Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Emerging Treatment Approaches for COVID-19 Infection: A Critical Review

Author(s): Alok Bharadwaj*, Rasanpreet Kaur and Saurabh Gupta

Volume 24, Issue 4, 2024

Published on: 19 May, 2023

Page: [435 - 448] Pages: 14

DOI: 10.2174/1566524023666230417112543

Price: $65

conference banner
Abstract

In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV- 2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.

Keywords: Peptide repurposing, proteomics, SARS-CoV-2, therapeutics, transcriptomics, antiviral medications.

[1]
Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 2020; 383(6): 590-2.
[http://dx.doi.org/10.1056/NEJMc2011400] [PMID: 32402155]
[2]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[3]
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184(4): 861-80.
[http://dx.doi.org/10.1016/j.cell.2021.01.007] [PMID: 33497610]
[4]
Iacob S, Iacob DG. SARS-coV-2 treatment approaches: Numerous options, no certainty for a versatile virus. Front Pharmacol 2020; 11: 1224.
[http://dx.doi.org/10.3389/fphar.2020.01224] [PMID: 32982720]
[5]
Hillen HS. Structure and function of SARS-CoV-2 polymerase. Curr Opin Virol 2021; 48: 82-90.
[http://dx.doi.org/10.1016/j.coviro.2021.03.010] [PMID: 33945951]
[6]
Valle C, Martin B, Touret F, et al. Drugs against SARS‐CoV ‐2: What do we know about their mode of action? Rev Med Virol 2020; 30(6): 1-10.
[http://dx.doi.org/10.1002/rmv.2143] [PMID: 32779326]
[7]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[8]
Pirone L, Del Gatto A, Di Gaetano S, et al. A multi-targeting approach to fight SARS-CoV-2 attachment. Front Mol Biosci 2020; 7: 186.
[http://dx.doi.org/10.3389/fmolb.2020.00186] [PMID: 32850973]
[9]
Jakhmola S, Indari O, Kashyap D, et al. Mutational analysis of structural proteins of SARS-CoV-2. Heliyon 2021; 7(3): e06572.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06572] [PMID: 33778179]
[10]
Wang Q, Li C, Zhang Q, et al. Interactions of SARS Coronavirus Nucleocapsid Protein with the host cell proteasome subunit p42. Virol J 2010; 7(1): 99.
[http://dx.doi.org/10.1186/1743-422X-7-99] [PMID: 20478047]
[11]
Hasan A, Paray BA, Hussain A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39(8): 3025-33.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[12]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[13]
Song HC, Seo MY, Stadler K, et al. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004; 78(19): 10328-35.
[http://dx.doi.org/10.1128/JVI.78.19.10328-10335.2004] [PMID: 15367599]
[14]
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev 2008; 72(4): 672-85.
[http://dx.doi.org/10.1128/MMBR.00015-08] [PMID: 19052324]
[15]
Guney E, Menche J, Vidal M, Barábasi AL. Network-based in silico drug efficacy screening. Nat Commun 2016; 7(1): 10331.
[http://dx.doi.org/10.1038/ncomms10331] [PMID: 26831545]
[16]
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020; 6(1): 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[17]
Cheng F, Lu W, Liu C, et al. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat Commun 2019; 10(1): 3476.
[http://dx.doi.org/10.1038/s41467-019-10744-6] [PMID: 31375661]
[18]
Gyongyi Z, Garcia-Molina H, Pedersen J. Combating web spam with trustrank. Proceedings of the 30th International Conference on very large data bases (VLDB).
[19]
Sadegh S, Matschinske J, Blumenthal DB, et al. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat Commun 2020; 11(1): 3518.
[http://dx.doi.org/10.1038/s41467-020-17189-2] [PMID: 32665542]
[20]
Morselli Gysi D, do Valle Í, Zitnik M, et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc Natl Acad Sci USA 2021; 118(19): e2025581118.
[http://dx.doi.org/10.1073/pnas.2025581118] [PMID: 33906951]
[21]
Tomasoni M, Gómez S, Crawford J, et al. MONET: A toolbox integrating top-performing methods for network modularization. Bioinformatics 2020; 36(12): 3920-1.
[http://dx.doi.org/10.1093/bioinformatics/btaa236] [PMID: 32271874]
[22]
Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 2017; 17(2): 116-30.
[http://dx.doi.org/10.1038/nrc.2016.124] [PMID: 27977008]
[23]
Alvarez MJ, Shen Y, Giorgi FM, et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 2016; 48(8): 838-47.
[http://dx.doi.org/10.1038/ng.3593] [PMID: 27322546]
[24]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171(6): 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[25]
Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 2010; 107(33): 14621-6.
[http://dx.doi.org/10.1073/pnas.1000138107] [PMID: 20679242]
[26]
Napolitano F, Gambardella G, Carrella D, Gao X, di Bernardo D. Computational drug repositioning and elucidation of mechanism of action of compounds against sars-cov-2. arXiv 2020.
[27]
Yang L, Liu S, Liu J, et al. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther 2020; 5(1): 128.
[http://dx.doi.org/10.1038/s41392-020-00243-2] [PMID: 32712629]
[28]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease. JAMA 2020; 323(18): 1824-36.
[PMID: 32282022]
[29]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. In: Seminars in immunopathology Berlin Heidelberg: Springer 2017. Berlin, Heidelberg: Springer 2017.
[http://dx.doi.org/10.1007/s00281-017-0629-x]
[30]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[31]
Levin JM, Oprea TI, Davidovich S, et al. Artificial intelligence, drug repurposing and peer review. Nat Biotechnol 2020; 38(10): 1127-31.
[http://dx.doi.org/10.1038/s41587-020-0686-x] [PMID: 32929264]
[32]
Rahimkhoei V, Jabbari N, Nourani A, Sharifi S, Akbari A. Potential small‐molecule drugs as available weapons to fight novel coronavirus (2019‐nCoV): A review. Cell Biochem Funct 2021; 39(1): 4-9.
[http://dx.doi.org/10.1002/cbf.3576] [PMID: 32803762]
[33]
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[34]
Indari O, Jakhmola S, Manivannan E, Jha HC. An update on antiviral therapy against SARS-CoV-2: How far have we come? Front Pharmacol 2021; 12: 632677.
[http://dx.doi.org/10.3389/fphar.2021.632677] [PMID: 33762954]
[35]
Elalfy H, Besheer T, El-Mesery A, et al. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID‐19. J Med Virol 2021; 93(5): 3176-83.
[http://dx.doi.org/10.1002/jmv.26880] [PMID: 33590901]
[36]
Young BE, Fong SW, Chan YH, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet 2020; 396(10251): 603-11.
[http://dx.doi.org/10.1016/S0140-6736(20)31757-8] [PMID: 32822564]
[37]
Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2021; 103: 214-6.
[http://dx.doi.org/10.1016/j.ijid.2020.11.191] [PMID: 33278625]
[38]
Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics issues on human positive ssRNA virus infection: An update. Metabolites 2020; 10(9): 356.
[http://dx.doi.org/10.3390/metabo10090356] [PMID: 32878290]
[39]
Gil C, Ginex T, Maestro I, et al. COVID-19: Drug targets and potential treatments. J Med Chem 2020; 63(21): 12359-86.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[40]
Shen L, Niu J, Wang C, et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 2019; 93(12): e00023-19.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]
[41]
Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 2020; 21(7): 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[42]
Medhi B, Prajapat M, Sarma P, et al. Drug for corona virus: A systematic review. Indian J Pharmacol 2020; 52(1): 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[43]
Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA 2020; 324(2): 131-2.
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[44]
Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin Sci 2020; 134(5): 543-5.
[http://dx.doi.org/10.1042/CS20200163] [PMID: 32167153]
[45]
Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer Discov 2020; 10(6): 779-82.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0451] [PMID: 32276929]
[46]
Glebov OO. Understanding SARS‐CoV‐2 endocytosis for COVID‐19 drug repurposing. FEBS J 2020; 287(17): 3664-71.
[http://dx.doi.org/10.1111/febs.15369] [PMID: 32428379]
[47]
Baglivo M, Baronio M, Natalini G, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: A possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed 2020; 91(1): 161-4.
[PMID: 32191676]
[48]
Cho J, Lee YJ, Kim JH, et al. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep 2020; 10(1): 16200.
[http://dx.doi.org/10.1038/s41598-020-72879-7] [PMID: 33004837]
[49]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[50]
Jawaid Akhtar M. COVID19 inhibitors: A prospective therapeutics. Bioorg Chem 2020; 101: 104027.
[http://dx.doi.org/10.1016/j.bioorg.2020.104027] [PMID: 32629280]
[51]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[52]
Borgio JF, Alsuwat HS, Al Otaibi WM, et al. State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2. Arch Med Sci 2020; 16(1)
[53]
Mu J, Xu J, Zhang L, et al. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci 2020; 63(9): 1413-6.
[http://dx.doi.org/10.1007/s11427-020-1692-1] [PMID: 32291557]
[54]
Alam I, Kamau AA, Kulmanov M, et al. Functional pangenome analysis shows key features of E protein are preserved in SARS and SARS-CoV-2. Front Cell Infect Microbiol 2020; 10: 405.
[55]
Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS‐CoV‐2 infection(COVID‐19); a new multi‐pronged therapy for acute respiratory distress syndrome? Br J Pharmacol 2020; 177(16): 3635-45.
[http://dx.doi.org/10.1111/bph.15137] [PMID: 32441764]
[56]
Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 2020; 19(7): 102567.
[http://dx.doi.org/10.1016/j.autrev.2020.102567] [PMID: 32376392]
[57]
Bonaventura A, Vecchié A, Wang TS, et al. Targeting GM-CSF in COVID-19 pneumonia: Rationale and strategies. Front Immunol 2020; 11: 1625.
[http://dx.doi.org/10.3389/fimmu.2020.01625] [PMID: 32719685]
[58]
Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020; 324(13): 1330-41.
[http://dx.doi.org/10.1001/jama.2020.17023] [PMID: 32876694]
[59]
Noreen S, Maqbool I, Madni A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol 2021; 894: 173854.
[http://dx.doi.org/10.1016/j.ejphar.2021.173854] [PMID: 33428898]
[60]
Crisafulli S, Isgrò V, La Corte L, Atzeni F, Trifirò G. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID-19: Rationale, clinical evidence and risks. BioDrugs 2020; 34(4): 415-22.
[http://dx.doi.org/10.1007/s40259-020-00430-1] [PMID: 32557214]
[61]
Yang Y, Zhu Z, Wang X, et al. Ligand-based approach for predicting drug targets and for virtual screening against COVID-19. Brief Bioinform 2021; 22(2): 1053-64.
[http://dx.doi.org/10.1093/bib/bbaa422] [PMID: 33461215]
[62]
Bonam SR, Kaveri SV, Sakuntabhai A, Gilardin L, Bayry J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Reports Medicine 2020; 1(2): 100016.
[63]
Casadevall A, Pirofski L. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130(4): 1545-8.
[http://dx.doi.org/10.1172/JCI138003] [PMID: 32167489]
[64]
Venkat Kumar G, Jeyanthi V, Ramakrishnan S. A short review on antibody therapy for COVID-19. New Microbes New Infect 2020; 35: 100682.
[http://dx.doi.org/10.1016/j.nmni.2020.100682] [PMID: 32313660]
[65]
Andreano E, Nicastri E, Paciello I, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell 2021; 184(7): 1821-1835.e16.
[http://dx.doi.org/10.1016/j.cell.2021.02.035] [PMID: 33667349]
[66]
Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181(5): 1004-5.
[67]
Leu SJ, Lee YC, Lee CH, et al. Generation and characterization of single chain variable fragment against alpha-enolase of Candida albicans. Int J Mol Sci 2020; 21(8): 2903.
[http://dx.doi.org/10.3390/ijms21082903] [PMID: 32326294]
[68]
Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 2020; 369(6506): 1014-8.
[http://dx.doi.org/10.1126/science.abd0831] [PMID: 32540904]
[69]
Focosi D, Maggi F. Neutralising antibody escape of SARS‐CoV‐2 spike protein: Risk assessment for antibody‐based Covid‐19 therapeutics and vaccines. Rev Med Virol 2021; 31(6): e2231.
[http://dx.doi.org/10.1002/rmv.2231] [PMID: 33724631]
[70]
Mahendran ASK, Lim YS, Fang CM, Loh HS, Le CF. The potential of antiviral peptides as COVID-19 therapeutics. Front Pharmacol 2020; 11: 575444.
[http://dx.doi.org/10.3389/fphar.2020.575444] [PMID: 33041819]
[71]
Kaur-Boparai J, Sharma PK. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 2020; 27(1): 4-16.
[http://dx.doi.org/10.2174/18755305MTAwENDE80] [PMID: 31438824]
[72]
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov 2020; 19(5): 311-32.
[http://dx.doi.org/10.1038/s41573-019-0058-8] [PMID: 32107480]
[73]
Yi C, Sun X, Ye J, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol 2020; 17(6): 621-30.
[http://dx.doi.org/10.1038/s41423-020-0458-z] [PMID: 32415260]
[74]
Baig MS, Alagumuthu M, Rajpoot S, Saqib U. Identification of a potential peptide inhibitor of SARS-CoV-2 targeting its entry into the host cells. Drugs R D 2020; 20(3): 161-9.
[http://dx.doi.org/10.1007/s40268-020-00312-5] [PMID: 32592145]
[75]
Düzgüneş N, Konopka K. Peptide inhibitors of viral membrane fusion. Med Res Arch 2020; 8(9)
[http://dx.doi.org/10.18103/mra.v8i9.2244]
[76]
Whisenant J, Burgess K. Blocking coronavirus 19 infection via the SARS-CoV-2 spike protein: initial steps. ACS Med Chem Lett 2020; 11(6): 1076-8.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00233] [PMID: 32547694]
[77]
Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines (Basel) 2020; 8(3): 517.
[http://dx.doi.org/10.3390/vaccines8030517] [PMID: 32927756]
[78]
Agarwal G, Gabrani R. Antiviral peptides: identification and validation. Int J Pept Res Ther 2021; 27(1): 149-68.
[http://dx.doi.org/10.1007/s10989-020-10072-0] [PMID: 32427225]
[79]
Tavassoly O, Safavi F, Tavassoly I. Heparin-binding peptides as novel therapies to stop SARS-CoV-2 cellular entry and infection. Mol Pharmacol 2020; 98(5): 612-9.
[http://dx.doi.org/10.1124/molpharm.120.000098] [PMID: 32913137]
[80]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[81]
Xia S, Yan L, Xu W, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 2019; 5(4): eaav4580.
[http://dx.doi.org/10.1126/sciadv.aav4580] [PMID: 30989115]
[82]
Wang C, Wang S, Li D, Wei DQ, Zhao J, Wang J. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology 2020; 159(3): 1145-1147.e4.
[http://dx.doi.org/10.1053/j.gastro.2020.05.015] [PMID: 32437749]
[83]
Carlos AJ, Ha DP, Yeh DW, et al. GRP78 binds SARS-CoV-2 Spike protein and ACE2 and GRP78 depleting antibody blocks viral entry and infection in vitro. BioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.20.427368]
[84]
Allam L, Ghrifi F, Mohammed H, et al. Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform Biol Insights 2020; 14
[http://dx.doi.org/10.1177/1177932220965505] [PMID: 33149560]
[85]
Nelde A, Bilich T, Heitmann JS, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol 2021; 22(1): 74-85.
[http://dx.doi.org/10.1038/s41590-020-00808-x] [PMID: 32999467]
[86]
Lawes-Wickwar S, Ghio D, Tang MY, et al. A rapid systematic review of public responses to health messages encouraging vaccination against infectious diseases in a pandemic or epidemic. Vaccines 2021; 9(2): 72.
[http://dx.doi.org/10.3390/vaccines9020072] [PMID: 33498395]
[87]
Doroftei B, Ciobica A, Ilie OD, Maftei R, Ilea C. Mini-review discussing the reliability and efficiency of COVID-19 vaccines. Diagnostics 2021; 11(4): 579.
[http://dx.doi.org/10.3390/diagnostics11040579] [PMID: 33804914]
[88]
Li CX, Noreen S, Zhang LX, et al. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomed Pharmacother 2022; 146: 112550.
[http://dx.doi.org/10.1016/j.biopha.2021.112550] [PMID: 34959116]
[89]
Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: A timeline of immunological insights. Nat Rev Immunol 2021; 21(4): 245-56.
[http://dx.doi.org/10.1038/s41577-021-00522-1] [PMID: 33723416]
[90]
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci 2021; 7(4): 512-33.
[http://dx.doi.org/10.1021/acscentsci.1c00120] [PMID: 34056083]
[91]
Belete TM. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect Drug Resist 2021; 14: 151-61.
[http://dx.doi.org/10.2147/IDR.S288877] [PMID: 33500636]
[92]
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev 2020; 35: 43-9.
[PMID: 32653463]
[93]
Pascolo S. Synthetic messenger RNA-based vaccines: From scorn to hype. Viruses 2021; 13(2): 270.
[http://dx.doi.org/10.3390/v13020270] [PMID: 33572452]
[94]
Onyeaka H, Al-Sharify ZT, Ghadhban MY, Al-Najjar SZ. A review on the advancements in the development of vaccines to combat coronavirus disease 2019. Clin Exp Vaccine Res 2021; 10(1): 6-12.
[http://dx.doi.org/10.7774/cevr.2021.10.1.6] [PMID: 33628749]
[95]
Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021; 397(10275): 671-81.
[http://dx.doi.org/10.1016/S0140-6736(21)00234-8] [PMID: 33545094]
[96]
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54(5): 623-37.
[http://dx.doi.org/10.1007/s11262-018-1583-y] [PMID: 30008053]
[97]
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol 2019; 14(11): 1007-17.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[98]
Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol 2018; 13(12): 1100-8.
[http://dx.doi.org/10.1038/s41565-018-0273-1] [PMID: 30348955]
[99]
Qi R, Wang Y, Bruno PM, et al. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat Commun 2017; 8(1): 2166.
[http://dx.doi.org/10.1038/s41467-017-02390-7] [PMID: 29255160]
[100]
Ashton S, Song YH, Nolan J, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 2016; 8(325): 325ra17.
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[101]
Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 2014; 4(9): 872-92.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[102]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[103]
Zhao Y, Fay F, Hak S, et al. Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nat Commun 2016; 7(1): 11221.
[http://dx.doi.org/10.1038/ncomms11221]
[104]
Kulkarni TA, Bade AN, Sillman B, et al. A year-long extended release nanoformulated cabotegravir prodrug. Nat Mater 2020; 19(8): 910-20.
[http://dx.doi.org/10.1038/s41563-020-0674-z] [PMID: 32341511]
[105]
Hobson JJ, Al-khouja A, Curley P, et al. Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies. Nat Commun 2019; 10(1): 1413.
[http://dx.doi.org/10.1038/s41467-019-09354-z] [PMID: 30926773]
[106]
Liu L, Ren J, He Z, et al. Cholesterol-modified hydroxychloroquine-loaded nanocarriers in bleomycin-induced pulmonary fibrosis. Sci Rep 2017; 7(1): 10737.
[http://dx.doi.org/10.1038/s41598-017-11450-3] [PMID: 28878315]
[107]
Huang P, Wang D, Su Y, et al. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc 2014; 136(33): 11748-56.
[http://dx.doi.org/10.1021/ja505212y] [PMID: 25078892]
[108]
Rehman SU, Rehman SU, Yoo HH. COVID-19 challenges and its therapeutics. Biomed Pharmacother 2021; 142: 112015.
[http://dx.doi.org/10.1016/j.biopha.2021.112015] [PMID: 34388532]
[109]
Shibata A, McMullen E, Pham A, et al. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res Hum Retroviruses 2013; 29(5): 746-54.
[http://dx.doi.org/10.1089/aid.2012.0301] [PMID: 23289671]
[110]
Gadde S. Multi-drug delivery nanocarriers for combination therapy. MedChemComm 2015; 6(11): 1916-29.
[http://dx.doi.org/10.1039/C5MD00365B]
[111]
Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy