Review Article

新出现的COVID-19感染治疗方法:综述

卷 24, 期 4, 2024

发表于: 19 May, 2023

页: [435 - 448] 页: 14

弟呕挨: 10.2174/1566524023666230417112543

价格: $65

Open Access Journals Promotions 2
摘要

在目前的情况下,SARS-CoV-2病毒对人类生存和全球金融体系造成了巨大损害。据估计,全世界约有1.11亿人被感染,约有247万人因这次大流行而死亡。主要症状为与SARS-CoV-2相关的打喷嚏、咳嗽、感冒、呼吸困难、肺炎和多器官衰竭。目前,有两个关键问题,即针对SARSCoV-2的药物开发尝试不足和缺乏任何生物调节过程,主要负责该病毒造成的破坏。因此,迫切需要开发一些新药来治疗这种流行病。人们注意到,COVID-19的发病机制主要由两大事件引起:感染和免疫缺陷,这两大事件发生在病理过程中。抗病毒药物可以同时治疗病毒和宿主细胞。因此,在本综述中,主要的治疗方法分为“靶病毒”组和“靶宿主”组。这两种机制主要依赖于药物重新定位、新方法和可能的靶点。最初,我们根据医生的建议讨论了传统药物。此外,这种疗法没有对抗COVID-19的潜力。之后,我们进行了详细的调查分析,找到了一些新的疫苗和单克隆抗体,并进行了一些临床试验,以检验它们对SARSCoV- 2和突变株的有效性。此外,本研究提出了最成功的治疗方法,包括联合治疗。利用纳米技术构建高效的纳米载体,克服了抗病毒和生物治疗的传统限制。

关键词: 多肽再利用,蛋白质组学,SARS-CoV-2,治疗学,转录组学,抗病毒药物。

[1]
Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 2020; 383(6): 590-2.
[http://dx.doi.org/10.1056/NEJMc2011400] [PMID: 32402155]
[2]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[3]
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184(4): 861-80.
[http://dx.doi.org/10.1016/j.cell.2021.01.007] [PMID: 33497610]
[4]
Iacob S, Iacob DG. SARS-coV-2 treatment approaches: Numerous options, no certainty for a versatile virus. Front Pharmacol 2020; 11: 1224.
[http://dx.doi.org/10.3389/fphar.2020.01224] [PMID: 32982720]
[5]
Hillen HS. Structure and function of SARS-CoV-2 polymerase. Curr Opin Virol 2021; 48: 82-90.
[http://dx.doi.org/10.1016/j.coviro.2021.03.010] [PMID: 33945951]
[6]
Valle C, Martin B, Touret F, et al. Drugs against SARS‐CoV ‐2: What do we know about their mode of action? Rev Med Virol 2020; 30(6): 1-10.
[http://dx.doi.org/10.1002/rmv.2143] [PMID: 32779326]
[7]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[8]
Pirone L, Del Gatto A, Di Gaetano S, et al. A multi-targeting approach to fight SARS-CoV-2 attachment. Front Mol Biosci 2020; 7: 186.
[http://dx.doi.org/10.3389/fmolb.2020.00186] [PMID: 32850973]
[9]
Jakhmola S, Indari O, Kashyap D, et al. Mutational analysis of structural proteins of SARS-CoV-2. Heliyon 2021; 7(3): e06572.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06572] [PMID: 33778179]
[10]
Wang Q, Li C, Zhang Q, et al. Interactions of SARS Coronavirus Nucleocapsid Protein with the host cell proteasome subunit p42. Virol J 2010; 7(1): 99.
[http://dx.doi.org/10.1186/1743-422X-7-99] [PMID: 20478047]
[11]
Hasan A, Paray BA, Hussain A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39(8): 3025-33.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[12]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[13]
Song HC, Seo MY, Stadler K, et al. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004; 78(19): 10328-35.
[http://dx.doi.org/10.1128/JVI.78.19.10328-10335.2004] [PMID: 15367599]
[14]
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev 2008; 72(4): 672-85.
[http://dx.doi.org/10.1128/MMBR.00015-08] [PMID: 19052324]
[15]
Guney E, Menche J, Vidal M, Barábasi AL. Network-based in silico drug efficacy screening. Nat Commun 2016; 7(1): 10331.
[http://dx.doi.org/10.1038/ncomms10331] [PMID: 26831545]
[16]
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020; 6(1): 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[17]
Cheng F, Lu W, Liu C, et al. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat Commun 2019; 10(1): 3476.
[http://dx.doi.org/10.1038/s41467-019-10744-6] [PMID: 31375661]
[18]
Gyongyi Z, Garcia-Molina H, Pedersen J. Combating web spam with trustrank. Proceedings of the 30th International Conference on very large data bases (VLDB).
[19]
Sadegh S, Matschinske J, Blumenthal DB, et al. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat Commun 2020; 11(1): 3518.
[http://dx.doi.org/10.1038/s41467-020-17189-2] [PMID: 32665542]
[20]
Morselli Gysi D, do Valle Í, Zitnik M, et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc Natl Acad Sci USA 2021; 118(19): e2025581118.
[http://dx.doi.org/10.1073/pnas.2025581118] [PMID: 33906951]
[21]
Tomasoni M, Gómez S, Crawford J, et al. MONET: A toolbox integrating top-performing methods for network modularization. Bioinformatics 2020; 36(12): 3920-1.
[http://dx.doi.org/10.1093/bioinformatics/btaa236] [PMID: 32271874]
[22]
Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 2017; 17(2): 116-30.
[http://dx.doi.org/10.1038/nrc.2016.124] [PMID: 27977008]
[23]
Alvarez MJ, Shen Y, Giorgi FM, et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 2016; 48(8): 838-47.
[http://dx.doi.org/10.1038/ng.3593] [PMID: 27322546]
[24]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171(6): 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[25]
Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 2010; 107(33): 14621-6.
[http://dx.doi.org/10.1073/pnas.1000138107] [PMID: 20679242]
[26]
Napolitano F, Gambardella G, Carrella D, Gao X, di Bernardo D. Computational drug repositioning and elucidation of mechanism of action of compounds against sars-cov-2. arXiv 2020.
[27]
Yang L, Liu S, Liu J, et al. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther 2020; 5(1): 128.
[http://dx.doi.org/10.1038/s41392-020-00243-2] [PMID: 32712629]
[28]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease. JAMA 2020; 323(18): 1824-36.
[PMID: 32282022]
[29]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. In: Seminars in immunopathology Berlin Heidelberg: Springer 2017. Berlin, Heidelberg: Springer 2017.
[http://dx.doi.org/10.1007/s00281-017-0629-x]
[30]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[31]
Levin JM, Oprea TI, Davidovich S, et al. Artificial intelligence, drug repurposing and peer review. Nat Biotechnol 2020; 38(10): 1127-31.
[http://dx.doi.org/10.1038/s41587-020-0686-x] [PMID: 32929264]
[32]
Rahimkhoei V, Jabbari N, Nourani A, Sharifi S, Akbari A. Potential small‐molecule drugs as available weapons to fight novel coronavirus (2019‐nCoV): A review. Cell Biochem Funct 2021; 39(1): 4-9.
[http://dx.doi.org/10.1002/cbf.3576] [PMID: 32803762]
[33]
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[34]
Indari O, Jakhmola S, Manivannan E, Jha HC. An update on antiviral therapy against SARS-CoV-2: How far have we come? Front Pharmacol 2021; 12: 632677.
[http://dx.doi.org/10.3389/fphar.2021.632677] [PMID: 33762954]
[35]
Elalfy H, Besheer T, El-Mesery A, et al. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID‐19. J Med Virol 2021; 93(5): 3176-83.
[http://dx.doi.org/10.1002/jmv.26880] [PMID: 33590901]
[36]
Young BE, Fong SW, Chan YH, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet 2020; 396(10251): 603-11.
[http://dx.doi.org/10.1016/S0140-6736(20)31757-8] [PMID: 32822564]
[37]
Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2021; 103: 214-6.
[http://dx.doi.org/10.1016/j.ijid.2020.11.191] [PMID: 33278625]
[38]
Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics issues on human positive ssRNA virus infection: An update. Metabolites 2020; 10(9): 356.
[http://dx.doi.org/10.3390/metabo10090356] [PMID: 32878290]
[39]
Gil C, Ginex T, Maestro I, et al. COVID-19: Drug targets and potential treatments. J Med Chem 2020; 63(21): 12359-86.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[40]
Shen L, Niu J, Wang C, et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 2019; 93(12): e00023-19.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]
[41]
Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 2020; 21(7): 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[42]
Medhi B, Prajapat M, Sarma P, et al. Drug for corona virus: A systematic review. Indian J Pharmacol 2020; 52(1): 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[43]
Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA 2020; 324(2): 131-2.
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[44]
Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin Sci 2020; 134(5): 543-5.
[http://dx.doi.org/10.1042/CS20200163] [PMID: 32167153]
[45]
Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer Discov 2020; 10(6): 779-82.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0451] [PMID: 32276929]
[46]
Glebov OO. Understanding SARS‐CoV‐2 endocytosis for COVID‐19 drug repurposing. FEBS J 2020; 287(17): 3664-71.
[http://dx.doi.org/10.1111/febs.15369] [PMID: 32428379]
[47]
Baglivo M, Baronio M, Natalini G, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: A possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed 2020; 91(1): 161-4.
[PMID: 32191676]
[48]
Cho J, Lee YJ, Kim JH, et al. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep 2020; 10(1): 16200.
[http://dx.doi.org/10.1038/s41598-020-72879-7] [PMID: 33004837]
[49]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[50]
Jawaid Akhtar M. COVID19 inhibitors: A prospective therapeutics. Bioorg Chem 2020; 101: 104027.
[http://dx.doi.org/10.1016/j.bioorg.2020.104027] [PMID: 32629280]
[51]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[52]
Borgio JF, Alsuwat HS, Al Otaibi WM, et al. State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2. Arch Med Sci 2020; 16(1)
[53]
Mu J, Xu J, Zhang L, et al. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci 2020; 63(9): 1413-6.
[http://dx.doi.org/10.1007/s11427-020-1692-1] [PMID: 32291557]
[54]
Alam I, Kamau AA, Kulmanov M, et al. Functional pangenome analysis shows key features of E protein are preserved in SARS and SARS-CoV-2. Front Cell Infect Microbiol 2020; 10: 405.
[55]
Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS‐CoV‐2 infection(COVID‐19); a new multi‐pronged therapy for acute respiratory distress syndrome? Br J Pharmacol 2020; 177(16): 3635-45.
[http://dx.doi.org/10.1111/bph.15137] [PMID: 32441764]
[56]
Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 2020; 19(7): 102567.
[http://dx.doi.org/10.1016/j.autrev.2020.102567] [PMID: 32376392]
[57]
Bonaventura A, Vecchié A, Wang TS, et al. Targeting GM-CSF in COVID-19 pneumonia: Rationale and strategies. Front Immunol 2020; 11: 1625.
[http://dx.doi.org/10.3389/fimmu.2020.01625] [PMID: 32719685]
[58]
Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020; 324(13): 1330-41.
[http://dx.doi.org/10.1001/jama.2020.17023] [PMID: 32876694]
[59]
Noreen S, Maqbool I, Madni A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol 2021; 894: 173854.
[http://dx.doi.org/10.1016/j.ejphar.2021.173854] [PMID: 33428898]
[60]
Crisafulli S, Isgrò V, La Corte L, Atzeni F, Trifirò G. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID-19: Rationale, clinical evidence and risks. BioDrugs 2020; 34(4): 415-22.
[http://dx.doi.org/10.1007/s40259-020-00430-1] [PMID: 32557214]
[61]
Yang Y, Zhu Z, Wang X, et al. Ligand-based approach for predicting drug targets and for virtual screening against COVID-19. Brief Bioinform 2021; 22(2): 1053-64.
[http://dx.doi.org/10.1093/bib/bbaa422] [PMID: 33461215]
[62]
Bonam SR, Kaveri SV, Sakuntabhai A, Gilardin L, Bayry J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Reports Medicine 2020; 1(2): 100016.
[63]
Casadevall A, Pirofski L. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130(4): 1545-8.
[http://dx.doi.org/10.1172/JCI138003] [PMID: 32167489]
[64]
Venkat Kumar G, Jeyanthi V, Ramakrishnan S. A short review on antibody therapy for COVID-19. New Microbes New Infect 2020; 35: 100682.
[http://dx.doi.org/10.1016/j.nmni.2020.100682] [PMID: 32313660]
[65]
Andreano E, Nicastri E, Paciello I, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell 2021; 184(7): 1821-1835.e16.
[http://dx.doi.org/10.1016/j.cell.2021.02.035] [PMID: 33667349]
[66]
Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181(5): 1004-5.
[67]
Leu SJ, Lee YC, Lee CH, et al. Generation and characterization of single chain variable fragment against alpha-enolase of Candida albicans. Int J Mol Sci 2020; 21(8): 2903.
[http://dx.doi.org/10.3390/ijms21082903] [PMID: 32326294]
[68]
Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 2020; 369(6506): 1014-8.
[http://dx.doi.org/10.1126/science.abd0831] [PMID: 32540904]
[69]
Focosi D, Maggi F. Neutralising antibody escape of SARS‐CoV‐2 spike protein: Risk assessment for antibody‐based Covid‐19 therapeutics and vaccines. Rev Med Virol 2021; 31(6): e2231.
[http://dx.doi.org/10.1002/rmv.2231] [PMID: 33724631]
[70]
Mahendran ASK, Lim YS, Fang CM, Loh HS, Le CF. The potential of antiviral peptides as COVID-19 therapeutics. Front Pharmacol 2020; 11: 575444.
[http://dx.doi.org/10.3389/fphar.2020.575444] [PMID: 33041819]
[71]
Kaur-Boparai J, Sharma PK. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 2020; 27(1): 4-16.
[http://dx.doi.org/10.2174/18755305MTAwENDE80] [PMID: 31438824]
[72]
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov 2020; 19(5): 311-32.
[http://dx.doi.org/10.1038/s41573-019-0058-8] [PMID: 32107480]
[73]
Yi C, Sun X, Ye J, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol 2020; 17(6): 621-30.
[http://dx.doi.org/10.1038/s41423-020-0458-z] [PMID: 32415260]
[74]
Baig MS, Alagumuthu M, Rajpoot S, Saqib U. Identification of a potential peptide inhibitor of SARS-CoV-2 targeting its entry into the host cells. Drugs R D 2020; 20(3): 161-9.
[http://dx.doi.org/10.1007/s40268-020-00312-5] [PMID: 32592145]
[75]
Düzgüneş N, Konopka K. Peptide inhibitors of viral membrane fusion. Med Res Arch 2020; 8(9)
[http://dx.doi.org/10.18103/mra.v8i9.2244]
[76]
Whisenant J, Burgess K. Blocking coronavirus 19 infection via the SARS-CoV-2 spike protein: initial steps. ACS Med Chem Lett 2020; 11(6): 1076-8.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00233] [PMID: 32547694]
[77]
Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines (Basel) 2020; 8(3): 517.
[http://dx.doi.org/10.3390/vaccines8030517] [PMID: 32927756]
[78]
Agarwal G, Gabrani R. Antiviral peptides: identification and validation. Int J Pept Res Ther 2021; 27(1): 149-68.
[http://dx.doi.org/10.1007/s10989-020-10072-0] [PMID: 32427225]
[79]
Tavassoly O, Safavi F, Tavassoly I. Heparin-binding peptides as novel therapies to stop SARS-CoV-2 cellular entry and infection. Mol Pharmacol 2020; 98(5): 612-9.
[http://dx.doi.org/10.1124/molpharm.120.000098] [PMID: 32913137]
[80]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[81]
Xia S, Yan L, Xu W, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 2019; 5(4): eaav4580.
[http://dx.doi.org/10.1126/sciadv.aav4580] [PMID: 30989115]
[82]
Wang C, Wang S, Li D, Wei DQ, Zhao J, Wang J. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology 2020; 159(3): 1145-1147.e4.
[http://dx.doi.org/10.1053/j.gastro.2020.05.015] [PMID: 32437749]
[83]
Carlos AJ, Ha DP, Yeh DW, et al. GRP78 binds SARS-CoV-2 Spike protein and ACE2 and GRP78 depleting antibody blocks viral entry and infection in vitro. BioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.20.427368]
[84]
Allam L, Ghrifi F, Mohammed H, et al. Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform Biol Insights 2020; 14
[http://dx.doi.org/10.1177/1177932220965505] [PMID: 33149560]
[85]
Nelde A, Bilich T, Heitmann JS, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol 2021; 22(1): 74-85.
[http://dx.doi.org/10.1038/s41590-020-00808-x] [PMID: 32999467]
[86]
Lawes-Wickwar S, Ghio D, Tang MY, et al. A rapid systematic review of public responses to health messages encouraging vaccination against infectious diseases in a pandemic or epidemic. Vaccines 2021; 9(2): 72.
[http://dx.doi.org/10.3390/vaccines9020072] [PMID: 33498395]
[87]
Doroftei B, Ciobica A, Ilie OD, Maftei R, Ilea C. Mini-review discussing the reliability and efficiency of COVID-19 vaccines. Diagnostics 2021; 11(4): 579.
[http://dx.doi.org/10.3390/diagnostics11040579] [PMID: 33804914]
[88]
Li CX, Noreen S, Zhang LX, et al. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomed Pharmacother 2022; 146: 112550.
[http://dx.doi.org/10.1016/j.biopha.2021.112550] [PMID: 34959116]
[89]
Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: A timeline of immunological insights. Nat Rev Immunol 2021; 21(4): 245-56.
[http://dx.doi.org/10.1038/s41577-021-00522-1] [PMID: 33723416]
[90]
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci 2021; 7(4): 512-33.
[http://dx.doi.org/10.1021/acscentsci.1c00120] [PMID: 34056083]
[91]
Belete TM. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect Drug Resist 2021; 14: 151-61.
[http://dx.doi.org/10.2147/IDR.S288877] [PMID: 33500636]
[92]
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev 2020; 35: 43-9.
[PMID: 32653463]
[93]
Pascolo S. Synthetic messenger RNA-based vaccines: From scorn to hype. Viruses 2021; 13(2): 270.
[http://dx.doi.org/10.3390/v13020270] [PMID: 33572452]
[94]
Onyeaka H, Al-Sharify ZT, Ghadhban MY, Al-Najjar SZ. A review on the advancements in the development of vaccines to combat coronavirus disease 2019. Clin Exp Vaccine Res 2021; 10(1): 6-12.
[http://dx.doi.org/10.7774/cevr.2021.10.1.6] [PMID: 33628749]
[95]
Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021; 397(10275): 671-81.
[http://dx.doi.org/10.1016/S0140-6736(21)00234-8] [PMID: 33545094]
[96]
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54(5): 623-37.
[http://dx.doi.org/10.1007/s11262-018-1583-y] [PMID: 30008053]
[97]
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol 2019; 14(11): 1007-17.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[98]
Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol 2018; 13(12): 1100-8.
[http://dx.doi.org/10.1038/s41565-018-0273-1] [PMID: 30348955]
[99]
Qi R, Wang Y, Bruno PM, et al. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat Commun 2017; 8(1): 2166.
[http://dx.doi.org/10.1038/s41467-017-02390-7] [PMID: 29255160]
[100]
Ashton S, Song YH, Nolan J, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 2016; 8(325): 325ra17.
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[101]
Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 2014; 4(9): 872-92.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[102]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[103]
Zhao Y, Fay F, Hak S, et al. Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nat Commun 2016; 7(1): 11221.
[http://dx.doi.org/10.1038/ncomms11221]
[104]
Kulkarni TA, Bade AN, Sillman B, et al. A year-long extended release nanoformulated cabotegravir prodrug. Nat Mater 2020; 19(8): 910-20.
[http://dx.doi.org/10.1038/s41563-020-0674-z] [PMID: 32341511]
[105]
Hobson JJ, Al-khouja A, Curley P, et al. Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies. Nat Commun 2019; 10(1): 1413.
[http://dx.doi.org/10.1038/s41467-019-09354-z] [PMID: 30926773]
[106]
Liu L, Ren J, He Z, et al. Cholesterol-modified hydroxychloroquine-loaded nanocarriers in bleomycin-induced pulmonary fibrosis. Sci Rep 2017; 7(1): 10737.
[http://dx.doi.org/10.1038/s41598-017-11450-3] [PMID: 28878315]
[107]
Huang P, Wang D, Su Y, et al. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc 2014; 136(33): 11748-56.
[http://dx.doi.org/10.1021/ja505212y] [PMID: 25078892]
[108]
Rehman SU, Rehman SU, Yoo HH. COVID-19 challenges and its therapeutics. Biomed Pharmacother 2021; 142: 112015.
[http://dx.doi.org/10.1016/j.biopha.2021.112015] [PMID: 34388532]
[109]
Shibata A, McMullen E, Pham A, et al. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res Hum Retroviruses 2013; 29(5): 746-54.
[http://dx.doi.org/10.1089/aid.2012.0301] [PMID: 23289671]
[110]
Gadde S. Multi-drug delivery nanocarriers for combination therapy. MedChemComm 2015; 6(11): 1916-29.
[http://dx.doi.org/10.1039/C5MD00365B]
[111]
Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy