73.
[http://dx.doi.org/10.1016/0306-3623(94)90011-6] [PMID: 8026714]
[59]
Kang, D.G.; Oh, H.; Chung, H.T.; Lee, H.S. Inhibition of angiotensin converting enzyme by lithospermic acid B isolated from radix Salviae miltiorrhiza Bunge. Phytother. Res., 2003, 17(8), 917-920.
[http://dx.doi.org/10.1002/ptr.1250] [PMID: 13680824]
[60]
Yang, X.Y.; Qiang, G.F.; Zhang, L.; Zhu, X.M.; Wang, S.B.; Sun, L.; Yang, H.G.; Du, G.H. Salvianolic acid A protects against vascular endothelial dysfunction in high-fat diet fed and streptozotocin-induced diabetic rats. J. Asian Nat. Prod. Res., 2011, 13(10), 884-894.
[http://dx.doi.org/10.1080/10286020.2011.598457] [PMID: 21972802]
[61]
Teng, F.; Yin, Y.; Cui, Y.; Deng, Y.; Li, D.; Cho, K.; Zhang, G.; Lu, A.; Wu, W.; Yang, M.; Liu, X.; Guo, D.; Yin, J.; Jiang, B. Salvianolic acid A inhibits endothelial dysfunction and vascular remodeling in spontaneously hypertensive rats. Life Sci., 2016, 144, 86-93.
[http://dx.doi.org/10.1016/j.lfs.2015.06.010] [PMID: 26135625]
[62]
Chen, Y.; Zhang, N.; Ma, J.; Zhu, Y.; Wang, M.; Wang, X.; Zhang, P.A. Platelet/CMC coupled with offline UPLC-QTOF-MS/MS for screening antiplatelet activity components from aqueous extract of Danshen. J. Pharm. Biomed. Anal., 2016, 117, 178-183.
[http://dx.doi.org/10.1016/j.jpba.2015.06.009] [PMID: 26355772]
[63]
Zheng, X.; Liu, H.; Ma, M.; Ji, J.; Zhu, F.; Sun, L. Anti-thrombotic activity of phenolic acids obtained from Salvia miltiorrhiza f. alba in TNF-α-stimulated endothelial cells via the NF-κB/JNK/p38 MAPK signaling pathway. Arch. Pharm. Res., 2021, 44(4), 427-438.
[http://dx.doi.org/10.1007/s12272-021-01325-7] [PMID: 33847919]
[64]
Yin, S.J.; Luo, Y.Q.; Zhao, C.P.; Chen, H.; Zhong, Z.F.; Wang, S.; Wang, Y.T.; Yang, F.Q. Antithrombotic effect and action mechanism of Salvia miltiorrhiza and Panax notoginseng herbal pair on the zebrafish. Chin. Med., 2020, 15(1), 35.
[http://dx.doi.org/10.1186/s13020-020-00316-y] [PMID: 32322295]
[65]
Tang, H.; Qin, N.; Rao, C.; Zhu, J.; Wang, H.; Hu, G. Screening of potential anti-thrombotic ingredients from salvia miltiorrhiza in zebrafish and by molecular docking. Molecules, 2021, 26(22), 6807.
[http://dx.doi.org/10.3390/molecules26226807] [PMID: 34833900]
[66]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[67]
Liu, H.; Ma, S.; Xia, H.; Lou, H.; Zhu, F.; Sun, L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J. Ethnopharmacol., 2018, 222, 201-207.
[http://dx.doi.org/10.1016/j.jep.2018.05.008] [PMID: 29751125]
[68]
Shakya, R.; Goyal, A.; Semwal, B.C.; Singh, N.K.; Yadav, H.N. Role of brain angiotensin (1-7) in chronic hyperglycaemia induced nephropathy in wistar rats. Indian J. Pharm. Educ. Res., 2017, 51(1), 83-91.
[http://dx.doi.org/10.5530/ijper.51.1.12]
[69]
Lee, G.T.; Ha, H.; Jung, M.; Li, H.; Hong, S.W.; Cha, B.S.; Chul Lee, H.; Dong Cho, Y. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J. Am. Soc. Nephrol., 2003, 14(3), 709-720.
[http://dx.doi.org/10.1097/01.ASN.0000051660.82593.19] [PMID: 12595507]
[70]
Kang, D.G.; Oh, H.; Sohn, E.J.; Hur, T.Y.; Lee, K.C.; Kim, K.J.; Kim, T.Y.; Lee, H.S. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sci., 2004, 75(15), 1801-1816.
[http://dx.doi.org/10.1016/j.lfs.2004.02.034] [PMID: 15302225]
[71]
Kang, E.S.; Kim, B.S.; Kim, C.H.; Seo, G.H.; Han, S.J.; Chun, S.W.; Hur, K.Y.; Ahn, C.W.; Ha, H.; Jung, M.; Cha, B.S.; Lee, H.C. Protective effects of lithospermic acid B on diabetic nephropathy in OLETF rats comparing with amlodipine and losartan. Korean Diabetes J., 2008, 32(1), 10-20.
[http://dx.doi.org/10.4093/kdj.2008.32.1.10]
[72]
a) Kang, E.S.; Lee, G.T.; Kim, B.S.; Kim, C.H.; Seo, G.H.; Han, S.J.; Hur, K.Y.; Ahn, C.W.; Ha, H.; Jung, M.; Ahn, Y.S. Lithospermic acid B ameliorates the development of diabetic nephropathy in OLETF rats. Eur. J. Pharmacol., 2008, 579(1-3), 418-425.
[http://dx.doi.org/10.1016/j.redox.2020.101799] [PMID: 33248932];
b) Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 2008, 37, 101799.
[http://dx.doi.org/10.1016/j.redox.2020.101799] [PMID: 33248932]
[73]
Jin, C.J.; Yu, S.H.; Wang, X.M.; Woo, S.J.; Park, H.J.; Lee, H.C.; Choi, S.H.; Kim, K.M.; Kim, J.H.; Park, K.S.; Jang, H.C.; Lim, S. The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats. PLoS One, 2014, 9(6), e98232.
[http://dx.doi.org/10.1371/journal.pone.0098232] [PMID: 24905410]
[74]
Liu, T. Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[75]
Lee, B.W.; Chun, S.W.; Kim, S.H.; Lee, Y.; Kang, E.S.; Cha, B.S.; Lee, H.C. Lithospermic acid B protects β-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2–HO-1 and Sirt1. Toxicol. Appl. Pharmacol., 2011, 252(1), 47-54.
[http://dx.doi.org/10.1016/j.taap.2011.01.018] [PMID: 21295052]
[76]
Wang-Yang, L.; You-Liang, Z.; Tiao, L.; Peng, Z.; Wu-Ji, X.; Xiao-Long, L.; Xin-Yu, Q.; Hui, X. Pretreatment with lithospermic acid attenuates oxidative stress-induced apoptosis in bone marrow-derived mesenchymal stem cells via anti-oxidation and activation of PI3K/Akt pathway. Dig. Chin. Med., 2019, 2(1), 29-40.
[http://dx.doi.org/10.1016/j.dcmed.2019.05.004]
[77]
Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp. Mol. Pathol., 2022, 129, 104846.
[http://dx.doi.org/10.1016/j.yexmp.2022.104846] [PMID: 36436571]
[78]
Lin, Y.L.; Tsay, H.J.; Lai, T.H.; Tzeng, T-T.; Shiao, Y-J. Lithospermic acid attenuates 1-methyl-4-phenylpyridine-induced neurotoxicity by blocking neuronal apoptotic and neuroinflammatory pathways. J. Biomed. Sci., 2015, 22(1), 37.
[http://dx.doi.org/10.1186/s12929-015-0146-y] [PMID: 25563241]
[79]
Cole, J.W. Large artery atherosclerotic occlusive disease. Continuum. Continuum (Minneap. Minn.), 2017, 23(1), 133-157.
[http://dx.doi.org/10.1212/CON.0000000000000436] [PMID: 28157748]
[80]
Sun, J.; Hong Huang, S. Tan, B.K.H.; Whiteman, M.; Zhu, Y.C.; Wu, Y.J.; Ng, Y.; Duan, W.; Zhu, Y.Z. Effects of purified herbal extract of Salvia miltiorrhiza on ischemic rat myocardium after acute myocardial infarction. Life Sci., 2005, 76(24), 2849-2860.
[http://dx.doi.org/10.1016/j.lfs.2004.11.016] [PMID: 15808885]
[81]
Fung, K.P.; Zeng, L.H.; Wu, J.; Wong, H.N.C.; Lee, C.M.; Hon, P.M.; Chang, H.M.; Wu, T.W. Demonstration of the myocardial salvage effect of lithospermic acid B isolated from the aqueous extract of. Life Sci., 1993, 52(22), PL239-PL244.
[http://dx.doi.org/10.1016/0024-3205(93)90471-E] [PMID: 8492636]
[82]
Ozturk, H.; Terzi, E.H.; Ozgen, U.; Duran, A.; Ozturk, H. Lithospermic acid and ischemia/reperfusion injury of the rat small intestine prevention. Adv. Clin. Exp. Med., 2012, 21(4), 433-439.
[PMID: 23240448]
[83]
Kandula, N.; Kumar, S.; Mandlem, V.K.K.; Siddabathuni, A.; Singh, S.; Kosuru, R. Role of AMPK in myocardial ischemia-reperfusion injury-induced cell death in the presence and absence of diabetes. Oxid. Med. Cell. Longev., 2022, 2022, 1-18.
[http://dx.doi.org/10.1155/2022/7346699] [PMID: 36267813]
[84]
Zhang, M.; Wei, L.; Xie, S.; Xing, Y.; Shi, W.; Zeng, X.; Chen, S.; Wang, S.; Deng, W.; Tang, Q. Activation of Nrf2 by lithospermic acid ameliorates myocardial ischemia and reperfusion injury by promoting phosphorylation of amp-activated protein kinase α (AMPKα). Front. Pharmacol., 2021, 12, 794982.
[http://dx.doi.org/10.3389/fphar.2021.794982]
[85]
Qiong, Z.; Ai-dong, L.; Yong-sheng, H. Clinical non-inferiority trial on treatment of coronary heart disease angina pectoris of Xin-blood stasis syndrome type with lyophilized Salvia salt of lithospermic acid powder for injection. Chin. J. Integr. Med., 2006, 12(1), 12-18.
[http://dx.doi.org/10.1007/BF02857423] [PMID: 16571277]
[86]
Hu, Z.; Wang, H.; Fan, G.; Zhang, H.; Wang, X.; Mao, J.; Zhao, Y.; An, Y.; Huang, Y.; Li, C.; Chang, L.; Chu, X. LiLi.; Li, Y.; Zhang, Y.; Qin, G.; Gao, X.; Zhang, B. Danhong injection mobilizes endothelial progenitor cells to repair vascular endothelium injury via upregulating the expression of Akt, eNOS and MMP-9. Phytomedicine, 2019, 61, 152850.
[http://dx.doi.org/10.1016/j.phymed.2019.152850] [PMID: 31035054]
[87]
Mori, M.; Ciaco, S.; Mély, Y.; Karioti, A. Inhibitory effect of lithospermic acid on the HIV-1 nucleocapsid protein. Molecules, 2020, 25(22), 5434.
[http://dx.doi.org/10.3390/molecules25225434] [PMID: 33233563]
[88]
Murti, Y.; Pathak, D.; Pathak, K. Green chemistry approaches to the synthesis of flavonoids. Curr. Org. Chem., 2021, 25(17), 2005-2027.
[http://dx.doi.org/10.2174/1385272825666210728095624]
[89]
Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants used as antihypertensive. Nat. Prod. Bioprospect., 2021, 11(2), 155-184.
[http://dx.doi.org/10.1007/s13659-020-00281-x] [PMID: 33174095]
[90]
Chauhan, N.; Shah, K.; Gupta, P. Studies on antistress activity of Curculigo Orchioides gaertn. Biomedical and Biotechnology Research Journal (BBRJ), 2021, 5(2), 145.
[http://dx.doi.org/10.4103/bbrj.bbrj_12_21]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy