Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural Coumarin Derivatives Targeting Melanoma

Author(s): Leandro Rocha Silva, Jéssica Alves Nunes, Peng Zhan, Krzysztof Z. Łączkowski, Sílvia Helena Cardoso and Edeildo Ferreira da Silva-Júnior*

Volume 31, Issue 7, 2024

Published on: 19 June, 2023

Page: [871 - 886] Pages: 16

DOI: 10.2174/0929867330666230420152145

Price: $65

conference banner
Abstract

In general, a cancerous process starts from uncontrolled cell growth, apoptosis, and rapid proliferation of cellular clones, as well as, reactive oxygen species (ROS) and imbalance of ROS-antioxidant production also could be involved in the genesis of the disease. Cancer has accounted for millions of deaths worldwide every year, representing a relevant threat to human lives. In this context, malignant melanoma represents the most aggressive and deadliest type of cancer, leading to increased rates of patient deaths. Natural active compounds have demonstrated their pharmacological benefits in several different studies. Among these compounds, coumarin analogs have demonstrated promising biological profiles, considering their efficacy and low toxicity. In this context, this phytochemical oxygenated core has been broadly investigated since it presents several biological properties of interest in the medicinal field. Herein, we reported a complete compilation of studies focused on natural coumarins against melanoma, as well as, tyrosinase since it is a cooper-catalyzed oxidase that performs an essential role during melanogenesis (Eu-melanins and Pheo-melanins), which is associated with melanoma. Thus, three different subclasses of natural coumarin were described in detail, such as simple coumarin core, furanocoumarins, pyranocoumarins, and pyrone-substituents. Additionally, insights on tyrosinase have been provided, allowing an overview of some structural/- functional aspects of its enzyme, such as the presence of a binuclear type 3 cooper coordination at the binding site of this target, acting as cofactors. Posteriorly, several coumarin- based analogs with anti-tyrosinase activity also were reported and discussed. Finally, we believe that unprecedented review can be a valuable source of information, which can be used to design and develop novel coumarin-based analogs targeting melanoma and also tyrosinase enzyme, contributing to the advances in the field of natural products.

Keywords: Coumarin, tyrosine, nature-based analogs, melanoma, cancer, drug design.

[1]
Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[2]
Richter, L.; Kropp, S.; Proksch, P.; Scheu, S. A mouse model-based screening platform for the identification of immune activating compounds such as natural products for novel cancer immunotherapies. Bioorg. Med. Chem., 2019, 27(23), 115145.
[http://dx.doi.org/10.1016/j.bmc.2019.115145] [PMID: 31648874]
[3]
Yao, W.; Qiu, H.M.; Cheong, K.L.; Zhong, S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int. J. Biol. Macromol., 2022, 221, 472-485.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.055] [PMID: 36089081]
[4]
Veselinović, J.B.; Kocić, G.M.; Pavic, A.; Nikodinovic-Runic, J.; Senerovic, L.; Nikolić, G.M.; Veselinović, A.M. Selected 4-phenyl hydroxycoumarins: in vitro cytotoxicity, teratogenic effect on zebrafish (Danio rerio) embryos and molecular docking study. Chem. Biol. Interact., 2015, 231, 10-17.
[http://dx.doi.org/10.1016/j.cbi.2015.02.011] [PMID: 25724286]
[5]
Farhat, C.; Younes, H.; Alyamani, O.A.; Mrad, M.; Hourani, N.; Khalifeh, H.; El-Makhour, Y.; Dbaibo, G.; Hage-Sleiman, R. Chemical characterization and in vitro biological evaluation of aqueous extract of Althaea officinalis L. flower grown in Lebanon. J. Herb. Med., 2022, 34, 100575.
[http://dx.doi.org/10.1016/j.hermed.2022.100575]
[6]
Sailaja Rao, P.; Kalva, S.; Yerramilli, A.; Mamidi, S. Free radicals and tissue damage: Role of antioxidants. Free Radic. Antioxid., 2011, 1(4), 2-7.
[http://dx.doi.org/10.5530/ax.2011.4.2]
[7]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[8]
Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal., 2007, 19(9), 1807-1819.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[9]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[10]
Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem., 2004, 266(1/2), 37-56.
[http://dx.doi.org/10.1023/B:MCBI.0000049134.69131.89] [PMID: 15646026]
[11]
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(5), 1147-1150.
[http://dx.doi.org/10.1042/BST0351147] [PMID: 17956298]
[12]
Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev., 2022, 452, 214307.
[http://dx.doi.org/10.1016/j.ccr.2021.214307]
[13]
Yuan, Y.; Shi, C.; Wu, X.; Li, W.; Huang, C.; Liang, L.; Chen, J.; Wang, Y.; Liu, Y. Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complexes on mouse melanoma B16 cells. J. Inorg. Biochem., 2022, 232, 111820.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.111820] [PMID: 35421766]
[14]
Zaid, H.; Silbermann, M.; Amash, A.; Gincel, D.; Abdel-Sattar, E.; Sarikahya, N.B. Medicinal plants and natural active compounds for cancer chemoprevention/chemotherapy. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-2.
[http://dx.doi.org/10.1155/2017/7952417] [PMID: 28491112]
[15]
AlQathama, A.; Bader, A.; Al-Rehaily, A.; Gibbons, S.; Prieto, J.M. In vitro cytotoxic activities of selected Saudi medicinal plants against human malignant melanoma cells (A375) and the isolation of their active principles. Eur. J. Integr. Med., 2022, 49, 102083.
[http://dx.doi.org/10.1016/j.eujim.2021.102083]
[16]
Nanni, V.; Canuti, L.; Gismondi, A.; Canini, A. Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. Phytomedicine, 2018, 46, 1-10.
[http://dx.doi.org/10.1016/j.phymed.2018.06.008] [PMID: 30097108]
[17]
Danciu, C.; Soica, C.; Antal, D.; Alexa, E.; Pavel, I.Z.; Ghiulai, R.; Ardelean, F.; Babuta, R.M.; Popescu, A.; Dehelean, C.A. Natural compounds in the chemoprevention of malignant melanoma. Anticancer. Agents Med. Chem., 2018, 18(5), 631-644.
[http://dx.doi.org/10.2174/1871520617666171121142522] [PMID: 29173184]
[18]
Hasima, N.; Aun, L.I.L.; Azmi, M.N.; Aziz, A.N.; Thirthagiri, E.; Ibrahim, H.; Awang, K. 1′S-1′-Acetoxyeugenol acetate: A new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine, 2010, 17(12), 935-939.
[http://dx.doi.org/10.1016/j.phymed.2010.03.011] [PMID: 20729047]
[19]
Shefrin, S.; Sari, A.N.; Kumar, V.; Zhang, H.; Meidinnia, H.N.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Comparative computational and experimental analyses of some natural small molecules to restore transcriptional activation function of P53 in cancer cells harbouring wild type and P53Ser46 mutant. Curr. Res. Struct. Biol., 2022, 4, 320-331.
[20]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[21]
Thomas, V.; Giles, D.; Basavarajaswamy, G.; Das, A.; Patel, A. Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer. Agents Med. Chem., 2017, 17(3), 415-423.
[http://dx.doi.org/10.2174/1871520616666160902094739] [PMID: 27592545]
[22]
Bubols, G.B.; Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[PMID: 22876957]
[23]
Salar, U.; Khan, K.M.; Jabeen, A.; Faheem, A.; Fakhri, M.I.; Saad, S.M.; Perveen, S.; Taha, M.; Hameed, A. Coumarin sulfonates: As potential leads for ROS inhibition. Bioorg. Chem., 2016, 69, 37-47.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.006] [PMID: 27669119]
[24]
Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853.
[http://dx.doi.org/10.3389/fonc.2020.592853] [PMID: 33344242]
[25]
Sumorek-Wiadro, J.; Zając, A.; Bądziul, D.; Langner, E.; Skalicka-Woźniak, K.; Maciejczyk, A.; Wertel, I.; Rzeski, W.; Jakubowicz-Gil, J. Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 2020, 881, 173207.
[http://dx.doi.org/10.1016/j.ejphar.2020.173207] [PMID: 32446712]
[26]
Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin–pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[27]
Khan, S.; Zafar, A.; Naseem, I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem. Biol. Interact., 2018, 290, 64-76.
[http://dx.doi.org/10.1016/j.cbi.2018.05.010] [PMID: 29803612]
[28]
Grötz, K.A.; Wüstenberg, P.; Kohnen, R.; Al-Nawas, B.; Henneicke-von Zepelin, H.H.; Bockisch, A.; Kutzner, J.; Naser-Hijazi, B.; Belz, G.G.; Wagner, W. Prophylaxis of radiogenic sialadenitis and mucositis by coumarin/troxerutine in patients with head and neck cancer – a prospective, randomized, placebo-controlled, double-blind study. Br. J. Oral Maxillofac. Surg., 2001, 39(1), 34-39.
[http://dx.doi.org/10.1054/bjom.2000.0459] [PMID: 11178853]
[29]
Marshall, M.E.; Butler, K.; Hermansen, D. Treatment of hormone-refractory stage D carcinoma of prostate with coumarin (1,2-benzopyrone) and cimetidine: A pilot study. Prostate, 1990, 17(2), 95-99.
[http://dx.doi.org/10.1002/pros.2990170203] [PMID: 2399194]
[30]
Khan, S.; Zafar, A.; Naseem, I. Redox cycling of copper by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated modulation of redox scavengers, DNA damage and cell death in diethylnitrosamine induced hepatocellular carcinoma. Bioorg. Chem., 2020, 99, 103818.
[http://dx.doi.org/10.1016/j.bioorg.2020.103818] [PMID: 32276135]
[31]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[32]
Thati, B.; Noble, A.; Creaven, B.S.; Walsh, M.; McCann, M.; Devereux, M.; Kavanagh, K.; Egan, D.A. Role of cell cycle events and apoptosis in mediating the anti-cancer activity of a silver(I) complex of 4-hydroxy-3-nitro-coumarin-bis(phenanthroline) in human malignant cancer cells. Eur. J. Pharmacol., 2009, 602(2-3), 203-214.
[http://dx.doi.org/10.1016/j.ejphar.2008.11.020] [PMID: 19041861]
[33]
Jyothi, M.; Banumathi; Zabiulla; Sherapura, A.; Khamees, H.A.; Prabhakar, B.T.; Khanum, S.A. Synthesis, structure analysis, DFT calculations and energy frameworks of new coumarin appended oxadiazoles, to regress ascites malignancy by targeting VEGF mediated angiogenesis. J. Mol. Struct., 2022, 1252, 132173.
[http://dx.doi.org/10.1016/j.molstruc.2021.132173]
[34]
Lingaraju, G.S.; Balaji, K.S.; Jayarama, S.; Anil, S.M.; Kiran, K.R.; Sadashiva, M.P. Synthesis of new coumarin tethered isoxazolines as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3606-3612.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.046] [PMID: 30396758]
[35]
Gray-Schopfer, V.; Wellbrock, C.; Marais, R. Melanoma biology and new targeted therapy. Nature, 2007, 445(7130), 851-857.
[http://dx.doi.org/10.1038/nature05661] [PMID: 17314971]
[36]
Chakraborty, D.P.; Roy, S. Chemical and biological aspects of melanin.The Alkaloids: Chemistry and Biology; Cordell, E.G.A., Ed.; Academic Press Inc.: Amsterdam, 2003, pp. 345-391.
[37]
[38]
ACS. Key Statistics for Melanoma Skin Cancer. Available From: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html
[39]
Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221.
[http://dx.doi.org/10.1016/j.addr.2017.09.016] [PMID: 28939379]
[40]
Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet, 2018, 392(10151), 971-984.
[http://dx.doi.org/10.1016/S0140-6736(18)31559-9] [PMID: 30238891]
[41]
Huda, M.N.; Deaguero, I.G.; Borrego, E.A.; Kumar, R.; Islam, T.; Afrin, H.; Varela-Ramirez, A.; Aguilera, R.J.; Tanner, E.E.L.; Nurunnabi, M. Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. J. Control. Release, 2022, 349, 783-795.
[http://dx.doi.org/10.1016/j.jconrel.2022.07.035] [PMID: 35908622]
[42]
Jenkins, R.W.; Fisher, D.E. Treatment of advanced melanoma in 2020 and beyond. J. Invest. Dermatol., 2021, 141(1), 23-31.
[http://dx.doi.org/10.1016/j.jid.2020.03.943] [PMID: 32268150]
[43]
Domingues, B.; Lopes, J.; Soares, P.; Pópulo, H. Melanoma treatment in review. ImmunoTargets Ther., 2018, 7, 35-49.
[http://dx.doi.org/10.2147/ITT.S134842] [PMID: 29922629]
[44]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[45]
Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304), 1002-1014.
[http://dx.doi.org/10.1016/S0140-6736(21)01206-X] [PMID: 34509219]
[46]
Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2283-2302.
[http://dx.doi.org/10.1007/s00432-018-2726-1] [PMID: 30094536]
[47]
Tangella, L.P.; Clark, M.E.; Gray, E.S. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(1), 129736.
[http://dx.doi.org/10.1016/j.bbagen.2020.129736] [PMID: 32956754]
[48]
Kozar, I.; Margue, C.; Rothengatter, S.; Haan, C.; Kreis, S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 313-322.
[http://dx.doi.org/10.1016/j.bbcan.2019.02.002] [PMID: 30776401]
[49]
Fontana, F.; Raimondi, M.; Di Domizio, A.; Moretti, R.M.; Montagnani Marelli, M.; Limonta, P. Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin. Cancer Biol., 2019, 59, 266-282.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.011] [PMID: 31233829]
[50]
Essa, A.F.; El-Hawary, S.S.; Emam, S.E.; Kubacy, T.M.; El-Khrisy, E.E.D.A.M.; Younis, I.Y.; Elshamy, A.I. Characterization of undescribed melanoma inhibitors from Euphorbia mauritanica L. cultivated in Egypt targeting BRAFV600E and MEK 1 kinases via in-silico study and ADME prediction. Phytochemistry, 2022, 198, 113154.
[http://dx.doi.org/10.1016/j.phytochem.2022.113154] [PMID: 35245525]
[51]
Marrelli, M.; Perri, M.R.; Amodeo, V.; Giordano, F.; Statti, G.A.; Panno, M.L.; Conforti, F. Assessment of photo-induced cytotoxic activity of Cachrys sicula and Cachrys libanotis enriched-coumarin extracts against human melanoma cells. Plants, 2021, 10(1), 123.
[http://dx.doi.org/10.3390/plants10010123] [PMID: 33435579]
[52]
Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer, 2009, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[53]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[54]
Önder, A. Anticancer activity of natural coumarins for biological targets. Studies in Natural Products Chemistry; Rahman, A.U. Elsevier: Amsterdam, 2020, pp. 85-109.
[55]
Finn, G.J.; Creaven, B.S.; Egan, D.A. A study of the role of cell cycle events mediating the action of coumarin derivatives in human malignant melanoma cells. Cancer Lett., 2004, 214(1), 43-54.
[http://dx.doi.org/10.1016/j.canlet.2004.04.022] [PMID: 15331172]
[56]
Egan, D.; O’kennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R.D. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab. Rev., 1990, 22(5), 503-529.
[http://dx.doi.org/10.3109/03602539008991449] [PMID: 2078993]
[57]
Musa, M.A.; Badisa, V.L.D.; Latinwo, L.M.; Cooperwood, J.; Sinclair, A.; Abdullah, A. Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res., 2011, 31(6), 2017-2022.
[PMID: 21737617]
[58]
Velascovelázquez, M.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M.J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16?F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett., 2003, 198(2), 179-186.
[http://dx.doi.org/10.1016/S0304-3835(03)00333-1] [PMID: 12957356]
[59]
Jiménez-Orozco, F.A.; Molina-Guarneros, J.A.; Mendoza-Patiño, N.; León-Cedeño, F.; Flores-Pérez, B.; Santos-Santos, E.; Mandokl, J.J. Cytostatic activity of coumarin metabolites and derivatives in the B16-F10 murine melanoma cell line. Melanoma Res., 1999, 9(3), 243-248.
[http://dx.doi.org/10.1097/00008390-199906000-00005] [PMID: 10465579]
[60]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[61]
Penta, S. Introduction to coumarin and SAR. Advances in structure and activity relationship of coumarin derivatives. ; Penta, S., Ed.; Academic Press Inc.: Amsterdam, 2016, pp. 1-8.
[http://dx.doi.org/10.1016/B978-0-12-803797-3.00001-1]
[62]
Jeon, Y.J.; Jang, J.Y.; Shim, J.H.; Myung, P.K.; Chae, J.I. Esculetin, a coumarin derivative, exhibits anti-proliferative and pro-apoptotic activity in G361 human malignant melanoma. J. Cancer Prev., 2015, 20(2), 106-112.
[http://dx.doi.org/10.15430/JCP.2015.20.2.106] [PMID: 26151043]
[63]
Barthomeuf, C.; Lim, S.; Iranshahi, M.; Chollet, P. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine, 2008, 15(1-2), 103-111.
[http://dx.doi.org/10.1016/j.phymed.2007.04.001] [PMID: 17689942]
[64]
Carneiro Leite, V.; Ferreira Santos, R.; Chen Chen, L.; Andreu Guillo, L. Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line. J. Photochem. Photobiol. B, 2004, 76(1-3), 49-53.
[http://dx.doi.org/10.1016/j.jphotobiol.2004.07.004] [PMID: 15488715]
[65]
Kim, Y.K.; Kim, Y.S.; Ryu, S.Y. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines. Phytother. Res., 2007, 21(3), 288-290.
[http://dx.doi.org/10.1002/ptr.2043] [PMID: 17143927]
[66]
Sumiyoshi, M.; Sakanaka, M.; Taniguchi, M.; Baba, K.; Kimura, Y. Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species under ultraviolet A irradiation. J. Nat. Med., 2014, 68(1), 83-94.
[http://dx.doi.org/10.1007/s11418-013-0774-z] [PMID: 23649674]
[67]
Urbagarova, B.M.; Shults, E.E.; Taraskin, V.V.; Radnaeva, L.D.; Petrova, T.N.; Rybalova, T.V.; Frolova, T.S.; Pokrovskii, A.G.; Ganbaatar, J. Chromones and coumarins from Saposhnikovia divaricata (Turcz.) Schischk. Growing in Buryatia and Mongolia and their cytotoxicity. J. Ethnopharmacol., 2020, 261, 112517.
[http://dx.doi.org/10.1016/j.jep.2019.112517] [PMID: 31931162]
[68]
Veselinović, J.B.; Veselinović, A.M.; Ilic-Tomic, T.; Davis, R.; O’Connor, K.; Pavic, A.; Nikodinovic-Runic, J. Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies. Bioorg. Med. Chem., 2017, 25(24), 6286-6296.
[http://dx.doi.org/10.1016/j.bmc.2017.09.021] [PMID: 29042224]
[69]
Fiorito, S.; Epifano, F.; Preziuso, F.; Cacciatore, I.; di Stefano, A.; Taddeo, V.A.; de Medina, P.; Genovese, S. Natural oxyprenylated coumarins are modulators of melanogenesis. Eur. J. Med. Chem., 2018, 152, 274-282.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.051] [PMID: 29730190]
[70]
Cheng, J.X.; Li, Y.Q.; Cai, J.; Zhang, C.F.; Akihisa, T.; Li, W.; Kikuchi, T.; Liu, W.Y.; Feng, F.; Zhang, J. Phenolic compounds from Ficus hispida L.f. as tyrosinase and melanin inhibitors: Biological evaluation, molecular docking, and molecular dynamics. J. Mol. Struct., 2021, 1244, 130951.
[http://dx.doi.org/10.1016/j.molstruc.2021.130951]
[71]
Mahendra Kumar, C.; Sathisha, U.V.; Dharmesh, S.; Rao, A.G.A.; Singh, S.A. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie, 2011, 93(3), 562-569.
[http://dx.doi.org/10.1016/j.biochi.2010.11.014] [PMID: 21144881]
[72]
Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 2006, 67(21), 2318-2331.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.006] [PMID: 16973188]
[73]
Theos, A.C.; Tenza, D.; Martina, J.A.; Hurbain, I.; Peden, A.A.; Sviderskaya, E.V.; Stewart, A.; Robinson, M.S.; Bennett, D.C.; Cutler, D.F.; Bonifacino, J.S.; Marks, M.S.; Raposo, G. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell, 2005, 16(11), 5356-5372.
[http://dx.doi.org/10.1091/mbc.e05-07-0626] [PMID: 16162817]
[74]
Barton, D.E.; Kwon, B.S.; Francke, U. Human tyrosinase gene, mapped to chromosome 11 (q14 → q21), defines second region of homology with mouse chromosome 7. Genomics, 1988, 3(1), 17-24.
[http://dx.doi.org/10.1016/0888-7543(88)90153-X] [PMID: 3146546]
[75]
Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzo[b]thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem., 2019, 184, 111765.
[http://dx.doi.org/10.1016/j.ejmech.2019.111765] [PMID: 31629163]
[76]
Jaenicke, E.; Decker, H. Tyrosinases from crustaceans form hexamers. Biochem. J., 2003, 371(2), 515-523.
[http://dx.doi.org/10.1042/bj20021058] [PMID: 12466021]
[77]
D'Orazio, J.A.; Marsch, A.; Lagrew, J.; Veith, B. Skin pigmentation and melanoma risk. Advances in Malignant Melanoma - Clinical and Research Perspectives; InTech, 2011.
[78]
García-Borrón, J.C.; Olivares Sánchez, M.C. Biosynthesis of Melanins. Melanins and Melanosomes; Wiley, 2011, pp. 87-116.
[http://dx.doi.org/10.1002/9783527636150.ch4]
[79]
Hearing, V.J., Jr; Ekel, T.M.; Montague, P.M.; Nicholson, J.M. Mammalin tyrosinase. Stoichiometry and measurement of reaction products. Biochimica et Biophysica Acta (BBA) - Enzymology, 1980, 611(2), 251-268.
[http://dx.doi.org/10.1016/0005-2744(80)90061-3] [PMID: 6766744]
[80]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486.
[http://dx.doi.org/10.1021/bi200395t] [PMID: 21598903]
[81]
Choi, H.; Yoon, J.H.; Youn, K.; Jun, M. Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomed. Pharmacother., 2022, 147, 112651.
[http://dx.doi.org/10.1016/j.biopha.2022.112651] [PMID: 35063859]
[82]
Thornes, R.D.; Daly, L.; Lynch, G.; Breslin, B.; Browne, H.; Browne, H.Y.; Corrigan, T.; Daly, P.; Edwards, G.; Gaffney, E.; Henley, J.; Healy, T.; Keane, F.; Lennon, F.; McMurray, N.; O’Loughlin, S.; Shine, M.; Tanner, A. Treatment with coumarin to prevent or delay recurrence of malignant melanoma. J. Cancer Res. Clin. Oncol., 1994, 120(S1)(Suppl.), S32-S34.
[http://dx.doi.org/10.1007/BF01377122] [PMID: 8132701]
[83]
Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed. Pharmacother., 2018, 106, 98-108.
[http://dx.doi.org/10.1016/j.biopha.2018.06.053] [PMID: 29957472]
[84]
Finn, G.J.; Creaven, B.S.; Egan, D.A. Activation of mitogen activated protein kinase pathways and melanogenesis by novel nitro-derivatives of 7-hydroxycomarin in human malignant melanoma cells. Eur. J. Pharm. Sci., 2005, 26(1), 16-25.
[http://dx.doi.org/10.1016/j.ejps.2005.04.016] [PMID: 15996858]
[85]
Yang, H.H.; Oh, K.E.; Jo, Y.H.; Ahn, J.H.; Liu, Q.; Turk, A.; Jang, J.Y.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg. Med. Chem., 2018, 26(2), 509-515.
[http://dx.doi.org/10.1016/j.bmc.2017.12.011] [PMID: 29254897]
[86]
Küçükaydın, S.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. HPLC-DAD phytochemical profiles of Thymus cariensis and T. cilicicus with antioxidant, cytotoxic, anticholinesterase, anti-urease, anti-tyrosinase, and antidiabetic activities. S. Afr. J. Bot., 2021, 143, 155-163.
[http://dx.doi.org/10.1016/j.sajb.2021.07.018]
[87]
Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crops Prod., 2019, 141, 111735.
[http://dx.doi.org/10.1016/j.indcrop.2019.111735]
[88]
Kamauchi, H.; Noji, M.; Kinoshita, K.; Takanami, T.; Koyama, K. Coumarins with an unprecedented tetracyclic skeleton and coumarin dimers from chemically engineered extracts of a marine-derived fungus. Tetrahedron, 2018, 74(23), 2846-2856.
[http://dx.doi.org/10.1016/j.tet.2018.04.033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy