Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Bioorthogonal Photoclick 1,3-Dipolar Cycloaddition Reaction on Protein – A Review Study

Author(s): Pritha Mandal*

Volume 27, Issue 4, 2023

Published on: 10 May, 2023

Page: [297 - 307] Pages: 11

DOI: 10.2174/1385272827666230417104739

Price: $65

Abstract

Click reactions have gained enormous popularity among chemists for their ambient reaction parameters and wide application in various frontier research fields. Photo-initiated click reactions add another dimension of spatiotemporal control which ensures fruitful bioorthogonal reaction. Several cycloaddition reactions, enlisted in the category of ‘photo click’ reactions due to the fast kinetics and ambient reaction conditions, are widely utilized by scientists for bioorthogonal conjugation. In this review, various types of 1,3-dipolar cycloaddition reactions and their applications in the field of protein bioconjugation are discussed.

Keywords: Photoclick reaction, bioorthogonal reaction, protein labeling, dipolar cycloaddition, tetrazole, SPAAC.

Graphical Abstract
[1]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AIDANIE2004>3.0.CO;2-5] [PMID: 11433435]
[2]
Devaraj, N.K.; Finn, M.G. Introduction: Click chemistry. Chem. Rev., 2021, 121(12), 6697-6698.
[http://dx.doi.org/10.1021/acs.chemrev.1c00469] [PMID: 34157843]
[3]
Kumar, G.S.; Lin, Q. Light-triggered click chemistry. Chem. Rev., 2021, 121(12), 6991-7031.
[http://dx.doi.org/10.1021/acs.chemrev.0c00799] [PMID: 33104332]
[4]
Tasdelen, M.A.; Yagci, Y. Light-induced click reactions. Angew. Chem. Int. Ed., 2013, 52(23), 5930-5938.
[http://dx.doi.org/10.1002/anie.201208741] [PMID: 23653429]
[5]
Dinda, B. Principles of Photochemical Reactions.Essentials of Pericyclic and Photochemical Reactions. Lecture Notes in Chemistry; Springer: Cham, 2017, p. 93.
[http://dx.doi.org/10.1007/978-3-319-45934-9_6]
[6]
Coxon, J.M.; Halton, B. Organic Photochemistry; Cambridge University Press: Cambridge, 1974.
[7]
Kaur, G.; Singh, G.; Singh, J. Photochemical tuning of materials: A click chemistry perspective. Mater. Today Chem., 2018, 8, 56-84.
[http://dx.doi.org/10.1016/j.mtchem.2018.03.002]
[8]
Delaittre, G.; Goldmann, A.S.; Mueller, J.O.; Barner-Kowollik, C. Efficient photochemical approaches for spatially resolved surface functionalization. Angew. Chem. Int. Ed., 2015, 54(39), 11388-11403.
[http://dx.doi.org/10.1002/anie.201504920] [PMID: 26331726]
[9]
Li, J.; Kong, H.; Zhu, C.; Zhang, Y. Photo-controllable bioorthogonal chemistry for spatiotemporal control of bio-targets in living systems. Chem. Sci., 2020, 11(13), 3390-3396.
[http://dx.doi.org/10.1039/C9SC06540G] [PMID: 34109018]
[10]
Holland, J.P.; Gut, M.; Klingler, S.; Fay, R.; Guillou, A. Photochemical reactions in the synthesis of protein–drug conjugates. Chemistry, 2020, 26(1), 33-48.
[http://dx.doi.org/10.1002/chem.201904059] [PMID: 31599057]
[11]
Deniz, E.; Tomasulo, M.; Cusido, J.; Yildiz, I.; Petriella, M.; Bossi, M.L.; Sortino, S.; Raymo, F.M. Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J. Phys. Chem. C, 2012, 116(10), 6058-6068.
[http://dx.doi.org/10.1021/jp211796p]
[12]
Arumugam, S.; Orski, S.V.; Locklin, J.; Popik, V.V. Photoreactive polymer brushes for high-density patterned surface derivatization using a Diels-Alder photoclick reaction. J. Am. Chem. Soc., 2012, 134(1), 179-182.
[http://dx.doi.org/10.1021/ja210350d] [PMID: 22191601]
[13]
Mandal, P.; Mandal, D.K. Localization and environment of tryptophans in different structural states of concanavalin A. J. Fluoresc., 2011, 21(6), 2123-2132.
[http://dx.doi.org/10.1007/s10895-011-0913-4] [PMID: 21748239]
[14]
Ramil, C.P.; Lin, Q. Photoclick chemistry: A fluorogenic light-triggered in vivo ligation reaction. Curr. Opin. Chem. Biol., 2014, 21, 89-95.
[http://dx.doi.org/10.1016/j.cbpa.2014.05.024] [PMID: 25022432]
[15]
Aime, S.; Travagin, F.; Terreno, E.; Giovenzana, G.B. Chemistry of Molecular Imaging: An Overview In: Molecular Imaging, 2nd Ed.; Ross, B.D.; Gambhir, S.S., Eds.; Academic Press; Cambridge: USA, 2021; pp. 423-443.
[16]
Qin, L.H.; Hu, W.; Long, Y-Q. Bioorthogonal chemistry: Optimization and application updates during 2013–2017. Tetrahedron Lett., 2018, 59(23), 2214-2228.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.058]
[17]
Ramil, C.P.; Lin, Q. Bioorthogonal chemistry: Strategies and recent developments. Chem. Commun., 2013, 49(94), 11007-11022.
[http://dx.doi.org/10.1039/c3cc44272a] [PMID: 24145483]
[18]
McKay, C.S.; Finn, M.G. Click chemistry in complex mixtures: Bioorthogonal bioconjugation. Chem. Biol., 2014, 21(9), 1075-1101.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.002] [PMID: 25237856]
[19]
Herner, A.; Lin, Q. Photo-triggered click chemistry for biological applications. Top. Curr. Chem., 2016, 374(1), 1.
[http://dx.doi.org/10.1007/s41061-015-0002-2] [PMID: 27397964]
[20]
Frija, L.M.T.; Ismael, A.; Cristiano, M.L.S. Photochemical transformations of tetrazole derivatives: Applications in organic synthesis. Molecules, 2010, 15(5), 3757-3774.
[http://dx.doi.org/10.3390/molecules15053757] [PMID: 20657512]
[21]
Pirota, V.; Benassi, A.; Doria, F. Lights on 2,5-diaryl tetrazoles: Applications and limits of a versatile photoclick reaction. Photochem. Photobiol. Sci., 2022, 21(5), 879-898.
[http://dx.doi.org/10.1007/s43630-022-00173-8] [PMID: 35188652]
[22]
Huisgen, R. 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl., 1963, 2(10), 565-598.
[http://dx.doi.org/10.1002/anie.196305651]
[23]
Song, W.; Wang, Y.; Qu, J.; Madden, M.M.; Lin, Q. A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew. Chem. Int. Ed., 2008, 47(15), 2832-2835.
[http://dx.doi.org/10.1002/anie.200705805] [PMID: 18311742]
[24]
Song, W.; Wang, Y.; Qu, J.; Lin, Q. Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J. Am. Chem. Soc., 2008, 130(30), 9654-9655.
[http://dx.doi.org/10.1021/ja803598e] [PMID: 18593155]
[25]
Wang, Y.; Song, W.; Hu, W.J.; Lin, Q. Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles. Angew. Chem. Int. Ed., 2009, 48(29), 5330-5333.
[http://dx.doi.org/10.1002/anie.200901220] [PMID: 19544336]
[26]
Liu, C.C.; Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem., 2010, 79(1), 413-444.
[http://dx.doi.org/10.1146/annurev.biochem.052308.105824] [PMID: 20307192]
[27]
Bird, R.E.; Lemmel, S.A.; Yu, X.; Zhou, Q.A. Bioorthogonal chemistry and its applications. Bioconjug. Chem., 2021, 32(12), 2457-2479.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00461] [PMID: 34846126]
[28]
Wang, J.; Zhang, W.; Song, W.; Wang, Y.; Yu, Z.; Li, J.; Wu, M.; Wang, L.; Zang, J.; Lin, Q. A biosynthetic route to photoclick chemistry on proteins. J. Am. Chem. Soc., 2010, 132(42), 14812-14818.
[http://dx.doi.org/10.1021/ja104350y] [PMID: 20919707]
[29]
Song, W.; Wang, Y.; Yu, Z.; Vera, C.I.R.; Qu, J.; Lin, Q. A metabolic alkene reporter for spatiotemporally controlled imaging of newly synthesized proteins in Mammalian cells. ACS Chem. Biol., 2010, 5(9), 875-885.
[http://dx.doi.org/10.1021/cb100193h] [PMID: 20666508]
[30]
Li, F.; Zhang, H.; Sun, Y.; Pan, Y.; Zhou, J.; Wang, J. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew. Chem. Int. Ed., 2013, 52(37), 9700-9704.
[http://dx.doi.org/10.1002/anie.201303477] [PMID: 23873613]
[31]
Shang, X.; Lai, R.; Song, X.; Li, H.; Niu, W.; Guo, J. Improved photoinduced fluorogenic alkene-tetrazole reaction for protein labeling. Bioconjug. Chem., 2017, 28(11), 2859-2864.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00562] [PMID: 29022697]
[32]
Kaya, E.; Vrabel, M.; Deiml, C.; Prill, S.; Fluxa, V.S.; Carell, T. A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew. Chem. Int. Ed., 2012, 51(18), 4466-4469.
[http://dx.doi.org/10.1002/anie.201109252] [PMID: 22438179]
[33]
Yu, Z.; Pan, Y.; Wang, Z.; Wang, J.; Lin, Q. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew. Chem. Int. Ed., 2012, 51(42), 10600-10604.
[http://dx.doi.org/10.1002/anie.201205352] [PMID: 22997015]
[34]
Yu, Z.; Lin, Q. Design of spiro[2.3]hex-1-ene, a genetically encodable double-strained alkene for superfast photoclick chemistry. J. Am. Chem. Soc., 2014, 136(11), 4153-4156.
[http://dx.doi.org/10.1021/ja5012542] [PMID: 24592808]
[35]
An, P.; Wu, H.Y.; Lewandowski, T.M.; Lin, Q. Hydrophilic azaspiroalkenes as robust bioorthogonal reporters. Chem. Commun., 2018, 54(99), 14005-14008.
[http://dx.doi.org/10.1039/C8CC07432A] [PMID: 30483687]
[36]
Yu, Z.; Lim, R.K.V.; Lin, Q. Synthesis of macrocyclic tetrazoles for rapid photoinduced bioorthogonal 1,3-dipolar cycloaddition reactions. Chemistry, 2010, 16(45), 13325-13329.
[http://dx.doi.org/10.1002/chem.201002360] [PMID: 21031376]
[37]
Jiang, S.; Wu, X.; Liu, H.; Deng, J.; Zhang, X.; Yao, Z.; Zheng, Y.; Li, B.; Yu, Z. Ring-strain-promoted ultrafast diaryltetrazole–alkyne photoclick reactions triggered by visible light. Chem. Photo. Chem., 2020, 4(5), 327-331.
[http://dx.doi.org/10.1002/cptc.201900290]
[38]
Kumar, G.S.; Racioppi, S.; Zurek, E.; Lin, Q. Superfast tetrazole–BCN cycloaddition reaction for bioorthogonal protein labeling on live cells. J. Am. Chem. Soc., 2022, 144(1), 57-62.
[http://dx.doi.org/10.1021/jacs.1c10354] [PMID: 34964645]
[39]
Li, L.; Zhang, Z. Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules, 2016, 21(10), 1393.
[http://dx.doi.org/10.3390/molecules21101393] [PMID: 27783053]
[40]
Zhang, X.; Zhang, Y. Applications of azide-based bioorthogonal click chemistry in glycobiology. Molecules, 2013, 18(6), 7145-7159.
[http://dx.doi.org/10.3390/molecules18067145] [PMID: 23783454]
[41]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[42]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[43]
Özkılıç, Y.; Tüzün, N.Ş. A DFT study on the binuclear CuAAC reaction: Mechanism in light of new experiments. Organometallics, 2016, 35(16), 2589-2599.
[http://dx.doi.org/10.1021/acs.organomet.6b00279]
[44]
Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem., 2020, 2(6), 569-584.
[http://dx.doi.org/10.1016/j.trechm.2020.03.007]
[45]
Presolski, S.I.; Hong, V.P.; Finn, M.G. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol., 2011, 3(4), 153-162.
[http://dx.doi.org/10.1002/9780470559277.ch110148] [PMID: 22844652]
[46]
Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2003, 125(11), 3192-3193.
[http://dx.doi.org/10.1021/ja021381e] [PMID: 12630856]
[47]
Teeuwen, R.L.M.; van Berkel, S.S.; van Dulmen, T.H.H.; Schoffelen, S.; Meeuwissen, S.A.; Zuilhof, H.; de Wolf, F.A.; van Hest, J.C.M. “Clickable” elastins: elastin-like polypeptides functionalized with azide or alkyne groups. Chem. Commun., 2009, 27(27), 4022-4024.
[http://dx.doi.org/10.1039/b903903a] [PMID: 19568620]
[48]
Link, A.J.; Vink, M.K.S.; Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc., 2004, 126(34), 10598-10602.
[http://dx.doi.org/10.1021/ja047629c] [PMID: 15327317]
[49]
Agard, N.J.; Baskin, J.M.; Prescher, J.A.; Lo, A.; Bertozzi, C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol., 2006, 1(10), 644-648.
[http://dx.doi.org/10.1021/cb6003228] [PMID: 17175580]
[50]
Martell, J.; Weerapana, E. Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules, 2014, 19(2), 1378-1393.
[http://dx.doi.org/10.3390/molecules19021378] [PMID: 24473203]
[51]
Hong, V.; Udit, A.K.; Evans, R.A.; Finn, M.G. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition. Chem. Bio. Chem., 2008, 9(9), 1481-1486.
[http://dx.doi.org/10.1002/cbic.200700768] [PMID: 18504727]
[52]
Yagci, Y.; Tasdelen, M.A.; Jockusch, S. Reduction of Cu(II) by photochemically generated phosphonyl radicals to generate Cu(I) as catalyst for atom transfer radical polymerization and azide-alkyne cycloaddition click reactions. Polymer, 2014, 55(16), 3468-3474.
[http://dx.doi.org/10.1016/j.polymer.2014.06.068]
[53]
Tasdelen, M.A.; Yagci, Y. Light-induced copper(I)-catalyzed click chemistry. Tetrahedron Lett., 2010, 51(52), 6945-6947.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.166]
[54]
Adzima, B.J.; Tao, Y.; Kloxin, C.J.; DeForest, C.A.; Anseth, K.S.; Bowman, C.N. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem., 2011, 3(3), 256-259.
[http://dx.doi.org/10.1038/nchem.980] [PMID: 21336334]
[55]
Saini, P.; Singh, G.; Kaur, G.; Singh, J.; Singh, H. Robust and versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions. Mol. Catal., 2021, 504111432 [Review].
[http://dx.doi.org/10.1016/j.mcat.2021.111432]
[56]
Ritter, S.C.; König, B. Signal amplification and transduction by photo-activated catalysis. Chem. Commun., 2006, 45(45), 4694-4696.
[http://dx.doi.org/10.1039/B610696J] [PMID: 17109039]
[57]
Chen, R.T.; Marchesan, S.; Evans, R.A.; Styan, K.E.; Such, G.K.; Postma, A.; McLean, K.M.; Muir, B.W.; Caruso, F. Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels. Biomacromolecules, 2012, 13(3), 889-895.
[http://dx.doi.org/10.1021/bm201802w] [PMID: 22332589]
[58]
Gong, T.; Adzima, B.J.; Baker, N.H.; Bowman, C.N. Photopolymerization reactions using the photoinitiated copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Adv. Mater., 2013, 25(14), 2024-2028.
[http://dx.doi.org/10.1002/adma.201203815] [PMID: 23401189]
[59]
Song, H.B.; Baranek, A.; Bowman, C.N. Kinetics of bulk photo-initiated copper( I )-catalyzed azide–alkyne cycloaddition (CuAAC) polymerizations. Polym. Chem., 2016, 7(3), 603-612.
[http://dx.doi.org/10.1039/C5PY01655J] [PMID: 27429650]
[60]
Kennedy, D.C.; McKay, C.S.; Legault, M.C.B.; Danielson, D.C.; Blake, J.A.; Pegoraro, A.F.; Stolow, A.; Mester, Z.; Pezacki, J.P. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc., 2011, 133(44), 17993-18001.
[http://dx.doi.org/10.1021/ja2083027] [PMID: 21970470]
[61]
van Hest, J.C.M.; van Delft, F.L. Protein modification by strain-promoted alkyne-azide cycloaddition. Chem. Bio. Chem., 2011, 12(9), 1309-1312.
[http://dx.doi.org/10.1002/cbic.201100206] [PMID: 21557431]
[62]
Sletten, E.M.; Bertozzi, C.R. From mechanism to mouse: A tale of two bioorthogonal reactions. Acc. Chem. Res., 2011, 44(9), 666-676.
[http://dx.doi.org/10.1021/ar200148z] [PMID: 21838330]
[63]
Chang, P.V.; Prescher, J.A.; Sletten, E.M.; Baskin, J.M.; Miller, I.A.; Agard, N.J.; Lo, A.; Bertozzi, C.R. Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 1821-1826.
[http://dx.doi.org/10.1073/pnas.0911116107] [PMID: 20080615]
[64]
The Nobel Prize in Chemistry. Nobel Prize Outreach AB. 2022. Available from: https://www.nobelprize.org/prizes/chemistry/2022/summary/ [Accessed on: 24th Dec 2022].
[65]
Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc., 2004, 126(46), 15046-15047.
[http://dx.doi.org/10.1021/ja044996f] [PMID: 15547999]
[66]
Laughlin, S.T.; Bertozzi, C.R. In vivo imaging of Caenorhabditis elegans glycans. ACS Chem. Biol., 2009, 4(12), 1068-1072.
[http://dx.doi.org/10.1021/cb900254y] [PMID: 19954190]
[67]
Pickens, C.J.; Johnson, S.N.; Pressnall, M.M.; Leon, M.A.; Berkland, C.J. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjug. Chem., 2018, 29(3), 686-701.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00633] [PMID: 29287474]
[68]
Lang, K.; Chin, J.W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev., 2014, 114(9), 4764-4806.
[http://dx.doi.org/10.1021/cr400355w] [PMID: 24655057]
[69]
Scinto, S.L.; Bilodeau, D.A.; Hincapie, R.; Lee, W.; Nguyen, S.S.; Xu, M. am Ende, C.W.; Finn, M.G.; Lang, K.; Lin, Q.; Pezacki, J.P.; Prescher, J.A.; Robillard, M.S.; Fox, J.M. Bioorthogonal chemistry. Nat. Rev. Methods Prim., 2021, 1(1), 30.
[http://dx.doi.org/10.1038/s43586-021-00028-z] [PMID: 34585143]
[70]
Poloukhtine, A.A.; Mbua, N.E.; Wolfert, M.A.; Boons, G.J.; Popik, V.V. Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc., 2009, 131(43), 15769-15776.
[http://dx.doi.org/10.1021/ja9054096] [PMID: 19860481]
[71]
Sutton, D.A.; Yu, S.H.; Steet, R.; Popik, V.V. Cyclopropenone-caged Sondheimer diyne (dibenzo[a,e]cyclooctadiyne): A photoactivatable linchpin for efficient SPAAC crosslinking. Chem. Commun., 2016, 52(3), 553-556.
[http://dx.doi.org/10.1039/C5CC08106H] [PMID: 26538499]
[72]
Sutton, D.A.; Popik, V.V. Sequential Photochemistry of Dibenzo[ a, e ]dicyclopropa[ c, g][8]annulene-1,6-dione: Selective Formation of Didehydrodibenzo[ a, e][8]annulenes with Ultrafast SPAAC Reactivity. J. Org. Chem., 2016, 81(19), 8850-8857.
[http://dx.doi.org/10.1021/acs.joc.6b01545] [PMID: 27635662]
[73]
Arumugam, S.; Popik, V.V. Sequential “click” - “photo-click” cross-linker for catalyst-free ligation of azide-tagged substrates. J. Org. Chem., 2014, 79(6), 2702-2708.
[http://dx.doi.org/10.1021/jo500143v] [PMID: 24548078]
[74]
Padwa, A. Azirine photochemistry. Acc. Chem. Res., 1976, 9(10), 371-378.
[http://dx.doi.org/10.1021/ar50106a005]
[75]
Albrecht, E.; Mattay, J.; Steenken, S. [3 + 2] Cycloadditions and protonation by alcohols of photochemically generated nitrile ylides from 2H-azirines. Formation and reactivities of azaallenium cations. J. Am. Chem. Soc., 1997, 119(48), 11605-11610.
[http://dx.doi.org/10.1021/ja971648n]
[76]
Lim, R.K.V.; Lin, Q. Azirine ligation: Fast and selective protein conjugation via photoinduced azirine–alkene cycloaddition. Chem. Commun., 2010, 46(42), 7993-7995.
[http://dx.doi.org/10.1039/c0cc02863k] [PMID: 20865197]
[77]
Mueller, J.O.; Schmidt, F.G.; Blinco, J.P.; Barner-Kowollik, C. Visible-light-induced click chemistry. Angew. Chem. Int. Ed., 2015, 54(35), 10284-10288.
[http://dx.doi.org/10.1002/anie.201504716] [PMID: 26179164]
[78]
Browne, D.L.; Harrity, J.P.A. Recent developments in the chemistry of sydnones. Tetrahedron, 2010, 66(3), 553-568.
[http://dx.doi.org/10.1016/j.tet.2009.10.085]
[79]
Butković, K.; Marinić, Ž.; Molčanov, K.; Kojić-Prodić, B.; Š indler-Kulyk, M. Photochemical and thermal intramolecular 1,3-dipolar cycloaddition reactions of new o -stilbene-methylene-3-sydnones and their synthesis. Beilstein J. Org. Chem., 2011, 7, 1663-1670.
[http://dx.doi.org/10.3762/bjoc.7.196] [PMID: 22238545]
[80]
Decuypère, E.; Plougastel, L.; Audisio, D.; Taran, F. Sydnone–alkyne cycloaddition: Applications in synthesis and bioconjugation. Chem. Commun., 2017, 53(84), 11515-11527.
[http://dx.doi.org/10.1039/C7CC06405E] [PMID: 28959814]
[81]
Porte, K.; Riomet, M.; Figliola, C.; Audisio, D.; Taran, F. Click and bio-orthogonal reactions with mesoionic compounds. Chem. Rev., 2021, 121(12), 6718-6743.
[http://dx.doi.org/10.1021/acs.chemrev.0c00806] [PMID: 33238101]
[82]
Zhang, X.; Wu, X.; Jiang, S.; Gao, J.; Yao, Z.; Deng, J.; Zhang, L.; Yu, Z. Photo-accelerated “click” reaction between diarylsydnones and ring-strained alkynes for bioorthogonal ligation. Chem. Commun., 2019, 55(50), 7187-7190.
[http://dx.doi.org/10.1039/C9CC02882J] [PMID: 31165109]
[83]
Yao, Z.; Wu, X.; Zhang, X.; Xiong, Q.; Jiang, S.; Yu, Z. Synthesis and evaluation of photo-activatable β-diarylsydnone- L -alanines for fluorogenic photo-click cyclization of peptides. Org. Biomol. Chem., 2019, 17(28), 6777-6781.
[http://dx.doi.org/10.1039/C9OB00898E] [PMID: 31268077]
[84]
Zhang, L.; Zhang, X.; Yao, Z.; Jiang, S.; Deng, J.; Li, B.; Yu, Z. Discovery of fluorogenic diarylsydnone-alkene photoligation: Conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. J. Am. Chem. Soc., 2018, 140(24), 7390-7394.
[http://dx.doi.org/10.1021/jacs.8b02493] [PMID: 29870240]
[85]
Deng, J.; Wu, X.; Guo, G.; Zhao, X.; Yu, Z. Photoisomerization-enhanced 1,3-dipolar cycloaddition of carbon-bridged octocyclic azobenzene with photo-released nitrile imine for peptide stapling and imaging in live cells. Org. Biomol. Chem., 2020, 18(29), 5602-5607.
[http://dx.doi.org/10.1039/D0OB01027H] [PMID: 32647842]
[86]
Gao, J.; Xiong, Q.; Wu, X.; Deng, J.; Zhang, X.; Zhao, X.; Deng, P.; Yu, Z. Direct ring-strain loading for visible-light accelerated bioorthogonal ligation via diarylsydnone-dibenzo[b,f ][1,4,5]thiadiazepine photo-click reactions. Commun. Chem., 2020, 3(1), 29.
[http://dx.doi.org/10.1038/s42004-020-0273-6] [PMID: 36703431]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy