Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Germacrone, A Novel and Safe Anticancer Agent from Genus Curcuma: A Review of its Mechanism

Author(s): Guanhua Lou, Yan Huang, Yu Wang, Shiyun Chen, Chang Liu, Ying Li and Jianan Feng*

Volume 23, Issue 13, 2023

Published on: 10 May, 2023

Page: [1490 - 1498] Pages: 9

DOI: 10.2174/1871520623666230420094628

Price: $65

Open Access Journals Promotions 2
Abstract

Germacrone, a kind of natural sesquiterpenoid compound, has been reported to exhibit many pharmacological properties, especially the anticancer effect. Many in vitro experiments have been performed on various cancer cell lines, trying to explore their anticancer mechanism. Aiming at investigating the anticancer effect of germacrone, this article reviews the extant information on existing literature about germacrone-related studies. The anticancer mechanisms and clinical usages of germacrone are summarized. Literature databases (such as PubMed and CNKI) are used to search the current studies and experimental research about the anticancer effect information of germacrone. Anticancer mechanism of germacrone includes cell cycle arrest inducing, programmed cell death (apoptosis, autophagy, pyroptosis and ferroptosis) inducing, and estrogen-related genes mediating. Structural modification and analogue design are worthy of further study in the future.

Keywords: Anticancer effect, natural sources, cell cycle arrest, ferroptosis, autophagy, apoptosis.

Graphical Abstract
[1]
Wu, T.; Yin, F.; Kong, H.; Peng, J. Germacrone attenuates cerebral ischemia/reperfusion injury in rats via antioxidative and antiapoptotic mechanisms. J. Cell. Biochem., 2019, 120(11), 18901-18909.
[http://dx.doi.org/10.1002/jcb.29210] [PMID: 31318092]
[2]
Chen, Q.F.; Wang, G.; Tang, L.Q.; Yu, X.W.; Li, Z.F.; Yang, X.F. Effect of germacrone in alleviating HUVECs damaged by H2O2-induced oxidative stress. Zhongguo Zhongyao Zazhi, 2017, 42(18), 3564-3571.
[PMID: 29218943]
[3]
Zhang, J.; Yuan, L.; Wang, S.; Liu, J.; Bi, H.; Chen, G.; Li, J.; Chen, L. Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells. BMC Complement. Med. Ther., 2020, 20(1), 77-86.
[http://dx.doi.org/10.1186/s12906-020-2865-1] [PMID: 32145743]
[4]
Pan, J.; Miao, D.; Chen, L. Germacrone reverses adriamycin resistance in human chronic myelogenous leukemia K562/ADM cells by suppressing MDR1 gene/P-glycoprotein expression. Chem. Biol. Interact., 2018, 288, 32-37.
[http://dx.doi.org/10.1016/j.cbi.2018.04.012] [PMID: 29655913]
[5]
He, W.; Zhai, X.; Su, J.; Ye, R.; Zheng, Y.; Su, S. Antiviral activity of germacrone against pseudorabies virus in vitro. Pathogens, 2019, 8(4), 258-271.
[http://dx.doi.org/10.3390/pathogens8040258] [PMID: 31766701]
[6]
Liao, Q.; Qian, Z.; Liu, R.; An, L.; Chen, X. Germacrone inhibits early stages of influenza virus infection. Antiviral Res., 2013, 100(3), 578-588.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.021] [PMID: 24095670]
[7]
Chen, Y.; Dong, Y.; Jiao, Y.; Hou, L.; Shi, Y.; Gu, T.; Zhou, P.; Shi, Z.; Xu, L.; Wang, C. In vitro antiviral activity of germacrone against porcine parvovirus. Arch. Virol., 2015, 160(6), 1415-1420.
[http://dx.doi.org/10.1007/s00705-015-2393-3] [PMID: 25813663]
[8]
Wang, Z.; Zhuo, F.; Chu, P.; Yang, X.; Zhao, G. Germacrone alleviates collagen-induced arthritis via regulating Th1/Th2 balance and NF-κB activation. Biochem. Biophys. Res. Commun., 2019, 518(3), 560-564.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.084] [PMID: 31451221]
[9]
Galisteo Pretel, A.; Pérez Del Pulgar, H.; Guerrero de León, E.; López-Pérez, J.L.; Olmeda, A.S.; Gonzalez-Coloma, A.; Barrero, F. A.; Quílez Del Moral, J.F. Germacrone derivatives as new insecticidal and acaricidal compounds: A structure-activity relationship. Molecules, 2019, 24(16), 2898.
[http://dx.doi.org/10.3390/molecules24162898] [PMID: 31404973]
[10]
Sun, Y.; Li, L.; Wu, J.; Gong, B.; Liu, H. Germacrone cooperates with dexmedetomidine to alleviate high fat diet induced type 2 diabetes mellitus via upregulating AMPKα1 expression. Exp. Ther. Med., 2019, 18(5), 3514-3524.
[http://dx.doi.org/10.3892/etm.2019.7990] [PMID: 31602228]
[11]
Jin, J.; Wang, Y.; Zheng, D.; Liang, M.; He, Q. A novel identified circular RNA, mmu_mmu_circRNA_0000309, involves in germacrone-mediated improvement of diabetic nephropathy through regulating ferroptosis by targeting miR-188-3p/GPX4 signaling axis. Antioxid. Redox Signal., 2022, 36(10-12), 740-759.
[http://dx.doi.org/10.1089/ars.2021.0063] [PMID: 34913724]
[12]
Guo, Y.R.; Choung, S.Y. Germacrone attenuates hyperlipidemia and improves lipid metabolism in high-fat diet-induced obese C57BL/6J mice. J. Med. Food, 2017, 20(1), 46-55.
[http://dx.doi.org/10.1089/jmf.2016.3811] [PMID: 28098516]
[13]
Zhuang, S.; Liu, B.; Guo, S.; Xue, Y.; Wu, L.; Liu, S.; Zhang, C.; Ni, X. Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Complement. Med. Ther., 2021, 21(1), 6-15.
[http://dx.doi.org/10.1186/s12906-020-03175-0] [PMID: 33402180]
[14]
Lin, M.; Li, P.; Liu, W.; Niu, T.; Huang, L. Germacrone alleviates okadaic acid-induced neurotoxicity in PC12 cells via M1 muscarinic receptor-mediated Galphaq (Gq)/phospholipase C beta (PLCβ)/protein kinase C (PKC) signaling. Bioengineered, 2022, 13(3), 4898-4910.
[http://dx.doi.org/10.1080/21655979.2022.2036918] [PMID: 35156515]
[15]
Riaz, A.; Rasul, A.; Kanwal, N.; Hussain, G.; Shah, M.A.; Sarfraz, I.; Ishfaq, R.; Batool, R.; Rukhsar, F. Adem, Ş. Germacrone: A potent secondary metabolite with therapeutic potential in metabolic diseases, cancer and viral infections. Curr. Drug Metab., 2020, 21(14), 1079-1090.
[http://dx.doi.org/10.2174/1389200221999200728144801] [PMID: 32723267]
[16]
Li, E.; Gao, Y.; Mou, L.; Zhang, Z. Anticancer activity of Germacrone terpenoid in human osteosarcoma cells is mediated via autophagy induction, cell cycle disruption, downregulating the cell cycle regulatory protein expressions and cell migration inhibition. Acta Biochim. Pol., 2022, 69(2), 305-308.
[http://dx.doi.org/10.18388/abp.2020_5712] [PMID: 35468267]
[17]
Li, Z.; Wang, Z.; Dong, F.; Shi, W.; Dai, W.; Zhao, J.; Li, Q.; Fang, Z.; Ren, L.; Liu, T.; Wei, Z.; Mou, W.; Lin, L.; Yang, Y.; Xiao, X.; Ma, L.; Bai, Z. Germacrone attenuates hepatic stellate cells activation and liver fibrosis via regulating multiple signaling pathways. Front. Pharmacol., 2021, 12(12), 745561.
[http://dx.doi.org/10.3389/fphar.2021.745561] [PMID: 34675811]
[18]
Ognjanov, I.; Ivanov, D.; Herout, V.; Horák, M.; Plíva, J.; Šorm, F. On terpenes. LXXXVIII. The structure of germacrone, the crystalline constituent of Bulgarian zdravets oil. Collect. Czech. Chem. Commun., 1958, 23(11), 2033-2045.
[http://dx.doi.org/10.1135/cccc19582033]
[19]
Fang, X.; Tan, T.; Gao, B.; Zhao, Y.; Liu, T.; Xia, Q. Germacrone regulates HBXIP-Mediated cell cycle, apoptosis and promotes the formation of autophagosomes to inhibit the proliferation of gastric cancer cells. Front. Oncol., 2020, 10, 537322.
[http://dx.doi.org/10.3389/fonc.2020.537322] [PMID: 33244453]
[20]
Zhang, R.; Hao, J.; Guo, K.; Liu, W.; Yao, F.; Wu, Q.; Liu, C.; Wang, Q.; Yang, X. Germacrone inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cells. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/7643248] [PMID: 32071920]
[21]
Zhao, Y.; Cai, J.; Shi, K.; Li, H.; Du, J.; Hu, D.; Liu, Z.; Wang, W. Germacrone induces lung cancer cell apoptosis and cell cycle arrest via the Akt/MDM2/p53 signaling pathway. Mol. Med. Rep., 2021, 23(6), 452-460.
[http://dx.doi.org/10.3892/mmr.2021.12091] [PMID: 33880579]
[22]
Serpa, G.A.M.; Gómez, H.C.; Velásquez-Cock, J.A.; Vélez, A.L.; Gañán Rojo, P.; Velásquez, A.M.; Zuluaga Gallego, R. The nanotech potential of turmeric (Curcuma longa L.) in food technology: A review. Crit. Rev. Food Sci. Nutr., 2020, 60(11), 1842-1854.
[http://dx.doi.org/10.1080/10408398.2019.1604490] [PMID: 31017458]
[23]
Karlowicz-Bodalska, K.; Han, S.; Freier, J.; Smolenski, M.; Bodalska, A. Curcuma longa as medicinal herb in the treatment of diabet- ic complications. Acta Pol. Pharm., 2017, 74(2), 605-610.
[PMID: 29624265]
[24]
Kamazeri, T.S.A.T.; Samah, O.A.; Taher, M.; Susanti, D.; Qaralleh, H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pac. J. Trop. Med., 2012, 5(3), 202-209.
[http://dx.doi.org/10.1016/S1995-7645(12)60025-X] [PMID: 22305785]
[25]
Burapan, S.; Kim, M.; Paisooksantivatana, Y.; Eser, B.E.; Han, J. Thai Curcuma Species: Antioxidant and bioactive compounds. Foods, 2020, 9(9), 1219.
[http://dx.doi.org/10.3390/foods9091219] [PMID: 32887356]
[26]
Kuroyanagi, M.; Ueno, A.; Ujiie, K.; Sato, S. Structures of sesquiterpenes from Curcuma aromatica Salisb. Chem. Pharm. Bull., 1987, 35(1), 53-59.
[http://dx.doi.org/10.1248/cpb.35.53]
[27]
Dosoky, N.; Setzer, W. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 2018, 10(9), 1196-1237.
[http://dx.doi.org/10.3390/nu10091196] [PMID: 30200410]
[28]
Zhang, L.; Yang, Z.; Huang, Z.; Zhao, M.; Li, P.; Zhou, W.; Zhang, K.; Zheng, X.; Lin, L.; Tang, J.; Fang, Y.; Du, Z. Variation in essential oil and bioactive compounds of Curcuma kwangsiensis collected from natural habitats. Chem. Biodivers., 2017, 14(7), e1700020.
[http://dx.doi.org/10.1002/cbdv.201700020] [PMID: 28398606]
[29]
Yin, G.P.; Zhang, Q.Z.; An, Y.W.; Zhu, J.J.; Wang, Z.M. Advance in chemical constituents and pharmacological activity of Curcuma wenyujin. Zhongguo Zhongyao Zazhi, 2012, 37(22), 3354-3360.
[PMID: 23373201]
[30]
Siddique, H.; Pendry, B.; Rahman, M.M. Terpenes from Zingiber montanum and their screening against multi-drug resistant and methicillin resistant Staphylococcus aureus. Molecules, 2019, 24(3), 385-394.
[http://dx.doi.org/10.3390/molecules24030385] [PMID: 30678230]
[31]
Huong, L.T.; Chung, N.T.; Huong, T.T.; Sam, L.N.; Hung, N.H.; Ogunwande, I.A.; Dai, D.N.; Linh, L.D.; Setzer, W.N. Essential oils of Zingiber species from vietnam: Chemical compositions and biological activities. Plants, 2020, 9(10), 1269.
[http://dx.doi.org/10.3390/plants9101269] [PMID: 32993137]
[32]
Liu, Y.; Liu, J.; Zhang, Y. Research progress on chemical constituents of Zingiber officinale roscoe. BioMed Res. Int., 2019, 2019, 1-21.
[http://dx.doi.org/10.1155/2019/5370823] [PMID: 31930125]
[33]
Zeljković, S.Ć.; Tan, K.; Siljak-Yakovlev, S.; Maksimović, M. Essential oil profile, phenolic content and antioxidant activity of Geranium kikianum. Nat. Prod. Commun., 2017, 12(2), 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200234] [PMID: 30428229]
[34]
Radulović N.S.; Dekić M.S.; Stojanović-Radić Z.Z.; Zoranić S.K. Geranium macrorrhizum L. (Geraniaceae) essential oil: A potent agent against Bacillus subtilis. Chem. Biodivers., 2010, 7(11), 2783-2800.
[http://dx.doi.org/10.1002/cbdv.201000100] [PMID: 21072778]
[35]
Doss, R.P.; Luthi, R.; Hrutfiord, B.F. Germacrone, a sesquiterpene repellent to obscure root weevil from Rhododendron edgeworthii. Phytochemistry, 1980, 19(11), 2379-2380.
[http://dx.doi.org/10.1016/S0031-9422(00)91031-8]
[36]
Wu, L.; Wang, L.; Tian, X.; Zhang, J.; Feng, H. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis. BMC Compl. Med. Ther., 2020, 20(1), 21-29.
[http://dx.doi.org/10.1186/s12906-019-2810-3] [PMID: 32020876]
[37]
Liu, Y.; Wang, W.; Fang, B.; Ma, F.; Zheng, Q.; Deng, P.; Zhao, S.; Chen, M.; Yang, G.; He, G. Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Eur. J. Pharmacol., 2013, 698(1-3), 95-102.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.013] [PMID: 23117090]
[38]
Liu, B.O.; Gao, Y.U.E.Q.I.U.; Wang, X.M.; Wang, Y.C.; Fu, L.I.Q.I. Germacrone inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. Mol. Med. Rep., 2014, 10(2), 1046-1050.
[http://dx.doi.org/10.3892/mmr.2014.2290] [PMID: 24889088]
[39]
Zhong, Z.; Chen, X.; Tan, W.; Xu, Z.; Zhou, K.; Wu, T.; Cui, L.; Wang, Y. Germacrone inhibits the proliferation of breast cancer cell lines by inducing cell cycle arrest and promoting apoptosis. Eur. J. Pharmacol., 2011, 667(1-3), 50-55.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.041] [PMID: 21497161]
[40]
Dai, X.; Wang, D.; Zhang, J. Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis, 2021, 26(7-8), 385-414.
[http://dx.doi.org/10.1007/s10495-021-01682-0] [PMID: 34236569]
[41]
Gerl, R.; Vaux, D.L. Apoptosis in the development and treatment of cancer. Carcinogenesis, 2004, 26(2), 263-270.
[http://dx.doi.org/10.1093/carcin/bgh283] [PMID: 15375012]
[42]
Yu, Z.; Xu, J.; Shao, M.; Zou, J. Germacrone induces apoptosis as well as protective autophagy in human prostate cancer cells. Cancer Manag. Res., 2020, 12, 4009-4016.
[http://dx.doi.org/10.2147/CMAR.S250522] [PMID: 32547235]
[43]
Ji, D.; Zhao, Q.; Qin, Y.; Tong, H.; Wang, Q.; Yu, M.; Mao, C.; Lu, T.; Qiu, J.; Jiang, C. Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway. Cell Biol. Int., 2021, 45(9), 1866-1875.
[http://dx.doi.org/10.1002/cbin.11607] [PMID: 33835632]
[44]
Fei, H.; Zhou, Y.; Li, R.; Yang, M.; Ma, J.; Wang, F. HBXIP, a binding protein of HBx, regulates maintenance of the G2/M phase checkpoint induced by DNA damage and enhances sensitivity to doxorubicin-induced cytotoxicity. Cell Cycle, 2017, 16(5), 468-476.
[http://dx.doi.org/10.1080/15384101.2017.1281482] [PMID: 28103177]
[45]
Liu, Y.; Zheng, Q.; Fang, B.; Wang, W.; Ma, F.; Roshan, S.; Banafa, A.; Chen, M.; Chang, J.; Deng, X.; Li, K.; Yang, G.; He, G. Germacrone induces apoptosis in human hepatoma HepG2 cells through inhibition of the JAK2/STAT3 signalling pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2013, 33(3), 339-345.
[http://dx.doi.org/10.1007/s11596-013-1121-z] [PMID: 23771657]
[46]
Sadia, R. Effect of fucoidan and germacrone on cancer cell lines and the underlying mechanisms; Huazhong University of Science & Technology, 2015.
[47]
Zhou, Y.; Zhang, Y.; Bai, X.; He, P. Effects of germacrone on proliferation and apoptosis in human squamous cell lung carcinoma lk2 cells. J. Chin. Med. Uni, 2013, 42(6), 508-510.
[48]
Chen, X.; Pei, L.; Zhong, Z.; Guo, J.; Zhang, Q.; Wang, Y. Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. Phytomedicine, 2011, 18(14), 1238-1243.
[http://dx.doi.org/10.1016/j.phymed.2011.06.017] [PMID: 21795032]
[49]
Xie, X.H.; Zhao, H.; Hu, Y.Y.; Gu, X.D. Germacrone reverses Adriamycin resistance through cell apoptosis in multidrug-resistant breast cancer cells. Exp. Ther. Med., 2014, 8(5), 1611-1615.
[http://dx.doi.org/10.3892/etm.2014.1932] [PMID: 25289068]
[50]
Fang, X.; Tan, T.; Gao, B.; Zhao, Y.; Liu, T.; Xia, Q. Germacrone regulates HBXIP-mediated cell cycle, apoptosis and promotes the formation of autophagosomes to inhibit the proliferation of gastric cancer cells. Front. Oncol., 2020. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2020.537322/full
[51]
lionsky, D.J. Autophagy revisited: A conversation with Christian de Duve. Autophagy, 2008, 4(6), 740-743.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[52]
Yang, Z.; Klionsky, D.J. Eaten alive: A history of macroautophagy. Nat. Cell Biol., 2010, 12(9), 814-822.
[http://dx.doi.org/10.1038/ncb0910-814] [PMID: 20811353]
[53]
Vlahopoulos, S.; Critselis, E.; Voutsas, I.; Perez, S.; Moschovi, M.; Baxevanis, C.; Chrousos, G. New use for old drugs? Prospective targets of chloroquines in cancer therapy. Curr. Drug Targets, 2014, 15(9), 843-851.
[http://dx.doi.org/10.2174/1389450115666140714121514] [PMID: 25023646]
[54]
Sato, K.; Tsuchihara, K.; Fujii, S.; Sugiyama, M.; Goya, T.; Atomi, Y.; Ueno, T.; Ochiai, A.; Esumi, H. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res., 2007, 67(20), 9677-9684.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1462] [PMID: 17942897]
[55]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[56]
Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; Shu, Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother., 2020, 121, 109595.
[http://dx.doi.org/10.1016/j.biopha.2019.109595] [PMID: 31710896]
[57]
Sun, X.; Zhong, X.; Ma, W.; Feng, W.; Huang, Q.; Ma, M.; Lv, M.; Hu, R.; Han, Z.; Li, J.; Zhou, X. Germacrone induces caspase 3/GSDME activation and enhances ROS production, causing HepG2 pyroptosis. Exp. Ther. Med., 2022, 24(1), 456-468.
[http://dx.doi.org/10.3892/etm.2022.11383] [PMID: 35747157]
[58]
Lu, B.; Chen, X.B.; Ying, M.D.; He, Q.J.; Cao, J.; Yang, B. The role of ferroptosis in cancer development and treatment response. Front. Pharmacol., 2018, 8, 992-999.
[http://dx.doi.org/10.3389/fphar.2017.00992] [PMID: 29375387]
[59]
Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci., 2016, 73(11-12), 2195-2209.
[http://dx.doi.org/10.1007/s00018-016-2194-1] [PMID: 27048822]
[60]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[61]
Roh, J.L.; Kim, E.H.; Jang, H.J.; Park, J.Y.; Shin, D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett., 2016, 381(1), 96-103.
[http://dx.doi.org/10.1016/j.canlet.2016.07.035] [PMID: 27477897]
[62]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[63]
Galmiche, A.; Chauffert, B.; Barbare, J.C. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett., 2014, 346(2), 159-162.
[http://dx.doi.org/10.1016/j.canlet.2013.12.028] [PMID: 24380851]
[64]
Hong, X.; Roh, W.; Sullivan, R.J.; Wong, K.H.K.; Wittner, B.S.; Guo, H.; Dubash, T.D.; Sade-Feldman, M.; Wesley, B.; Horwitz, E.; Boland, G.M.; Marvin, D.L.; Bonesteel, T.; Lu, C.; Aguet, F.; Burr, R.; Freeman, S.S.; Parida, L.; Calhoun, K.; Jewett, M.K.; Nieman, L.T.; Hacohen, N.; Näär, A.M.; Ting, D.T.; Toner, M.; Stott, S.L.; Getz, G.; Maheswaran, S.; Haber, D.A. The lipogenic regulator SREBF2 induces Transferrin in circulating melanoma cells and suppresses ferroptosis. Cancer Discov., 2021, 11(3), 678-695.
[http://dx.doi.org/10.1158/2159-8290.CD-19-1500] [PMID: 33203734]
[65]
Zárybnický, T.; Matoušková, P.; Skálová, L.; Boušová, I. The hepatotoxicity of alantolactone and germacrone: their influence on cholesterol and lipid metabolism in differentiated HepaRG cells. Nutrients, 2020, 12(6), 1720-1736.
[http://dx.doi.org/10.3390/nu12061720] [PMID: 32521813]
[66]
Pedram, A.; Razandi, M.; Evinger, A.J.; Lee, E.; Levin, E.R. Estrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair. Mol. Biol. Cell, 2009, 20(14), 3374-3389.
[http://dx.doi.org/10.1091/mbc.e09-01-0085] [PMID: 19477925]
[67]
Hevir, N.; Trošt, N.; Debeljak, N.; Lanišnik Rižner, T. Expression of estrogen and progesterone receptors and estrogen metabolizing enzymes in different breast cancer cell lines. Chem. Biol. Interact., 2011, 191(1-3), 206-216.
[http://dx.doi.org/10.1016/j.cbi.2010.12.013] [PMID: 21182832]
[68]
Hsu, L.H.; Chu, N.M.; Kao, S.H. Estrogen, estrogen receptor and lung cancer. Int. J. Mol. Sci., 2017, 18(8), 1713-1729.
[http://dx.doi.org/10.3390/ijms18081713] [PMID: 28783064]
[69]
Nichols, M.D.; Peng, C.; Kanterewicz, B.; Day, B.W.; Hershberger, P.A. Estrogen Receptor α and β signaling in breast and lung cancers. Cancer Res., 2005, 65. Epub ahead of print
[70]
Rahman, M.S.U.; Cao, J. Estrogen receptors in gastric cancer: Advances and perspectives. World J. Gastroenterol., 2016, 22(8), 2475-2482.
[http://dx.doi.org/10.3748/wjg.v22.i8.2475] [PMID: 26937135]
[71]
Jiang, L.; Fei, H.; Yang, A.; Zhu, J.; Sun, J.; Liu, X.; Xu, W.; Yang, J.; Zhang, S. Estrogen inhibits the growth of colon cancer in mice through reversing extracellular vesicle-mediated immunosuppressive tumor microenvironment. Cancer Lett., 2021, 520, 332-343.
[http://dx.doi.org/10.1016/j.canlet.2021.08.011] [PMID: 34391809]
[72]
Nelson, A.W.; Tilley, W.D.; Neal, D.E.; Carroll, J.S. Estrogen receptor beta in prostate cancer: friend or foe? Endocr. Relat. Cancer, 2014, 21(4), T219-T234.
[http://dx.doi.org/10.1530/ERC-13-0508] [PMID: 24402043]
[73]
Ribeiro, J.R.; Freiman, R.N. Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J. Steroid Biochem. Mol. Biol., 2014, 143, 160-173.
[http://dx.doi.org/10.1016/j.jsbmb.2014.02.010] [PMID: 24565562]
[74]
Blanchard, Z.; Vahrenkamp, J.M.; Berrett, K.C.; Arnesen, S.; Gertz, J. Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer. Genome Res., 2019, 29(9), 1429-1441.
[http://dx.doi.org/10.1101/gr.244780.118] [PMID: 31362937]
[75]
Lim, M.S.; Choung, S.Y.; Jeong, K.W. Germacrone inhibits estrogen receptor α-mediated transcription in MCF-7 breast cancer cells. Phytother. Res., 2016, 30(12), 2036-2043.
[http://dx.doi.org/10.1002/ptr.5711] [PMID: 27573551]
[76]
Szczepański, J.; Tuszewska, H.; Trotsko, N. Anticancer profile of rhodanines: Structure–activity relationship (SAR) and molecular targets-a review. Molecules, 2022, 27(12), 3750-3778.
[http://dx.doi.org/10.3390/molecules27123750] [PMID: 35744873]
[77]
Wu, J.; Feng, Y.; Han, C.; Huang, W.; Shen, Z.; Yang, M.; Chen, W.; Ye, L. Germacrone derivatives: Synthesis, biological activity, molecular docking studies and molecular dynamics simulations. Oncotarget, 2017, 8(9), 15149-15158.
[http://dx.doi.org/10.18632/oncotarget.14832] [PMID: 28148897]
[78]
Kochhar, K.S.; Johnson, M.E.; Volpert, O.; Iyer, A.P. Evidence for autocrine basis of transformation in NIH-3T3 cells transfected with met/HGF receptor gene. Growth Factors, 1995, 12(4), 303-313.
[http://dx.doi.org/10.3109/08977199509028968] [PMID: 8930021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy